

1. TIPOS Y CARACTERÍSTICAS DE LOS RODAMIENTOS

1.1 Diseño y Clasificación

En general, los rodamientos están formados por dos anillos, los elementos rodantes, y una jaula, y se clasifican en rodamientos radiales o rodamientos de apoyo dependiendo de la dirección de la carga principal. Además, dependiendo del tipo de elementos rodantes, se clasifican en rodamientos de bolas o de rodillos, y se subclasifican más en función de sus diferencias en diseño o uso específico.

Los tipos más comunes de rodamientos y la nomenclatura de las partes de rodamientos se indican en la Fig.1.1, y en la Fig. 1.2 se ofrece una clasificación general de los rodamientos.

1.2 Características de los Rodamientos

En comparación con los casquillos, los rodamientos presentan una serie de ventaias:

- Su par inicial o fricción es bajo y la diferencia entre el par inicial y el de funcionamiento es muy pequeña.
- (2) Con el avance de la estandarización a nivel mundial,

- los rodamientos se pueden encontrar en cualquier parte y son fácilmente intercambiables.
- (3) El mantenimiento, la substitución y la inspección resultan sencillos a consecuencia de la simplicidad de la estructura de montaie.
- (4) La mayor parte de rodamientos pueden soportar cargas tanto radiales como axiales de forma simultánea o independiente.
- (5) Los rodamientos se pueden utilizar en una amplia gama de temperaturas.
- (6) Los rodamientos se pueden precargar para conseguir holguras negativas y conseguir una mayor rigidez.

Además, cada uno de los distintos tipos de rodamientos presentan sus ventajas particulares. Las características más comunes de los rodamientos se describen en las páginas de la A10 a la A12 así como en la Tabla 1.1 (páginas A14 y A15).

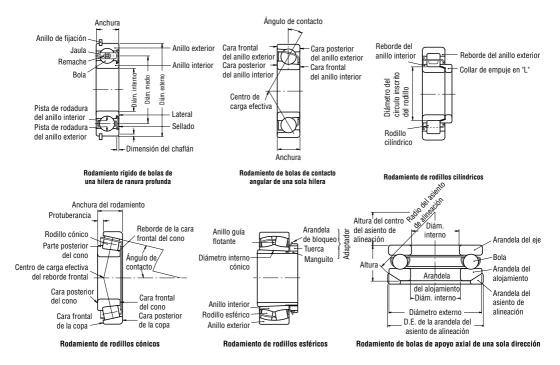
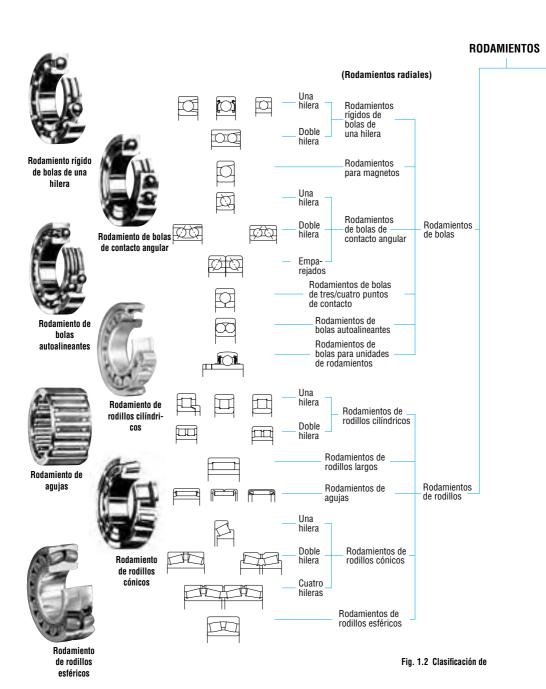
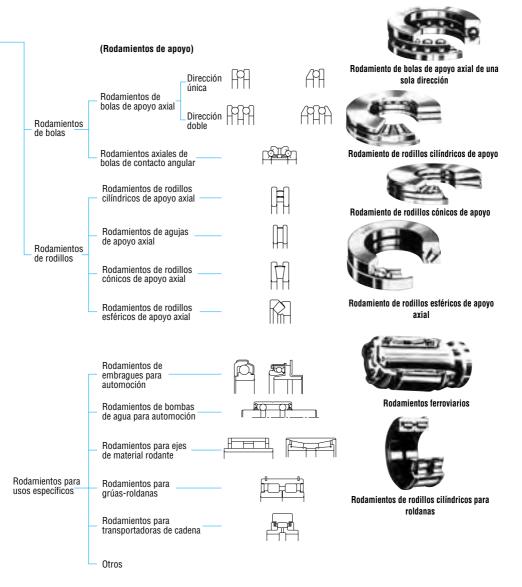




Fig. 1.1 Nomenclatura para las partes de los rodamientos

A 8

Rodamientos

Rodamientos rígidos de bolas de una hilera de ranura profunda

Los rodamientos de bolas de ranura profunda y una sola hilera son el tipo de rodamientos más utilizado. Su uso está ampliamente difundido. Las pistas de rodadura en los anillos interior y exterior cuentan con arcos circulares de radio ligeramente superior al de las bolas. Además de las cargas radiales, también pueden soportar cargas axiales en cualquier dirección. Debido a su bajo par, son altamente adecuados en aplicaciones en que se necesitan altas velocidades y bajas pérdidas de potencia.

Además de los rodamientos de tipo abierto, este tipo de rodamientos suelen contar con blindaje de acero o con sellados de goma instalados en una o ambas caras y están prelubricados con grasa. Además, a veces suelen contar con anillos elásticos en su diámetro exterior. Para las jaulas, suelen usarse las de acero estampado.

Rodamientos para magnetos

El anillo interior de los rodamientos para magnetos es un poco menos pronunciada que las de los rodamientos de ranura profunda. Puesto que el anillo exterior tiene un tope sólo en una cara, el anillo exterior puede ser eliminado. Esta característica suele tener sus ventajas al efectuar el montaje. En general, estos rodamientos se utilizan por parejas. Los rodamientos para magnetos son rodamientos pequeños con un diámetro interior entre 4 y 20 mm que se usan principalmente en pequeños magnetos, giroscopios, instrumentos, etc. En general utilizan jaulas de bronce estampado.

Rodamientos de holas de contacto angular de una sola hilera

Los rodamientos individuales de este tipo pueden aceptar cargas radiales y cargas axiales en una dirección. Los hay disponibles en cuatro ángulos de contacto de 15°, 25°, 30°, y 40°. Cuando mayor sea el ángulo de contacto, mayor será la capacidad de carga axial. Para funcionamiento a alta velocidad, sin embargo, son preferibles ángulos de contacto menores. En general, se usan dos rodamientos por pares y la holoura entre ellos debe aiustarse adecuadamente.

No obstante, las jaulas de acero estampado son las que se utilizan habitualmente en rodamientos de alta precisión con ángulos inferiores a 30°, también se usan a menudo jaulas de resina de poliamida.

Rodamientos Duplex Una combinación de dos rodamientos radiales se denomina una pareja duplex. En general están formados por rodamientos de bolas de contacto angular o por rodamientos de rodillos cónicos. Las posibles combinaciones incluyen la cara-a-cara, en la que los anillos exteriores están enfrentados (tipo DF), espalda-a-espalda (tipo DB), o con las caras frontales en la misma dirección (tipo DT). Los duplex DF y DB pueden aceptar cargas radiales y cargas axiales en ambas direcciones. El tipo DT es el que se utiliza cuando hay una fuerte carga axial en una dirección y es necesario aplicar la carga por igual sobre cada rodamiento.

Rodamientos de bolas de contacto angular de hilera doble

Los rodamientos de bolas de contacto angular de hilera doble son, básicamente, dos rodamientos de bolas de contacto angular de una sola hilera ensamblados espalda a espalda con la excepción que tienen un solo anillo interior y un solo anillo exterior, con sus correspondientes pistas de rodadura. Pueden soportar cargas radiales en cualquier dirección.

Rodamientos de holas de cuatro puntos de contacto

Los anillos interiores y exteriores de los rodamientos de bolas de cuatro puntos de contacto pueden separarse ya que el anillo interior está partido en el plano radial. Pueden soportar cargas radiales desde cualquier dirección. Las bolas presentan un ángulo de contacto de 35° en cada anillo. Un solo rodamiento de este tipo puede substituir a una combinación de rodamientos de contacto angular de las combinaciones cara-a-cara o espalda-a-espalda.

En general suelen utilizar jaulas de bronce mecanizadas.

Rodamientos de holas autoalinean-

El anillo interior de este tipo de rodamiento tiene dos pistas de rodadura y el anillo exterior presenta una única pista de rodadura esférica con el centro de curvatura que coincide con el eje del rodamiento. Por lo tanto, el eje del anillo interior, las bolas y la jaula pueden oscilar en cierta medida alrededor del centro del rodamiento. Consecuentemente, se corregirán de forma automática pequeños desajustes en la alineación angular del eje y del alojamiento originados en el mecanizado o por errores de ensamblaie.

Este tipo de rodamiento suele presentar un diámetro interior cónico para su montaje mediante un manquito adaptador.

Rodamientos de

En los rodamientos de este tipo, los rodillos cilíndricos están en contacto lineal con las pistas de rodadura. Presentan una elevada capacidad de carga radial y resultan muy adecuados para alta

Existen distintos tipos de designaciones NU, NJ, NUP, N, NF para los rodamientos de hilera única, y NNU. NN para rodamientos de doble hilera dependiendo del diseño o de la ausencia de anillos quía laterales.

Los anillos interiores y exteriores de todos los tipos son separables.

Algunos rodamientos de rodillos cilíndricos no tienen anillos guía ni anillo exterior, de forma que los anillos se pueden mover axialmente unos en relación con los otros. Los rodamientos de este tipo pueden usarse como rodamientos de extremo libre. Los rodamientos de rodillos cilíndricos, en los que los anillos interiores o exteriores tienen dos guías laterales y el otro anillo una, pueden soportar cierta carga axial en una dirección. Los rodillos de rodillos cilíndricos de doble hilera presentan una elevada rigidez radial y se utilizan principalmente en máquinas herramienta de precisión.

En general suelen utilizarse jaulas de acero estampado o de bronce mecanizado, aunque a veces se utilizan también jaulas de poliamida.

Rodamientos de aquias

Los rodamientos de agujas ensamblan muchos rodillos finos cuya longitud es de 3 a 10 veces su diámetro. Como resultado, la relación entre el diámetro exterior del rodamiento con el diámetro del círculo inscrito es muy pequeña, y pueden tener una capacidad de carga radial bastante elevada. Hay muchos tipos distintos, incluso muchos ni tan siquiera tienen anillo interior. El tipo de copa estirada cuenta con un anillo exterior de acero estampado mientras que el tipo sólido cuenta con un anillo exterior mecanizado. También podemos encontrar grupos de jaulas y de rodillos sin anillos. La mayor parte de los rodamientos cuentan con jaulas de acero estampado, aunque sin embargo algunos no ensamblan jaulas.

Rodamientos de rodillos cónicos

Los rodamientos de este tipo usan rodillos cónicos guiados por una guía en el cono. Estos rodamientos pueden soportar cargas radiales elevadas y también cargas axiales en una dirección. En las series HR, los rodillos se aumentan tanto en tamaño como en número consiguiendo una capacidad de carga incluso mayor.

En general se montan por pares de forma similar a los rodamientos de bolas de contacto angular de hilera única. En este caso, la holgura interna correcta puede obtenerse ajustando la distancia axial entre los conos o copas de los dos rodamientos opuestos. Puesto que son separables, los grupos de conos y copas se pueden montar por separado.

Dependiendo del ángulo de contacto, los rodamientos de rodillos cónicos se pueden dividir en tres tipos denominados de ángulo normal, medio y pronunciado. También se fabrican rodamientos de rodillos cónicos de dos o cuatro hileras. En general suelen utilizar jaulas de acero estampado.

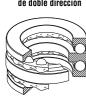
Rodamientos de rodillos esféricos

Estos rodamientos cuentan con rodillos en forma de barril entre el anillo interior, que tiene dos pistas de rodadura, y el anillo exterior que tiene una sola pista de rodadura. Puesto que el centro de curvatura de la superficie de la pista de rodadura del anillo exterior coincide con el eje del rodamiento, son autoalineantes de forma similar a la de los rodamientos de bolas autoalineantes. Por lo tanto, si se produce desplazamiento del eje o de los sopotes o desalineación de los ejes, se corrige de forma automática de forma que no se aplica un exceso de fuerza sobre los rodamientos. Los rodillos esféricos pueden soportar, no sólo elevadas cargas radiales, sino también cargas axiales en una dirección. Cuentan con una excelente capacidad para soportar cargas radiales y resultan adecuados para la mayor parte de usos en que hay cargas elevadas o impactos.

Algunos rodamientos tienen agujeros interiores cónicos y pueden ensamblarse en ejes cónicos o sobre ejes cilíndricos si se utilizan adaptadores o manguitos.

Las jaulas utilizadas son las de acero estampado y bronce mecanizado.

Rodamientos de bolas de apoyo axial de una sola dirección


Los rodamientos de bolas de apoyo axial de una sola dirección están formados por anillos de rodamiento parecidos a arandelas con ranuras para las pistas de rodadura. El anillo colocado en el eje se denomina arandela de eje (o anillo interior) mientras que el que se coloca en el soporte se denomina arandela del soporte (o anillo exterior).

En los rodamientos de bolas de apoyo axial de doble dirección, ensamblar tres anillos siendo el del medio (anillo central) el que se fija en el eje.

Existen también los rodamientos de bolas de apoyo axial con arandelas de asiento de alineación situadas bajo la arandela del soporte para poder compensar desalineaciones del eje o errores de montaie.

Hondigo. Las jaulas de acero estampado suelen usarse en rodamientos pequeños mientras que las jaulas mecanizadas se suelen utilizar en los rodamientos más grandes.

Rodamientos de rodillos esféricos de apoyo axial

Estos rodamientos ensamblan una pista de rodadura esférica en la arandela del soporte y rodillos en forma de barril ordenados oblicuamente a su alrededor. Puesto que la pista de rodadura en la arandela del soporte es esférica, estos rodamientos son autoalineantes. Presentan una capacidad de carga axial muy elevada y pueden soportar cargas radiales moderadas cuando se aplican sobre ellos cargas axiales.

Las jaulas utilizadas normalmente son las de acero estampado y bronce mecanizado.

Tabla 1.1 Tipos y características

	Taula 1.1 Tipus y caracteristicas										
	Tipos de Rodamiento	Rodamientos Rígidos de Bolas de una Hilera	Rodamientos para Magnetos	Rodamientos de Bolas de Contacto Angular	Rodamientos de Bolas de Contacto Angular de Hilera Doble	Rodamientos de Bolas de Contacto Angular Duplex	Rodamientos de Bolas de Cuatro Puntos de Contacto	Rodamientos de Bolas Autoalineantes	Rodamientos de Rodillos Cilíndricos	Rodamientos de Rodillos Cilíndricos de Doble Hilera	Rodamientos de Rodillos Cilíndricos con una Sola Guía Lateral
Ca	racterísticas						翠				
ırga	Cargas radiales	\bigcirc	0	\odot	0	0	0	\bigcirc	\odot	0	0
Capacidad de Carga	Cargas axiales	$ \qquad \qquad \vdots \\$	0	\bigcirc	\bigcirc	\bigcirc	$\overline{\Diamond}$	$\bigcirc \ \ \ \bigr]$	×	×	\bigcirc
Capacio	Cargas combinadas		0	0	0	0		0	×	×	
Alta	Velocidad	0	0	0	0	0	0	0	(0	0
Alta	Precisión	0		0		0	0		(0	
Bajo	ruido y par	0							0		
Rigi	idez					0			0	0	0
Des	alineación ular	0	0	0	0	0	0	0	\bigcirc	0	
	acidad de palineación							☆			
Anil	los separables		☆				☆		☆	☆	☆
	lamientos de emo fijo	☆			☆	☆	☆	☆			
	lamientos de emo libre	*			*	*	*	*	☆	☆	
	netro interior ico en el anillo rior							☆		☆	
Obs	ervaciones		Dos rodamientos suelen montarse opuestos.	Ángulos de contacto de 15°, 25°, 30°, y 40°. Dos rodamientos suelen montarse opuestos. Ajuste de la holgura si es necesario.		Es posible la combinación de pares DF y DT, pero no es posible usarlos en extremos libres.	Ángulo de contacto de 35°		Incluyendo el tipo N	Incluyendo el tipo NNU	Incluyendo el tipo NF
No.	de Página	B5 B31	B5 B28	B47	B47 B66	B47	B47 B68	B73	B81	B81 B106	B81
	© Excelente										

de los rodamientos

Rodamientos de Rodillos Cilíndricos con Collares de Empuje	Rodamientos de Agujas	Rodamientos de Rodillos Cónicos	Rodamientos de Rodillos Cónicos Hileras Dobles y Múltiples	Rodamientos de Rodillos Esféricos	Rodamientos de Bolas de Apoyo Axial	Rodamientos de Bolas de Apoyo Axial con Asientos de Alineación	Rodamientos Axiales de Bolas de Contacto Angular de Doble Efecto	Rodamientos de Rodillos Cilíndricos de Apoyo Axial	Rodamientos de Rodillos Cónicos de Apoyo Axial	Rodamientos de Rodillos Esféricos de Apoyo Axial	
		P			M	RA	Doble Efecto	A	H		№ de Página
\odot	\odot	\odot	0	0	×	×	×	×	×	0	_
$\overline{\bigcirc}$	×	$\overline{\bigcirc}$	$\overline{\odot}$	\Box	$\overline{\bigcirc}$	$\overline{\bigcirc}$	$\overline{\odot}$	(i)	(i)	(i)	_
	×	0	0	0	×	×	×	×	×	0	_
\odot	0	\bigcirc	\bigcirc	\bigcirc	×	×	\bigcirc	0	0	0	A18 A37
		0			0		0				A19 A58 A81
											A19
\odot	0	0	0				0	0	0		A19 A96
	0	\bigcirc	0	0	×	0	×	×	×	0	A18 Páginas de color azul decada tipo de rodamiento
				☆		☆				☆	A18
☆	☆	☆	☆		☆	☆	☆	☆	☆	☆	A19 A20
☆			☆	☆							A20 ~A21
	☆		*	*							A20 ~A27
				☆							A80 A118 A122
Incluyendo el tipo NUP		Dos rodamientos suelen montarse opuestos. Ajuste de la holgura si es necesario.	Tambien existen tipos KH, KV pero su uso resulta imposible en extremos libres.					Incluyendo los rodamientos de agujas de apoyo axial		Para ser utilizado con lubricación por acette	
B81	_	B111	B111 B172 B295	B179	B203	B203	B231	B203 B220	_	B203 B224	

2. PROCEDIMIENTO PARA SELECCIONAR RODAMIENTOS

El número de aplicaciones para los rodamientos es prácticamente incontable y de igual forma varía enormemente las condiciones y los entornos de trabajo. Además, la diversidad de condiciones de trabajo y requisitos exigidos a los rodamientos continúan creciendo al mismo paso que el rápido avance de la tecnología. Por tanto, es necesario estudiar cuidadosamente los rodamientos desde el máximo de ángulos posibles para seleccionar el más adecuado de entre los miles de tipos y tamaños disponibles.

En general, se selecciona de forma provisionalmente un cierto tipo de rodamiento en función de las condiciones de trabajo, disposición en la instalación, facilidad de montaje en máquina, espacio disponible, coste, disponibilidad, así como otros factores.

A continuación se selecciona el tamaño del rodamiento de forma que pueda cumplir con la duración esperada. De esta forma, además de la vida frente a la fatiga, es necesario tener en cuenta la duración de la grasa, el ruido y las vibraciones, el desgaste y otros muchos factores.

No hay un procedimiento determinado para seleccionar rodamientos. Es conveniente investigar y experimentar con aplicaciones similares y estudios relativos a requisitos especiales que pueda ser necesario cumplir para una aplicación en particular. Cuado se deba seleccionar rodamientos para máquinas nuevas, condiciones de trabajo poco usuales, o entornos hostiles, consulte con NSK.

El diagrama siguiente (Fig.2.1) muestra un ejemplo del procedimiento para la selección de un rodamiento.

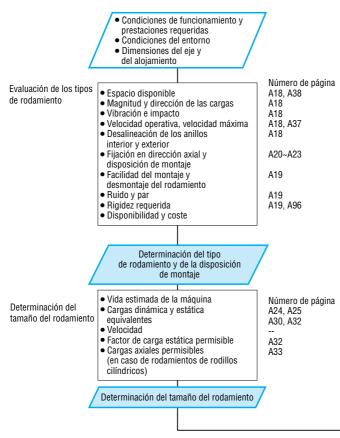
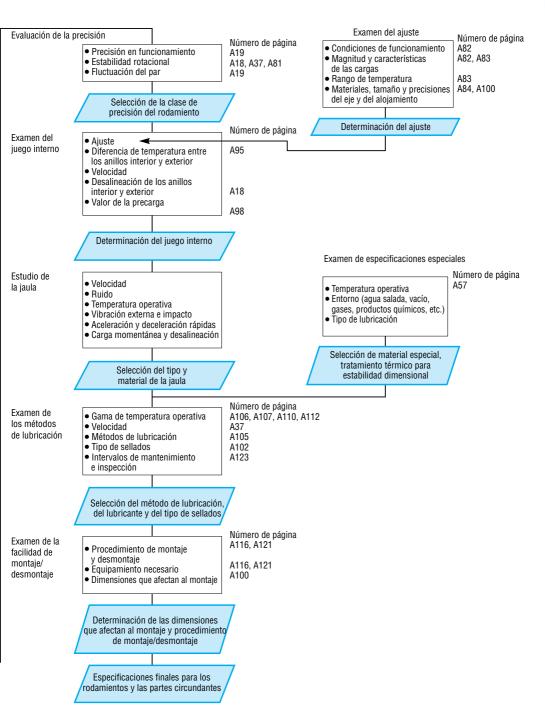



Fig. 2.1 Diagrama de flujo para la selección de rodamientos de rodillos

3. SELECCIÓN DE TIPOS DE RODAMIENTO

3.1 Espacio disponible para el rodamiento

El espacio disponible para un rodamiento y sus elementos adyacentes en general suele ser limitado por el tipo y tamaño del rodamiento que debe ser seleccionado dentro de estos limites. En muchos casos, el diámetro del eje se fija por el propio diseño de la máquina; por lo tanto, el rodamiento se selecciona en base al tamaño de su diámetro interior. En los rodamientos, existen numerosas series y tipos de medidas estandarizadas, y es necesario realizar la selección del rodamiento óptimo entre todos ellos. En la Fig. 3.1 pueden verse las series de dimensiones de los rodamientos radiales y sus correspondientes tipos de rodamientos.

3.2 Capacidad de carga y tipos de rodamientos

La capacidad de carga axial de un rodamiento está estrechamente relacionada con la capacidad de carga radial (consulte la Página A24) de forma que depende del diseño del rodamiento tal como se indica en la Fig. 3.2. Esta figura permite ver claramente que cuando los rodamientos de rodillos de la misma serie dimensional son comparados, se observa que los rodamientos de rodillos ofrecen una mayor capacidad de carga que los rodamientos de bolas y son superiores si existen cargas por impactos.

3.3 Velocidad permisible v tipos de rodamientos

La velocidad máxima de los rodamientos varía dependiendo, no sólo del tipo de rodamiento, sino también de su tamaño, tipo de jaula, cargas, método de lubricación, disipación de calor, etc. Asumiendo que se use el método de lubricación por baño de aceite, los tipos de rodamiento quedan ordenados de forma aproximada desde los de mayor velocidad hasta los de menor velocidad tal como se indica en la Fig. 3.3.

3.4 Desalineación de los anillos interior / exterior y tipos de rodamientos

Debido a la deflexión de un eje causada por las cargas que sobre él se aplican, errores de dimensiones, en el eje y el soporte, y de errores de montaje, es posible que los anillos interior y exterior queden ligeramente desalineados. La desalineación permisible varía dependiendo del tipo de rodamiento y de las condiciones de trabajo, pero en general suele ser de un pequeño ángulo inferior a 0.0012 radianes (4°). Si se espera una desalineación superior, deberán seleccionarse los rodamientos que cuentan con capacidad de autoalineación, como los rodamientos de bolas autoalineantes, los rodamientos de rodillos esféricos, y algunas unidades de ciertos tipos de rodamientos (Figs. 3.4 y 3.5).

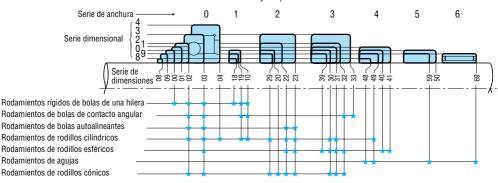
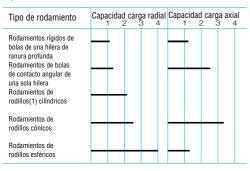



Fig. 3.1 Series de dimensiones de los rodamientos radiales

Nota⁽¹⁾ Los rodamientos con anillos guía pueden soportar ligeras cargas axiales.

Fig. 3.2 Capacidad de carga relativa de varios tipos de rodamientos

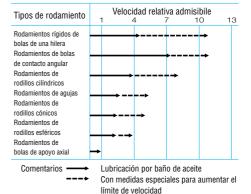


Fig. 3.3 Velocidades permisibles relativas de varios tipos de rodamientos

La desalineación permisible en el rodamiento se indica al comienzo de las tablas de dimensiones para cada tipo de rodamiento

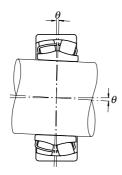


Fig. 3.4 Desalineación permisible de los rodamientos de rodillos estéricos

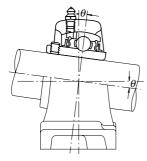


Fig. 3.5 Desalineación permisible de las unidades de rodamientos de holas

Tipos de rodamiento	Máxima precisión especificada		ación c radial 2 3	ancias illo interior 5
Rodamientos rígidos de bolas de una hilera	Clase 2	-		
Rodamientos de bolas de contacto angular	Clase 2			
Rodamientos de rodillos cilíndricos	Clase 2	→		
Rodamientos de rodillos cónicos	Clase 4	-		
Rodamientos de rodillos esféricos	Normal			-

Fig. 3.6 Salto radial relativo del anillo anterior de la clase de alta precisión para varios tipos de rodamientos

3.5 Rigidez y tipos de rodamientos

Cuando se aplican cargas a un rodamiento de rodillos, se produce cierta deformación elástica en las áreas de contacto entre los elementos rodantes y los caminos de rodadura. La rigidez del rodamiento viene determinada por el índice de la carga aplicada al rodamiento con el valor de la deformación elástica de los anillos interior y exterior así como del de los elementos rodantes. Pará los husillos principales de las máquinas herramienta, es necesario disponer de rodamientos de elevada rigidez junto con el resto del husillo. Consecuentemente, puesto que los rodamientos de rodillos se deforman menos bajo aplicación carga, suelen seleccionarse más a menudo que los rodamientos de bolas. Cuando se necesita de una elevada rigidez, los rodamientos se construyen con precarga. lo que significa que tienen una holgura negativa. Los rodamientos de bolas de contacto angular y los rodamientos de rodillos cónicos suelen precargarse.

3.6 Ruido y par de varios tipos de rodamientos

Puesto que los rodillos se fabrican con una elevadísima precisión, el ruido y el par son mínimos. Para rodamientos de bolas de ranura profunda y en particular para rodamientos de rodillos cilíndricos, el nivel de ruido a veces se especifica en función de su finalidad. Para rodamientos de bolas en miniatura de alta precisión, se especifica el par de arranque. Los rodamientos de bolas de ranura profunda son los aconsejados para aplicaciones en las que se necesiten un bajo par y un bajo nivel de ruido, como por ejemplo en motores e instrumentos.

3.7 Precisión de funcionamiento y tipos de rodamientos

Para los husillos principales de las máquinas herramienta que necesitan de una elevada precisión de funcionamiento o en aplicaciones de alta velocidad como supercompresores, suelen utilizarse rodamientos de alta precisión de las Clases 5.46.2

La precisión de funcionamiento de los rodamientos de rodillos se especifica de varias formas, y las clases de precisión especificada varía en función del tipo de rodamiento. Una comparación del salto radial del anillo interior para la máxima precisión de funcionamiento especificada para cada tipo de rodamiento se indica en la Fig. 3.6.

En aplicaciones que requieran elevada precisión de funcionamiento, los rodamientos más adecuados son los rodamientos de bolas de ranura profunda, los rodamientos de bolas de contacto angular y los rodamientos de rodillos cilíndricos

3.8 Montaje y desmontaje de varios tipos de rodamientos

Los tipos de rodamientos separables como los rodamientos de rodillos cilíndricos, los rodamientos de agujas y los rodamientos de rodillos cónicos son los más adecuados para el montaje y desmontaje. En maquinaria cuyos rodamientos se montan y desmontan con cierta frecuencia para su mantenimiento periódico, estos tipos de rodamientos son los más aconsejados. Además, los rodamientos de bolas autoalineantes (los pequeños) con agujeros cónicos pueden ser montados y desmontados con relativa facilidad utilizando manguitos.

4. SELECCIÓN DE LA DISPOSICIÓN DE LOS RODAMIENTOS

En general, los ejes se montan sólo con dos rodamientos. Al tener en cuenta la disposición de montaje de los rodamientos, deben considerarse en cuenta los puntos siguientes:

- Dilatación y contracción del eje provocados por variaciones de temperatura.
- (2) Facilidad del rodamiento para su montaje y desmontaje.
- (3) Desalineación de los anillos interior y exterior provocada por la deflexión del eje o por error de montaje.
- (4) Rigidez de la totalidad del sistema incluyendo los rodamientos y el método de precarga.
- (5) Capacidad para soportar las cargas en sus posiciones correctas y cómo transmitirlas.

4.1 Rodamientos de extremo fijo y de extremo libre

De entre los rodamientos montados sobre un eje, sólo uno de ellos puede ser de "extremo fijo" y utilizarse para fijar el eje axialmente. Para este rodamiento de extremo fijo, debe seleccionarse un tipo que pueda soportar tanto cargas radiales como axiales.

El resto de los rodamientos deben ser de "extremo libre", y sólo deben soportar cargas radiales para mitigar la contracción y dilatación térmica del eje. Si las medidas tomadas para reducir la contracción y dilatación térmica del eje son insuficientes, se transmiten cargas axiales excesivas a los rodamientos, lo cual puede causar fallos prematuros.

Como rodamientos de extremo libre, recomendamos los rodamientos de rodillos cilíndricos o de agujas, con anillos interiores y exteriores separables que pueden desplazarse axialmente (tipos NU, N, etc.). Si utiliza este tipo, el montaje y desmontaje también será más sencillo

Si se utilizan tipos no separables como rodamientos de extremo libre, normalmente el ajuste entre el anillo exterior y el alojamiento debe ser ligero para permitir el movimiento axial del eje junto con el rodamiento. Algunas veces, dicha dilatación queda mitigada gracias a la holgura entre el anillo interior y el eje.

Cuando la distancia entre los rodamientos es pequeña y la influencia de la dilatación y contracción del eje es insignificante, se utilizan dos rodamientos opuestos, ya sean de bolas de contacto angular o de rodillos cónicos. El juego axial (posible movimiento axial) después del montaje se ajusta utilizando tuercas o láminas.

RODAMIENTO A

- Rodamiento rígido de bolas de una hilera
- Rodamiento de bolas de contacto angular emparejado
- Rodamiento de bolas de contacto angular de hilera doble
- Rodamiento de bolas autoalineantes
- Rodamiento de rodillos cilíndricos con rebordes (tipos NH, NUP)
- Rodamiento de rodillos cónicos de hilera doble
- Rodamiento de rodillos esféricos

RODAMIENTO D.E(2)

- Rodamiento de bolas de contacto angular
- Rodamiento de rodillos cónicos
- Rodamiento para magnetos
- Rodamiento de rodillos cilíndricos (tipos NJ, NF)

RODAMIENTO B

- Rodamiento de rodillos cilíndricos (tipos NU, N)
- Rodamiento de agujas (tipo NA, etc.)

RODAMIENTO C(1)

- Rodamiento rígido de bolas de una hilera
- Rodamiento de bolas de contacto angular emparejado (espalda contra espalda)
- Rodamiento dé bolas de contacto angular de hilera doble
- Rodamiento de bolas autoalineantes
- Rodamiento de rodillos cónicos de hilera doble (tipo KBE)
- Rodamiento de rodillos esféricos

RODAMIENTO F

- Rodamiento rígido de
- bolas de una hilera
- Rodamiento de bolas autoalineantes
- Rodamiento de rodillos esféricos

Notae:

- En la figura, la contracción y dilatación del eje se mitigan en la superficie exterior del anillo exterior, pero algunas veces se hace en el diámetro interior.
- (2) Para cada tipo, se utilizan dos rodamientos contrapuestos.

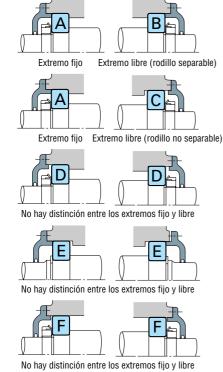


Fig. 4.1 Disposición de montaje y tipos de rodamientos

La Fig. 4.1 muestra las diferencias entre rodamientos de extremo libre y de extremo fijo, así como algunas posibles disposiciones de montaje para distintos tipos de rodamientos.

4.2 Ejemplo de disposiciones de los rodamientos

En la Tabla 4.1 se muestran algunas disposiciones representativas de montaje de los rodamientos, considerando la precarga y rigidez del conjunto, la contracción y dilatación del eje, el error de montaje, etc.

Tabla 4. 1 Disposiciones representativas de montaje de los rodamientos y ejemplos de aplicación

Disposiciones del rodamiento		01	Figure les de sultración
Extremo fijo	Extremo libre	Observaciones	Ejemplos de aplicación
		 Esta es una disposición típica, en la que no se aplican cargas anormales a los rodamientos aunque el eje se dilate o contraiga. Si el error de montaje es pequeño, resulta aconsejable para velocidades altas. 	Motores eléctricos de tamaño mediano, ventiladores
		 Esta disposición permite soportar cargas elevadas y de choque, así como también alguna carga axial. Cada tipo de rodamiento de rodillos cilíndricos es separable. Resulta útil cuando es necesaria una interferencia para los anillos interior y exterior. 	Motores de tracción para material rodante
		 Esta disposición se utiliza cuando las cargas son relativamente elevadas. Para obtener la máxima rigidez del rodamiento de extremo fijo se utiliza una disposición del tipo espalda contra espalda. Tanto el eje como el alojamiento deben tener una alta precisión, y el error de montaje debe ser pequeño. 	Rodillos de mesa para acerías, husillos principales de los tornos
		Resulta adecuado cuando es necesaria una interferencia para los anillos interior y exterior. No pueden aplicarse cargas axiales elevadas.	Rodillos para fabricación de papel satinado, ejes de locomotoras diesel
		Recomendable para velocidades altas y cargas radiales elevadas. También pueden aplicarse cargas axiales moderadas. Es necesario dejar algo de juego entre el anillo exterior del rodamiento rígido de bolas de una hilera y el diámetro interior del alojamiento, para evitar someterlo a cargas radiales.	Engranajes reductores de las locomotoras diesel

Tabla 4. 1 Disposiciones representativas de montaje de los rodamientos y ejemplos de aplicación (cont.)

Disposiciones del rodamiento		
Extremo fijo Extremo libre	Observaciones	Ejemplos de aplicación
	 Esta es la distribución más habitual. Puede soportar no sólo cargas radiales, sino también cargas axiales moderadas. 	Bombas de voluta de doble succión, transmisiones de automóviles
	 Esta distribución es la más adecuada cuando existe un error de montaje o desviaciones del eje. Se utiliza a menudo para aplicaciones generales e industriales donde se aplican cargas elevadas. 	Reductores de velocidad, ro- dillos de mesa para acererías, ruedas para puentes grúa aéreos
	Recomendable cuando existen cargas axiales bastante elevadas en ambas direcciones. Pueden utilizarse rodamientos de contacto angular de hilera doble en vez de una disposición de dos rodamientos de bolas de contacto angular.	Reductores de transmisiones por tornillo sin fin
Cuando no hay diferencias entre los extremos fijo y libre	Observaciones	Ejemplos de aplicación
Montaje espalda contra espalda Montaje cara a cara	 Esta distribución es frecuente, ya que puede soportar cargas elevadas y de choque. La distribución espalda contra espalda resulta especialmente adecuada cuando la distancia entre los rodamientos es pequeña y se aplican cargas momentáneas. La disposición cara a cara facilita el montaje cuando es necesaria una interferencia para el anillo interior. En general, esta disposición resulta adecuada cuando existe un error de montaje. Para utilizar esta disposición con una precarga, debe tenerse en cuenta la cantidad de precarga y el ajuste del juego. 	Árboles de mando de los diferenciales de automóviles, ejes delanteros y traseros de automóviles, reductores de transmisiones por tornillo sin fin
Montaje espalda contra espalda	Se utiliza a velocidades altas cuando las cargas radiales no son demasiado elevadas y las cargas axiales son relativamente elevadas. Proporciona una buena rigidez del eje mediante la precarga. Para cargas momentáneas, la disposición espalda contra espalda es mejor que la cara a cara.	Ejes de muelas

Cuando no hay diferencias entre los extremos fijo y libre	Observaciones	Ejemplos de aplicación
Montaje NJ + NJ	Puede soportar cargas elevadas y cargas de choque. Puede utilizarse si es necesaria una interferencia tanto para los anillos interiores como para los exteriores. Debe tenerse cuidado con que el juego axial no sea demasiado reducido durante el funcionamiento. También es posible un montaje del tipo NF + tipo NF.	Engranajes reductores finales de maquinaria para la cons- trucción
	O Algunas veces se utiliza un muelle a un lado del anillo exterior de un rodamiento.	Motores eléctricos pequeños, reductores de velocidad pequeños, bombas pequeñas
Disposiciones verticales	Observaciones	Ejemplos de aplicación
	 Los rodamientos de bolas de contacto angular emparejados se encuentran en el extremo fijo. El rodamiento de rodillos cilíndrico se encuentra en el extremo libre. 	Motores eléctricos verticales
	El centro esférico del asiento autoalineante debe coincidir con el del rodamiento de bolas autoalineantes. El rodamiento superior se encuentra en el extremo libre.	Abridores verticales (hilado- ras y tejedoras mecánicas)

5. SELECCIÓN DEL TAMAÑO DEL RODAMIENTO

5.1 Vida del rodamiento

Las distintas funciones requeridas a los rodamientos varían según la aplicación del rodamiento. Estas funciones se deben ejecutar durante un período de tiempo prolongado. Aunque los rodamientos estén montados adecuadamente y funcionen correctamente, finalmente dejarán de funcionar satisfactoriamente debido al aumento de ruido y vibración, a la pérdida de precisión en el funcionamiento, al deterioro de la grasa o a la descamación por fatiga de las superficies rodantes.

La vida del rodamiento, en el sentido amplio de la palabra, es el período durante el cual los rodamientos siguen en funcionamiento y cumplen las funciones para las que están diseñados. Esta vida del rodamiento se puede definir como la vida frente al ruido, la vida frente a la abrasión, la vida de la grasa o la vida frente a la fatiga de los elementos rodantes, dependiendo de cual de ellas provoca la pérdida de servicio del rodamiento.

Además de los fallos debidos al deterioro natural, los rodamientos también pueden fallar en condiciones como deformación por calor, fractura, arañazos en los anillos, daños en los sellados o en la jaula, u otro tipo de daños.

Este tipo de condiciones no deberían interpretarse como fallos normales de los rodamientos, ya que a menudo se producen como resultado de errores en la selección del rodamiento, un diseño o entorno de funcionamiento del rodamiento inadecuados, un montaje incorrecto o un mantenimiento insuficiente.

5.1.1 Índice básico de vida y vida frente a la fatiga de los elementos rodantes

Cuando los rodamientos funcionan bajo carga, las pistas de rodadura de sus anillos interior y exterior y los elementos rodantes están sujetos a un stress cíclico repetido. Debido a la fatiga del metal de las superficies de contacto rodantes de las pistas de rodadura y los elementos rodantes, es posible que se desprendan pequeñas partículas del material del rodamiento (Fig. 5.1). Este fenómeno se conoce como "descamación". La vida frente a la fatiga de los elementos rodantes viene representada por el número total de revoluciones a partir del cual la superficie del rodamiento empezará a descamarse debido al stress. Este fenómeno se conoce como vida frente a la fatiga. Tal como se muestra en la Fig. 5.2, incluso para los rodamientos aparentemente idénticos, del mismo tipo, tamaño y material y reciben el mismo tratamiento térmico u otros procesos, la vida frente a la fatiga de los elementos rodantes varía enormemente, incluso bajo condiciones de funcionamiento idénticas. Esto es debido a que la descamación de los materiales debida a la fatiga está sujeta a muchas otras variables. En consecuencia, "el índice básico de vida", en que se trata la vida frente a la fatiga de los elementos rodantes como un fenómeno estadístico, se utiliza antes que la vida real frente a la fatiga de los elementos rodantes.

Supongamos que un número de rodamientos del mismo tipo funcionan individualmente bajo las mismas condiciones. Después de un cierto período de tiempo, el 10% de ellos fallan como resultado de la descamación producida por la fatiga de los elementos rodantes. En este caso, el número total de revoluciones se define como el índice básico de vida o, si la velocidad es constante, el índice básico de vida a menudo se expresa como el número total de horas de funcionamiento completadas cuando el 10% de los rodamientos pasan a no ser operativos debido a la descamación.

Para determinar la vida del rodamiento, a menudo sólo se tiene en cuenta el factor del índice básico de vida. Sin embargo, también deben tenerse en cuenta otros factores. Por ejemplo, puede considerarse la vida de los rodamientos prelubricados como la vida de la grasa (consulte la Sección 12, Lubricación, Página A107). Dado que la vida frente al ruido y la abrasión se juzgan de acuerdo con los estándares individuales para diferentes aplicaciones, los valores específicos para la vida frente al ruido y la abrasión deben determinarse empíricamente.

5.2 Índice básico de carga y vida de fatiga

5.2.1 Índice básico de carga

El índice básico de carga se define como la carga constante aplicada a los rodamientos con anillos exteriores estáticos que pueden soportar los anillos interiores para un índice de vida de un millón de revoluciones (10 $^{\rm f}$ rev). El índice básico de carga de los rodamientos radiales se define como una carga radial central de dirección y magnitud constantes, mientras que el índice básico de carga de los rodamientos de apoyo se define como una carga axial de magnitud constante en la misma dirección que el eje central. Los índices de carga se listan como $C_{\rm r}$ para los rodamientos radiales y $C_{\rm a}$ para los rodamientos de apoyo en las tablas de dimensiones.

5.2.2 Maquinaria en la que se ensamblan rodamientos y proyección de vida

No es recomendable seleccionar rodamientos con índices de carga innecesariamente altos, ya que pueden resultar demasiado grandes y costosos. Además, la vida del roda-

Fig. 5.1 Ejemplo de descamación

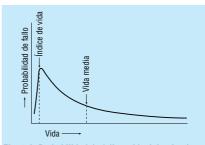


Fig. 5.2 Probabilidad de fallo y vida del rodamiento

Tabla 5. 1 Factor de vida de fatiga f_0 para distintas aplicaciones de rodamientos

Períodos de		Fa	ctor de vida de fatiga	f h	
funcionamiento	~3	2~4	3~5	4~7	6~
Utilizados con poca frecuencia o durante periodos cortos	Motores pequeños para electrodomés- ticos, como aspirado- ras y lavadoras. Herramientas eléctricas manuales	• Maquinaria agrícola			
Utilizados ocasionalmente pero cuya fiabilidad es importante		Motores para calefactores domésticos y aires acondicionados Maquinaria para la construcción	•Transportadoras •Roldanas para cables elevadores		
Utilizados intermitentemente durante periodos relativamente largos	•Cuellos de cilindros para laminación	Motores pequeños Grúas de cubierta Grúas de carga en general Soportes de piñón Coches de pasajeros	Motores de fábricas Máquina Herramienta Transmisiones Cribas Trituradoras	Roldanas para grúas Compresores Transmisiones especializadas	
Utilizados intermitentemente durante más de ocho horas diarias		•Escaleras mecánicas	Separadores centrífugos Equipos de aire acondicionado Compresores Máquinas para trabajar madera Motores grandes Cajas de ejes para ejes ferroviarios	Elevadores para minas Volantes de prensas Motores de tracción para ferrocarriles Cajas de ejes para locomotoras	• Máquinas para fabricación de papel
Utilizados continuamente y cuya alta fiabilidad es importante					Bombas de agua Centrales eléctricas Bombas para el drenaje de minas

miento por sí misma no debería ser el factor decisivo a la hora de seleccionar los rodamientos. También deben considerarse la resistencia, la rigidez y el diseño del eje sobre el que se van a montar los rodamientos. Los rodamientos se utilizan en una amplia gama de aplicaciones, y la vida del diseño varía según las aplicaciones específicas y las condiciones de funcionamiento. En la Tabla 5.1 se muestra un factor empírico de vida frente a la fatiga derivado de experiencias habituales en el funcionamiento de varias máquinas. Consulte también la Tabla 5.2.

5.2.3 Selección del tamaño del rodamiento en función del índice básico de carga

Entre la carga de los rodamientos y el índice básico de vida existe la siguiente relación:

Para rodamientos de bolas
$$L = \left(\frac{C}{P}\right)^3 \dots (5.1)$$

Para rodamientos de rodillos
$$L = \left(\frac{C}{P}\right)^{\frac{10}{3}}$$
..... (5.2)

donde L : Índice básico de vida (106 rev)

- P: Carga del rodamiento (carga equivalente) (N), {kgf} (Consulte la Página A30)
- C:Índice básico de carga (N), {kgf} Para los rodamientos radiales, C se escribe Cr Para los rodamientos de apoyo, C se escribe Ca

En el caso de los rodamientos que operan a una velocidad constante, es conveniente expresar la vida frente a la fatiga en horas. En general, la vida frente a la fatiga de los rodamientos utilizados en automóviles y en otros vehículos se expresa en kilómetros.

Si designamos el índice básico de vida como L_h (h), la velocidad del rodamiento como n (rpm), el factor de vida frente a la fatiga como f_h , y el factor de velocidad como f_h , obtenemos las relaciones mostradas en la Tabla 5.2:

Tabla 5. 2 Índice básico de vida, factor de vida de fatiga y factor de velocidad

Parámetros de vida	Rodamientos de bolas	Rodamientos de rodillos
Índice básico de vida	$L_h = \frac{10^6}{60n} \left(\frac{C}{P}\right)^3 = 500 f_h^3$	$L_h = \frac{10^6}{60n} \left(\frac{C}{P}\right)^{\frac{10}{3}} = 500 f_h^{\frac{10}{3}}$
Factor de vida de fatiga	$f_h = f_n \ \frac{C}{P}$	$f_h = f_n \frac{C}{P}$
Factor de velo- cidad	$f_n = \left(\frac{10^6}{500 \times 60n}\right)^{\frac{1}{3}}$ $= (0.03n)^{-\frac{1}{3}}$	$f_n = \left(\frac{10^6}{500 \times 60n}\right)^{\frac{3}{10}}$ $= (0.03n)^{-\frac{3}{10}}$

n, fn...... Fig. 5.3 (consulte la Página A26), Tabla 12 del Apéndice (consulte la Página C24)

Lh, fh..... Fig. 5.4 (consulte la Página A26), Tabla 13 del Apéndice (consulte la Página C25)

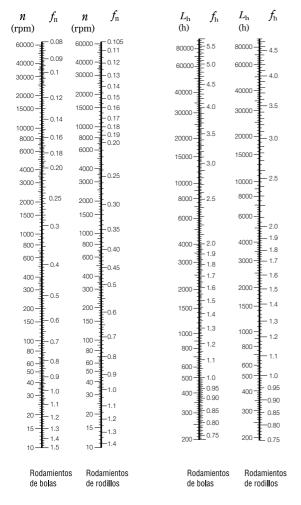


Fig. 5.3 Velocidad del rodamiento y factor de velocidad

Fig. 5.4 Factor de vida de fatiga v vida de fatiga

Si conoce la carga del rodamiento P y la velocidad n, determine un factor de vida de fatiga f_h adecuado para la proyección de vida de la máquina y a continuación calcule el índice básico de carga C mediante la siguiente ecuación.

$$C = \frac{f_h \cdot P}{f}$$
 (5.3)

A continuación, debería seleccionar un rodamiento que satisfaga este valor de ${\cal C}$ en las tablas de rodamientos.

5.2.4 Ajuste de temperatura para el índice básico de carga

Si utiliza rodamientos a altas temperaturas, disminuye la dureza del acero del rodamiento. En consecuencia también disminuye el índice básico de carga, ya que depende de las propiedades físicas del material. Por lo tanto, debería ajustar el índice básico de carga para una temperatura superior utilizando la siguiente ecuación:

$$C_t = f_t \cdot C \dots (5.4)$$

donde Ct: Índice básico de carga después de la corrección de temperatura(N), {kgf}

> ft : Factor de temperatura (Consulte la Tabla 5.3.)

C: Índice básico de carga antes del ajuste de temperatura (N), {kgf}

Si se utilizan rodamientos de gran tamaño a una temperatura superior a 120°C, deben someterse a un tratamiento térmico especial de estabilidad dimensional para evitar cambios dimensionales excesivos. El índice básico de carga de los rodamientos sometidos a dicho tratamiento térmico especial de estabilidad dimensional puede ser inferior al índice mostrado en las tablas de rodamientos.

Tabla 5.3 Factor de temperatura fi

Temperatura del rodamiento °C	125	150	175	200	250
Factor de temperatura <i>f</i> t	1.00	1.00	0.95	0.90	0.75

5.2.5 Corrección del índice básico de vida

Como ya se ha descrito anteriormente, las ecuaciones básicas para calcular el índice básico de vida son las siguientes:

Para rodamientos de bolas
$$L_{10} = \left(\frac{C}{P}\right)^3$$
.....(5.5)

Para rodamientos de bolas
$$L_{10} = \left(\frac{C}{P}\right)^{\frac{10}{3}}......(5.6)$$

La vida L_{10} se define como el índice básico de vida con una fiabilidad estadística del 90%. Dependiendo de las máquinas donde se utilicen los rodamientos, es posible que en ocasiones se requiera una fiabilidad superior al 90%. Sin embargo, las recientes mejoras en el material de los rodamientos han ampliado enormemente la vida de fatiga. Además, el desarrollo de la teoría Elastohidrodinámica de lubricación demuestra que el grosor de la película lubricante en la zona de contacto entre los anillos y los elementos rodantes influye enormemente en la vida del rodamiento. Para reflejar dichas mejoras en el cálculo de la vida de fatiga, el índice básico de vida se ajusta de acuerdo con los siguientes factores:

$$L_{na} = a_1 a_2 a_3 L_{10}$$
(5.7)

donde Lna:Índice ajustado de vida, donde se tienen en cuenta la fiabilidad, las mejoras del material, las condiciones de lubricación, etc.

 L_{10} : Índice básico de vida con una fiabilidad del 90%

- a₁: Factor de ajuste de la vida para la fiabilidad
- a₂: Factor de ajuste de la vida para propiedades especiales de los rodamientos
- a₃: Factor de ajuste de la vida para condiciones de funcionamiento

El factor de ajuste de la vida para la fiabilidad, a, se muestra en la Tabla 5.4 para las fiabilidades superiores al 90%.

El factor de ajuste de la vida para propiedades especiales de los rodamientos, a, se utiliza para reflejar las mejoras en el acero de los rodamientos.

NSK utiliza actualmente acero para rodamientos desgasado al vacío, y los resultados de las pruebas llevadas a cabo por NSK demuestran que la vida ha mejorado notablemente en comparación con los anteriores materiales. Los índices básicos de carga $C_{\rm r}$ y $C_{\rm a}$ mostrados en las tablas de rodamientos se

Tabla 5.4 Factor de fiabilidad a_1

Fiabilidad (%)	90	95	96	97	98	99
$a_{\scriptscriptstyle 1}$	1.00	0.62	0.53	0.44	0.33	0.21

calcularon considerando la vida ampliada conseguida gracias a las mejoras en los materiales y a las técnicas de fabricación. En consecuencia, al estimar la vida utilizando la Ecuación (5.7) es suficiente asumir que es superior a uno.

El factor de ajuste de la vida para condiciones de funcionamiento a_3 se utiliza para ajustar varios factores, especialmente la lubricación. Si no existe desalineación entre los anillos interiores y exteriores, y el grosor de la película lubricante en las zonas de contacto del rodamiento es la suficiente, es posible que a_3 sea mayor que uno; sin embargo, a_3 es menor que uno en los siguientes casos:

- Cuando la viscosidad del lubricante en las zonas de contacto entre las pistas de rodadura y los elementos rodantes es baja.
- Cuando la velocidad circunferencial de los elementos rodantes es muy baja.
- Cuando la temperatura del rodamiento es alta.
- Cuando el lubricante está contaminado por agua o materias extrañas.
- Cuando la desalineación de los anillos internos y externos es excesiva.

Es difícil determinar el valor correcto de a_1 para condiciones específicas de funcionamiento, porque existen muchos factores desconocidos. Dado que las condiciones de funcionamiento también influyen en el factor de propiedades especiales del rodamiento a_2 , existe la proposición de combinar a_2 y a_3 en una sola cantidad ($a_2 \times a_3$) en vez de considerarlos independientemente. En este caso, en condiciones normales de lubricación y funcionamiento, debería asumirse que el producto ($a_2 \times a_3$) es igual a uno. Sin embargo, si la viscosidad del lubricante es demasiado baia, el valor disminuve hasta 0.2.

Si no existe desalineación y se utiliza un lubricante de alta viscosidad para garantizar un grosor suficiente de la película, el producto de $(a_2 \times a_3)$ puede estar cercano a dos.

Si selecciona un rodamiento basado en el índice básico de carga, es mejor seleccionar un factor de fiabilidad a_1 adecuado para el uso previsto y un valor C/P o f_h determinado empíricamente y derivado de resultados anteriores en cuanto a lubricación, temperatura, condiciones de montaje, etc. en máquinas similares.

Las ecuaciones del índice básico de vida (5.1), (5.2), (5.5) y (5.6) ofrecen resultados satisfactorios para una amplia gama de cargas de rodamientos. Sin embargo, las cargas demasiado elevadas pueden causar deformaciones del plástico en los puntos de contacto entre las bolas y los caminos de rodadura. Si $P_{\rm r}$ es superior a $C_{\rm or}$ (índice de carga estática básica) o a 0,5 $C_{\rm r}$ (el menor de los dos) para rodamientos radiales, o si $P_{\rm a}$ es superior a 0,5 $C_{\rm a}$ para rodamientos de apoyo, consulte con NSK para establecer la aplicablidad de las ecuaciones del índice de vida frente a la fatiga.

5.3 Cálculo de las cargas del rodamiento

Las cargas aplicadas sobre los rodamientos generalmente incluyen el peso de la estructura que éstos deben soportar, el peso de los elementos giratorios en sí, la potencia de transmisión de los engranajes y las correas, la carga ocasionada por el funcionamiento de la máquina donde se utilizan los rodamientos, etc. Estas cargas pueden calcularse teóricamente, pero algunas de ellas resultan difíciles de estimar. Así pues, se hace necesario corregir las estimaciones utilizando datos obtenidos empíricamente.

5.3.1 Factor de carga

Cuando se ha calculado matemáticamente una carga radial o axial, la carga real sobre el rodamiento puede ser superior a la carga calculada debido a la vibración y a los impactos producidos durante el funcionamiento de la máquina. La carga real puede calcularse utilizando la siguiente ecuación:

$$F_r = f_w \cdot F_{rc}$$

$$F_a = f_w \cdot F_{ac}$$
(5.8)

donde F_r , F_a : Cargas aplicadas sobre el rodamiento (N), {kgf}

 $F_{\rm rc}$, $F_{\rm ac}$: Carga calculada teóricamente (N), {kgf} $f_{\rm w}$: Factor de carga

Los valores mostrados en la Tabla 5.5 se utilizan normalmente para el factor de carga f_w .

Tabla 5. 5 Valores del factor de carga $f_{\rm w}$

Condiciones de funcionamiento	Aplicaciones típicas	$f_{ m w}$
Funcionamiento suave libre de impactos	Motores eléctricos, máquinas herramienta, acondicionadores de aire	1.0~1.2
Funcionamiento normal	Ventiladores, compresores, ascensores, grúas, máquinas para fabricación de papel	1.2~1.5
Funcionamiento acompañado de impactos y vibraciones	Maquinaria para la construcción, trituradoras, cribas, Trenes de laminación	1.5~3

5.3.2 Cargas del rodamiento en aplicaciones de transmisión por correas o cadenas

La fuerza actúa sobre la polea o la rueda dentada o bien cuando la potencia se transmite por medio de una correa o cadena se calcula utilizando las siguientes ecuaciones.

$$M = 9550000H / n...(N \cdot mm)$$

= 974000H / n...(kgf · mm) (5.9)

$$P_k = M/r$$
 (5.10)

donde M: Par sobre la polea o la rueda dentada (kgf·mm), {kgf·mm}

 P_k : Fuerza efectiva transmitida por la correa o la cadena (N), $\{kqf\}$

H: Potencia transmitida (kW)

n: Velocidad (rpm)

 Radio efectivo de la polea o de la rueda dentada (mm)

Cuando calcule la carga sobre un eje de la polea, debe incluir la tensión de la correa. Así, para calcular la carga real $K_{\rm b}$ en el caso de una transmisión por correa, la potencia de transmisión efectiva se multiplica por el factor de la correa fb, que representa la tensión de la correa. Los valores del factor de la correa fb para tipos diferentes de correas se muestran en la Tabla 5.6.

$$K_b = f_b \cdot P_k$$
 (5.11)

En caso de una transmisión por cadena, los valores correspondientes a $f_{\rm b}$ deberían ser de 1,25 a 1,5.

Tabla 5. 6 Factor de la correa fb

Tipo de correa	$f_{ m b}$
Correas dentadas	1.3 ~ 2.0
Correas en V	2.0 ~ 2.5
Correas planas con polea de tensión	2.5 ~ 3.0
Correas planas	4.0 ~ 5.0
<u> </u>	

5.3.3 Cargas del rodamiento en aplicaciones de transmisión por engranajes

Las cargas impuestas sobre los engranajes en este tipo de transmisiones dependen del tipo de engranajes utilizados. En el caso más sencillo de engranajes rectos, la carga se calcula de la manera siguiente:

$$M = 9550000H / n...(N \cdot mm)$$

= 974000H / n...(kgf · mm) (5.12)

$$P_k = M/r$$
 (5.13)

$$S_k = P_k \tan \theta$$
 (5.14)

$$K_c = \sqrt{P_k^2 + S_k^2} = P_k \sec \theta$$
 (5.15)

donde M: Par aplicado al engranaje (N·mm),{kgf·mm}

 P_k : Fuerza tangencial sobre el engranaje (N),

 S_k : Fuerza radial sobre el engranaie (N). {kgf}

 K_c : Fuerza combinada impuesta sobre el engranaje (N), $\{kgf\}$

H: Potencia transmitida (kW)

n: Velocidad (rpm)

r: Radio del círculo de paso del engranaje de transmisión (mm)

θ: Ángulo de presión

Además de la carga teórica calculada anteriormente, deberían incluirse las vibraciones y los impactos (que dependen de la precisión de acabado del engranaje) utilizando el factor del engranaje $f_{\rm g}$ multiplicando la carga calculada teóricamente por este factor.

Los valores de fg deberían ser generalmente los de la Tabla 5.7. Cuando el funcionamiento del engranaje venga acompañado de vibraciones de otras fuentes, la carga real se obtiene multiplicando el factor de carga por este factor del engranaje.

Tabla 5. 7 Valores del factor del engranaje f_g

Precisión de acabado del engranaje	$f_{ m g}$
Engranajes rectificados de precisión	1.0~1.1
Engranajes mecanizados ordinarios	1.1~1.3

5.3.4 Distribución de la carga en los rodamientos

En los ejemplos sencillos mostrados en las Figs. 5.5 y 5.6, las cargas radiales sobre los rodamientos 1 y 2 pueden calcularse utilizando las siguientes ecuaciones:

$$F_{CI} = \frac{b}{c}K$$
....(5.16)

$$F_{CII} = \frac{a}{c} K$$
 (5.17)

donde $F_{\it CI}$: Carga radial aplicada sobre el rodamiento 1 (N), {kgf}

Fcn: Carga radial aplicada sobre el rodamiento 2 (N), {kgf}

K: Carga del eje (N), {kgf}

Cuando estas cargas se aplican simultáneamente, primero debe obtenerse la carga radial de cada una, y luego puede calcularse la suma de los vectores de acuerdo con la dirección de carga.

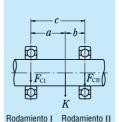


Fig. 5.5 Distribución de la carga radial (1)

Fig. 5.6 Distribución de la carga radial (2)

5.3.5 Media de carga fluctuante

Cuando la carga aplicada sobre los rodamientos fluctúa, se debe calcular una carga media que ofrezca la misma vida del rodamiento que la carga fluctuante.

(1) Cuando la relación entre la carga y la velocidad de rotación se divide en los siguientes pasos (Fig. 5.7)

Carga F_1 : Velocidad n_1 ; Tiempo de funcionamiento t_1 Carga F_2 : Velocidad n_2 ; Tiempo de funcionamiento t_2

Carga F_n : Velocidad nn; Tiempo de funcionamiento t_n

Entonces, la carga media $F_{\rm m}$ puede calcularse utilizando la siguiente ecuación:

$$F_m = \sqrt[p]{\frac{F_1^p n_1 t_1 + F_2^p n_2 t_2 + \dots + F_n^p n_n t_n}{n_1 t_1 + n_2 t_2 + \dots + n_n t_n}}$$
 (5.18)

donde F_m : Carga fluctuante media (N), {kgf}

p = 3 para rodamientos de bolas

p = 10/3 para rodamientos de rodillos

La velocidad media puede calcularse de la siguiente manera:

$$n_m = \frac{n_1 t_1 + n_2 t_2 + \dots + n_n t_n}{t_1 + t_2 + \dots + t_n}$$
 (5.19)

(2) Cuando la carga fluctúa casi linealmente (Fig. 5.8), la carga media puede calcularse de la siguiente

$$F_m = \frac{1}{3} (F_{\min} + 2F_{\max})$$
 (5.20)

donde F_{\min} : Valor mínimo de la carga fluctuante (N), {kgf} F_{max} : Valor máximo de la carga fluctuante (N), {kgf}

(3) Cuando la fluctuación de la carga es similar a una onda sinusoidal (Fig. 5.9), puede calcularse un valor aproximado para la carga media Fm a partir de la siguiente ecuación:

$$F_m = 0.65 F_{\text{max}}$$
 (5.21)

En el caso de la Fig. 5.9 (b)

$$F_m = 0.75 F_{\text{max}}$$
 (5.22)

(4) Cuando se aplican tanto una carga giratoria como una carga estacionaria (Fig. 5.10).

 $F_{\rm R}$: Carga giratoria (N), {kgf}

 $F_{\rm S}$: Carga estacionaria (N), {kgf}

Puede calcularse un valor aproximado para la carga media Fm de la siguiente manera:

a) Donde $F_R \ge F_S$

$$F_m = F_R + 0.3F_S + 0.2 \frac{F_S^2}{F_R}$$
 (5.23)

b) Donde
$$F_R < F_S$$

 $F_m = F_S + 0.3F_R + 0.2 \frac{F_R^2}{F_S}$ (5.24)

5.4 Carga equivalente

En algunos casos, las cargas que se aplican sobre los rodamientos son puramente radiales o axiales; sin embargo, en la mayoría de los casos, las cargas son una combinación de ambos tipos. Además, estas cargas normalmente fluctúan tanto en magnitud como en dirección. En estos casos, las cargas aplicadas realmente a los rodamientos no pueden utilizarse para los cálculos de la vida de los rodamientos: por lo tanto, se debería estimar una carga hipotética con una magnitud constante y que pase por el centro del rodamiento, y que ofrezca la misma vida de rodamiento que debería tener el rodamiento bajo las condiciones de carga y rotación reales. Este tipo de carga hipotética se llama carga equivalente.

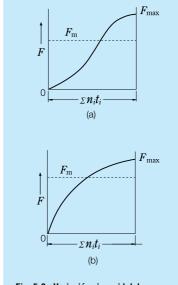


Fig. 5.9 Variación sinusoidal de cargas

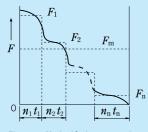
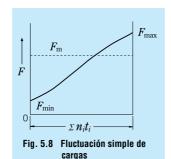
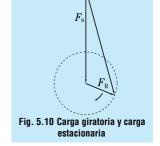




Fig. 5.7 Variación incremental de cargas

5.4.1 Cálculo de las cargas equivalentes

La carga equivalente sobre los rodamientos radiales puede calcularse utilizando la siguiente ecuación:

$$P = XF_r + YF_a$$
....(5.25)

donde P: Carga equivalente (N), {kgf}

Fr: Carga radial (N), {kgf}

Fa: Carga axial (N), {kgf}

X: Factor de carga radialY: Factor de carga axial

Los valores de X e Y se muestran en las tablas de rodamientos. La carga radial equivalente para rodamientos de rodillos radiales con α = 0° es

$$P = F$$

En general, los rodamientos de bolas de apoyo no pueden soportar cargas radiales, mientras que los rodamientos de rodillos de apoyo esféricos pueden soportar parte de dichas cargas. En este caso, la carga equivalente puede calcularse utilizando la siguiente ecuación:

$$P = F_a + 1.2F_r$$
 (5.26)

donde $\frac{F_r}{F_s} \leq 0.55$

5.4.2 Componentes de la carga axial en rodamientos de bolas de contacto angular y en rodamientos de rodillos cónicos

El centro de carga efectivo de los rodamientos de bolas de contacto angular y de los rodamientos de rodillos cónicos se encuentra en el punto de intersección de la línea del centro del eje y la línea que representa la carga aplicada por el anillo exterior sobre el elemento de rodadura, tal como se muestra en la Fig. 5.11.En las tablas de rodamientos se muestra este centro de carga efectivo para cada rodamiento.

Cuando se aplican cargas radiales a estos tipos de rodamientos, se produce una componente de carga en la dirección axial. Para compensar esta carga de la componente, se utilizan rodamientos del mismo tipo en parejas, colocados cara a cara o espalda contra espalda. Estas cargas axiales pueden calcularse utilizando la siguiente ecuación:

$$F_{ai} = \frac{0.6}{Y} F_r$$
(5.27)

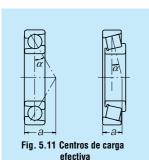
donde $F_{\rm ai}$: Carga del componente en la dirección

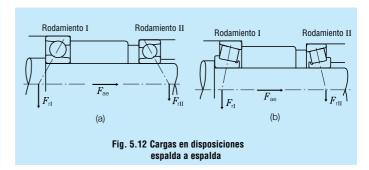
axial (N), {kgf}

 F_r : Carga radial (N), {kgf} Y: Factor de carga axial

Se considera que las cargas radiales $F_{\rm TI}$ y $F_{\rm TII}$ se aplican sobre los rodamientos I y II (Fig. 5.12) respectivamente, y la carga axial externa Fae se aplica según el esquema. Si los factores de carga axial son $Y_{\rm I}$, $Y_{\rm II}$ y el factor de carga radial es X, entonces las cargas equivalentes $P_{\rm I}$, $P_{\rm II}$ pueden calcularse de la manera siguiente:

donde
$$F_{\text{ae}} + \frac{0.6}{Y_{II}} F_{rII} \ge \frac{0.6}{Y_{I}} F_{rI}$$


$$P_{I} = XF_{rI} + Y_{I} \left(F_{se} + \frac{0.6}{Y_{II}} F_{rII} \right)$$


$$P_{II} = F_{rII}$$
(5.28)

donde
$$F_{\text{ae}} + \frac{0.6}{Y_{II}} F_{rII} \ge \frac{0.6}{Y_I} F_{rI}$$

$$P_{I} = F_{rI}$$

$$P_{II} = XF_{rII} + Y_{II} \left(\frac{0.6}{Y_{I}} F_{rI} - F_{ae} \right)$$
(5.29)

5.5 Índices de carga estática y cargas estáticas equivalentes

5.5.1 Índices de carga estática

Cuando están sometidos a una carga excesiva o a una carga de impacto intensa, los rodamientos rodantes pueden sufrir una deformación permanente de los elementos rodantes, y si se sobrepasa el límite elástico la superficie de la pista de rodadura también puede sufrir dicha deformación. La deformación no elástica aumenta en zona y en profundidad a medida que aumenta la carga, y cuando ésta sobrepasa un cierto límite se dificulta el funcionamiento suave del rodamiento.

El índice de carga estática básica se define como la carga estática que produce la siguiente tensión de contacto calculada en el centro de la zona de contacto entre el elemento rodante sujeto a la máxima tensión y la superficie de la pista de rodadura.

Para rodamientos de bolas autoalineantes	4 600MPa {469 kgf/mm ² }
Para otros rodamientos de bolas	4 200MPa
	{428 kgf/mm ² }
Para los rodamientos de rodillos	4 000MPa
	{408 kgf/mm ² }

En esta zona de contacto de tensión más elevada, la suma de la deformación permanente del elemento rodante y la de la pista de rodadura es aproximadamente 0,0001 veces el diámetro del elemento rodante. El índice de carga estática básica C_0 se escribe $C_{\rm or}$ para los rodamientos radiales y $C_{\rm oa}$ para los rodamientos de apoyo en las tablas de rodamientos.

Además, después de la modificación realizada por la ISO de los criterios para el índice de carga estática básica, los nuevos valores de $C_{\rm o}$ para los rodamientos de bolas de NSK pasan a ser entre 0,8 y 1,3 veces los valores anteriores, y entre 1,5 y 1,9 veces para los rodamientos de rodillos. En consecuencia, los valores del factor de carga estática permisible $f_{\rm s}$ también han cambiado, de modo que deberá tenerlo en cuenta.

5.5.2 Cargas estáticas equivalentes

La carga estática equivalente es una carga hipotética que produce una tensión de contacto igual a la tensión máxima descrita anteriormente en condiciones reales, mientras el rodamiento está estacionario (incluyendo una rotación u oscilación muy lentas), en la zona de contacto entre el elemento rodante que soporta más tensión y la pista de rodadura del rodamiento. La carga radial estática que pasa a través del centro del rodamientos e toma como carga estática equivalente para los rodamientos radiales, mientras que la carga estática axial en la dirección que coincide con el eje central se toma como carga estática equivalente para los rodamientos de apoyo.

(a) Carga estática equivalente en los rodamientos radiales

El mayor de los dos valores calculados mediante las siguientes ecuaciones se debe adoptar como la carga estática equivalente para los rodamientos radiales.

$$P_o = X_o F_r + Y_o F_a$$
 (5.30)
 $P_o = F_r$ (5.31)

donde P_0 : Carga equivalente estática (N). {kgf}

 F_r : Carga radial (N), {kgf}

 F_a : Carga axial (N), {kgf}

 X_0 : Factor de carga radial estática Y_0 : Factor de carga axial estática

(b) Carga estática equivalente en los rodamientos de apoyo

$$P_o = X_o F_r + F_a$$
 $\alpha \neq 90^o$ (5.32)

donde Po: Carga equivalente estática (N), {kgf}

 α : Ángulo de contacto

Cuando $F_a < X_o F_r$, esta ecuación resulta menos precisa.

Los valores de $X_{\rm o}$ e $Y_{\rm o}$ para las ecuaciones (5.30) y (5.32) se muestran en las tablas de rodamientos.

La carga estática equivalente para los rodamientos de rodillos de apoyo es

$$\alpha = 90^{\circ} \text{ es } P_0 = F_a$$

5.5.3 Factor de carga estática permisible

La carga equivalente estática permisible en los rodamientos varía dependiendo del índice de carga estática básica, así como su aplicación y condiciones de funcionamiento.

El factor de carga estática permisible $f_{\rm S}$ es un factor de seguridad que se aplica al índice de carga estática básica, y está definido por la relación de la Ecuación (5.33). Los valores recomendados en general para $f_{\rm S}$ se muestran en la Tabla 5.8. De acuerdo con las modificaciones del índice de carga estática, se revisaron los valores de $f_{\rm S}$, especialmente para los rodamientos cuyos valores de $C_{\rm O}$ aumentaron; por favor, recuerde este aspecto al seleccionar los rodamientos.

$$f_s = \frac{C_o}{P}$$
 (5.33)

donde Co: Índice de carga estática básica (N), {kgf}

Po: Carga equivalente estática (N), {kgf}

Para rodamientos de rodillos de empuje esféricos, los valores de f_s deberían ser superiores a 4.

Tabla 5.8 Valores del factor f_s de carga estática permisible

Condinioned de funcionemiento	Valor mínimo de fs						
Condiciones de funcionamiento	Rodamientos de bolas	Rodamientos de rodillos					
Aplicaciones con bajo nivel de ruido	2.0	3.0					
Rodamientos sujetos a vibraciones y cargas de impacto	1.5	2.0					
Condiciones de funcionamiento							
normales	1.0	1.5					

5.6 Cargas axiales máximas permisibles para rodamientos de rodillos cilíndricos

Los rodamientos de rodillos cilíndricos cuyos anillos interno y externo presentan anillos guía (sueltos o no) o collares de empuje son capaces de soportar cargas radiales y cargas axiales limitadas simultáneamente. La carga axial máxima permisible está limitada por un incremento anormal de la temperatura o deformación por calor debida a la fricción por deslizamiento entre las caras laterales de los rodillos y la cara del reborde.

La carga axial máxima permisible para los rodamientos de la serie dimensional 3, cargados continuamente y lubricados con grasa o aceite, se muestra en la Fig. 5.13.

Lubricación con grasa (ecuación empírica)

$$C_A = 9.8 f \left\{ \frac{900(k \cdot d)^2}{n+1500} - 0.023 \times (k \cdot d)^{2.5} \right\} ... (N)$$

$$= f \left\{ \frac{900(k \cdot d)^2}{n+1500} - 0.023 \times (k \cdot d)^{2.5} \right\} \left\{ \text{kgf} \right\}$$

Lubricación con aceite (ecuación empírica)

$$C_{A} = 9.8 f \left\{ \frac{490(k \cdot d)^{2}}{n + 1000} - 0.000135 \times (k \cdot d)^{3.4} \right\} ...(N)$$

$$= f \left\{ \frac{490(k \cdot d)^{2}}{n + 1000} - 0.000135 \times (k \cdot d)^{3.4} \right\} \{ kgf \}$$

donde C_A : Carga axial permisible (N), {kgf}

d: Diámetro interno del rodamiento (mm)

n: Velocidad (rpm)

f: Factor de carga

Intervalo de carga	Valor de <i>f</i>
Continuo	1
Intermitente	2
Sólo periodos cortos	3

k: Factor de tamaño

Serie dimensional	Valor de <i>k</i>
2	0.75
3	1
4	1.2

Además, para que los rodamientos de rodillos cilíndricos tengan una capacidad de carga axial constante, deben tomarse las siguientes precauciones con los rodamientos y su entorno:

- Cuando se aplican cargas axiales, también deben aplicarse cargas radiales.
- Debe aplicarse suficiente lubricante entre las caras laterales de los rodillos y los rebordes.
- Debe utilizarse grasa de calidad superior para presiones extremas.
- Debe llevarse a cabo un rodaje suficiente.
- · La precisión del montaje debe ser buena.
- El juego radial no debe ser mayor de lo necesario.

En aquellos casos en los que la velocidad del rodamiento es extremadamente lenta, o si la velocidad supera el límite en más del 50%, o si el diámetro del núcleo es superior a los 200 mm, debe estudiarse detenidamente cada caso en lo referente a lubricación, refrigeración, etc. En dichos casos, consulte a NSK.

Fig. 5.13 Carga axial permisible para rodamientos de rodillos cilíndricos

Para rodamientos de la serie de diámetro 3 (k=1.0) que operan bajo una carga continua y lubricados con grasa o aceite.

5.7 Ejemplos de cálculos de rodamientos

(Ejemplo 1)

Obtenga el factor de vida de fatiga $f_{\rm h}$ de un rodamiento rígido de bolas de una hilera de ranura profunda **6208** cuando se utiliza bajo una carga radial $F_{\rm r}$ =2 500 N, {255 kgf} y velocidad n=900 rpm.

El índice básico de carga $C_{\rm r}$ de **6208** es de 29 100N, {2 970 kgf} (Tabla de rodamientos, página B10). Sólo se aplica una carga radial, por lo que la carga P equivalente puede obtenerse de la manera siguiente:

$$P = F_r = 2500 \text{N}, \{255 \text{kgf}\}$$

La velocidad es n = 900 rpm, por lo que el factor de velocidad fn puede obtenerse a partir de la ecuación de la Tabla 5.2 (Página A25) o de la Fig. 5.3 (Página A26).

$$f_{\rm n} = 0.333$$

El factor de vida de fatiga f_h , en estas condiciones, puede calcularse de la manera siguiente:

$$f_h = f_n \frac{C_r}{P} = 0.333 \times \frac{29100}{2500} = 3.88$$

Este valor es adecuado para aplicaciones industriales, acondicionadores de aire que se utilizan regularmente, y según la ecuación de la Tabla 5.2 o de la Fig. 5.4 (Página A26), corresponde aproximadamente a 29.000 horas de vida de servicio.

(Ejemplo 2)

Seleccione un rodamiento rígido de bolas de una hilera de ranura profunda con un diámetro interior de 50 mm y un diámetro exterior inferior a 100 mm que cumpla con las siguientes condiciones:

Carga radial F_r = 3.000N, {306 kgf}

Velocidad n=1.900 rpm

Índice básico de vida $L_h \ge 10\,000$ h

El factor de vida de fatiga fh de los rodamientos de bolas con un índice de vida de fatiga superior a las $10.000\,\mathrm{horas}$ es $f_h \ge 2.72\,\mathrm{m}$

Porque $f_n = 0.26$, $P = F_r = 3000N$. {306kgf}

$$f_h = f_n \frac{C_r}{P} = 0.26 \times \frac{C_r}{3\,000} \ge 2.72$$

por lo tanto,
$$C_r \ge 2.72 \times \frac{3000}{0.26} = 31380$$
N, $\{3200$ kgf $\}$

Entre los datos mostrados en la tabla de rodamientos de la Página B12, debería seleccionar **6210** como uno que cumple las anteriores condiciones.

(Ejemplo 3)

Obtener C_r/P o el factor de vida de fatiga f_h cuando se añade una carga axial F_a =1 000N, {102kgf} a las condiciones del (Ejemplo 1)

Si se aplican la carga radial F_r y la carga axial F_a sobre un rodamiento rígido de bolas de una hilera de ranura profunda **6208**, la carga dinámica equivalente P deberá calcularse de acuerdo con el siguiente procedimiento.

Obtenga el factor de carga radial X, el factor de carga axial Y y la constante e, que depende de la magnitud de $f_{\rm o}F_{\rm a}/C_{\rm or}$, en la tabla situada encima de la tabla de rodamientos rígidos de bolas de una hilera de ranura profunda.

El índice de carga estática básica $C_{
m or}$ del rodamiento de bolas 6208 es de

17 900 N, {1 820kgf} (Página B10)

$$f_o F_a / C_{or} = 14.0 \times 1000 / 17900 = 0.782$$

$$e = 0.26$$

y
$$F_a/F_r = 1000/2500 = 0.4 > e$$

$$X = 0.56$$

Y = 1.67 (el valor de Y se obtiene por interpolación lineal)

Por lo tanto, la carga dinámica equivalente P es

$$P = XF_r + YF_a$$

$$= 0.56 \times 2500 + 1.67 \times 1000$$

$$= 3070N, \{313kgf\}$$

$$\frac{C_r}{P} = \frac{29100}{3070} = 9.48$$

$$f_h = f_n \frac{C_r}{P} = 0.333 \times \frac{29100}{3070} = 3.16$$

Este valor de f_h corresponde aproximadamente a 15.800 horas para rodamientos de bolas.

(Ejemplo 4)

Seleccione un rodamiento de rodillos esféricos de la serie 231 que cumpla con las siguientes condiciones:

Carga radial $F_r = 45\,000\,\text{N}$, $\{4\,950\,\text{kgf}\}$

Carga axial $F_a = 8000 \text{ N}, \{816 \text{kgf}\}$

Velocidad n = 500rpm

Índice básico de vida $L_h \ge 30\,000$ h

El valor del factor de vida de fatiga f_h que hace $L_h \ge 30\,000h$ es mayor que 3.45 en la Fig. 5.4 (Página A26).

La carga dinámica equivalente P de los rodamientos de rodillos esféricos se obtiene así:

cuando
$$F_a/F_r \le e$$

 $P = XF_r + YX_a = F_r + Y_3F_a$
cuando $F_a/F_r > e$
 $P = XF_r + YF_a = 0.67 F_r + Y_2F_a$
 $F_a/F_a = 8\,000/45\,000 = 0.18$

Podemos ver en la tabla de rodamientos que el valor de e es aproximadamente de 0.3 y que el de Y_3 es aproximadamente de 2.2 para los rodamientos de la serie 231:

Por lo tanto,
$$P = XF_r + YF_a = F_r + Y_3F_a$$

= $45\,000 + 2.2 \times 8\,000$
= $62\,600$ N, $\{6\,380$ kgf $\}$

Partiendo del factor de vida de fatiga f_h , el índice de carga básico puede obtenerse de la siguiente manera:

$$f_h = f_n \frac{C_r}{P} = 0.444 \times \frac{C_r}{62600} \ge 3.45$$

en consecuencia, $C_r \ge 490\,000\,\text{N}$, $\{50\,000\,\text{kgf}\}$

Entre los rodamientos de rodillos esféricos de la serie 231 que satisfacen este valor de $C_{\rm r}$, el menor es **23126C**

$$(C_r = 505000N, \{51500 \text{kgf}\})$$

Una vez determinado el rodamiento, sustituya el valor de Y_3 en la ecuación y obtenga el valor de P.

$$P = F_r + Y_3 F_a = 45\,000 + 2.4 \times 8\,000$$

$$= 64\,200\,\text{N}, \quad \left\{6\,550\,\text{kgf}\right\}$$

$$L_h = 500 \left(f_n \frac{C_r}{P}\right)^{\frac{10}{3}}$$

$$= 500 \left(0.444 \times \frac{505\,000}{64\,200}\right)^{\frac{10}{3}}$$

$$=500 \times 3.49^{\frac{10}{3}} = 32\,000h$$

(Ejemplo 5)

Asuma que los rodamientos de rodillos cónicos HR30305DJ y HR30206J se utilizan en una disposición espalda contra espalda como se muestra en la Fig. 5.14, y que la distancia entre las caras posteriores de la copa es de 50 mm.

Calcule el índice básico de vida de cada rodamiento cuando se aplique la carga radial F_{r} = 5 500N, {561kgf}, y la carga axial F_{ae} =2 000N,{204kgf} al **HR30305DJ** tal como se muestra en la Fig. 5.14.

La velocidad es de 600 rpm.

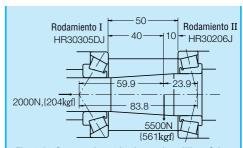


Fig. 5.14 Cargas sobre rodamientos de rodillos cónicos

Para distribuir la carga radial F_r entre los rodamientos I y II, los centros efectivos de carga deben estar localizados para los rodamientos de rodillos cónicos. Obtenga el centro efectivo de carga a para los rodamientos I y II desde la tabla de rodamientos, y luego obtenga la posición relativa de la carga radial F_r y los centros efectivos de carga. El resultado será el mostrado en la Fig. 5.14. En consecuencia, la carga radial aplicada sobre los rodamientos I (HR30305DJ) y II (HR30206J) puede obtenerse a partir de las siguientes ecuaciones:

$$F_{rI} = 5500 \times \frac{23.9}{83.8} = 1569 \text{ N}, \{160 \text{kgf}\}$$

$$F_{rII} = 5500 \times \frac{59.9}{83.8} = 3931N, \{401 \text{kgf}\}$$

Partiendo de los datos de la tabla de rodamientos, se obtienen los siguientes valores;

Rodamientos	Índice básico de carga dinámica $\frac{C_r}{(\mathrm{N})}$ {kgf}	Axial load factor $Y_{_1}$	Constante e
Rodamiento I (HR30305DJ) Rodamiento II (HR30206J)	38 000 (3 900)	Y1 = 0.73	0.83
	43 000 (4 400)	Y2 = 1.60	0.38

Cuando se aplican cargas radiales sobre los rodamientos de rodillos cónicos, se produce un componente de carga axial que debe tenerse en cuenta para obtener la carga radial equivalente dinámica (consulte el Párrafo 5.4.2. Página A31).

$$F_{ae} + \frac{0.6}{Y_{II}} F_{rII} = 2000 + \frac{0.6}{1.6} \times 3931$$
$$= 3474 \text{N}, \quad \{354 \text{kgf}\}$$

$$\frac{0.6}{Y_{\rm I}}F_{\rm rI} = \frac{0.6}{0.73} \times 1569 = 1290$$
N, $\{132$ kgf $\}$

Por lo tanto, con esta disposición de los rodamientos, la

carga axial $F_{x}+\frac{0.6}{Y_{\rm II}}F_{\rm rII}$ se aplica sobre el rodamiento I pero no sobre el rodamiento II.

Para el rodamiento I

 $F_{r_1}=1.569N, \{160kgf\}$

 F_{a_1} =3 474N, {354kgf}

ya que
$$F_{aI}/F_{rI} = 2.2 > e = 0.83$$

la carga dinámica equivalente $P_{\mathrm{I}} = X F_{\mathrm{rI}} + Y_{\mathrm{I}} F_{\mathrm{aI}}$

$$= 0.4 \times 1569 + 0.73 \times 3474$$

= 3164N, {323kgf}

$$f_h = f_n \frac{C_r}{P_1}$$
$$= \frac{0.42 \times 38000}{3164} = 5.04$$

y el índice de vida de fatiga $L_h = 500 \times 5.04^{\frac{10}{3}} = 109750 \text{h}$

Para el rodamiento II

ya que
$$F_{rII} = 3931N$$
, $\{401kgf\}$, $F_{aII} = 0$

la carga dinámica equivalente

$$P_{\rm II} = F_{\rm rII} = 3\,931$$
N, $\{401$ kgf $\}$

el factor de vida de fatiga

$$f_h = f_n \frac{C_r}{P_{\text{II}}} = \frac{0.42 \times 43\,000}{3\,931} = 4.59$$

v se obtiene el índice de vida de fatiga

$$L_h = 500 \times 4.59^{\frac{10}{3}} = 80400\text{h}$$

Observaciones Para disposiciones cara a cara (tipo DF), consulte con NSK.

(Eiemplo 6)

Seleccione un rodamiento para un reductor de la velocidad bajo las siguientes condiciones:

Condiciones de funcionamiento

Carga radial $F_r = 245.000 \text{ N}, \{25.000 \text{ kgf}\}\$ Carga axial $F_a = 49.000 \text{ N}, \{5.000 \text{ kgf}\}\$

Velocidad n = 500 rpm

Limitación de tamaño

Diámetro del eje: 300 mm

Diámetro interior del alojamiento: Menos de 500 mm

En esta aplicación se esperan cargas pesadas, impactos y desviación del eje; por lo tanto, lo más adecuado son rodamientos de rodillos esféricos.

Los siguientes rodamientos de rodillos esféricos cumplen con la anterior limitación de tamaño (consulte la Página B192)

d	D	В	Nº de rodamiento	dinám					
300	420 460 460		23960 CAE4 23060 CAE4 24060 CAE4	1 920 000	125 000 196 000 235 000	0.19 0.24 0.32	3.5 2.8 2.1		
	500 500		23160 CAE4 24160 CAE4		273 000 315 000	0.31 0.38	2.2 1.8		

va que $F_{r}/F_{r} = 0.20 < e$

la carga dinámica equivalente P es

$$P = F_r + Y_3 F_a$$

Teniendo en cuenta el factor de vida de fatiga f_h en la Tabla 5.1 y los ejemplos de aplicaciones (consulte la Página A25), parece adecuado un valor de f_h entre 3 y 5.

$$f_h = f_n \frac{C_r}{P} = \frac{0.444 C_r}{F_r + Y_3 F_a} = 3 \sim 5$$

Asumiendo que Y_3 =2.1, puede obtenerse el índice básico de carga necesario $C_{
m r}$

$$C_r = \frac{\left(F_r + Y_3 F_s\right) \times \left(3 \sim 5\right)}{0.444}$$

$$= \frac{\left(245\,000 + 2.1 \times 49\,000\right) \times \left(3 \sim 5\right)}{0.444}$$

$$= 2\,350\,000 \sim 3\,900\,000N,$$

$$\left\{240\,000 \sim 400\,000kgf\right\}$$

Los rodamientos que cumplen estos requisitos son 23160CAE4 y 24160CAE4.

6. VELOCIDAD LÍMITE

La velocidad de los rodamientos está sujeta a ciertos límites. Cuando los rodamientos están en funcionamiento, a mayor velocidad mayor será la temperatura generada por la fricción. La velocidad límite es el valor, obtenido empíricamente, es la velocidad máxima a la que puede funcionar el rodamiento de manera continua sin que se produzcan deformaciones o una generación excesiva de calor. En consecuencia, la velocidad límite de los rodamientos depende de factores como el tipo y tamaño del rodamiento, la geometría y el material de la jaula, las cargas, el método de lubricación, y el método de disipación del calor incluyendo el diseño del entorno del rodamiento.

La velocidad límite para los rodamientos lubricados por grasa o aceite viene indicada en las tablas de rodamientos. Las velocidades límite mostradas en las tablas son aplicables a los rodamientos de diseño estándar y sujetos a cargas normales, es decir

$$C/P \ge 12 \text{ y } F_x/F_x \le 0.2 \text{ aproximadamente.}$$

Las velocidades límite para la lubricación con aceite mostradas en las tablas de los rodamientos se refieren a sistemas de lubricación por baño de aceite convencional.

Algunos tipos de lubricantes no son adecuados para altas velocidades, aun pueden ser notablemente superiores en otros aspectos. Si la velocidad es superior al 70% de la velocidad límite mostrada, será preciso seleccionar un aceite o grasa con buenas características de velocidad.

(Consulte)

Tabla 12.2 Propiedades de la grasa (Páginas A110 y 111)

Tabla 12.5 Ejemplo de selección de lubricante para las condiciones de funcionamiento del rodamiento (Página A113)

Tabla 15.8 Marcas de grasas lubricantes y sus propiedades (Páginas A138 a A141)

6.1 Corrección de la velocidad límite

Cuando la carga del rodamiento P excede el 8% del índice básico de carga C, o cuando la carga axial F_a supera el 20% de la carga radial F_r , la velocidad límite debe corregirse multiplicando la velocidad límite mostrada en las tablas de los rodamientos por el factor de corrección mostrado en las Figs. 6.1 y 6.2.

Cuando la velocidad requerida supera la velocidad límite del rodamiento deseado, deben ser cuidadosamente estudiados el grado de precisión, el juego interno, el tipo y material de la jaula, la lubricación, etc., para seleccionar un rodamiento capaz de soportar dicha velocidad. En tales casos, se debe utilizar lubricación por aceite de circulación forzada, lubricación por inyección de aceite, por aceite pulverizado, o por aceite-aire.

Si se consideran todas estas condiciones, la velocidad máxima permisible puede corregirse multiplicando la velocidad límite mostrada en las tablas de los rodamientos por el factor de corrección mostrado en la Tabla 6.1. Recomendamos consultar a NSK con respecto a aplicaciones de alta velocidad.

6.2 Velocidad límite para los sellados de contacto de goma para los rodamientos de bolas

La velocidad máxima permisible para rodamientos con sellado de goma de contacto (tipo DDU) se determina principalmente por la velocidad de la superficie deslizante de la circunferencia interna del sellado. Los valores de la velocidad límite se muestran en las tablas de los rodamientos.

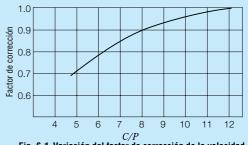


Fig. 6.1 Variación del factor de corrección de la velocidad límite y la Relación de Cargas

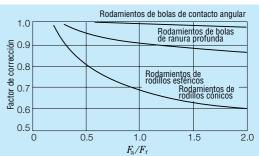


Fig. 6.2 Factor de corrección de la velocidad límite para cargas radiales y axiales combinadas

Tabla 6.1 Factor de corrección de la velocidad límite para aplicaciones de alta velocidad

Tipos de rodamiento	Factor de corrección
Rodamientos de rodillos cilíndricos (una hilera)	2
Rodamientos de agujas (excepto los de tipo ancho)	2
Rodamientos de rodillos cónicos	2
Rodamientos de rodillos esféricos	1.5
Rodamientos de bolas de ranura profunda	2.5
Rodamientos de bolas de contacto angular	
(excepto rodamientos emparejados)	1.5

7.DIMENSIONES Y NÚMEROS DE IDENTIFICACIÓN DE LOS RODAMIENTOS

7.1 Dimensiones globales y dimensiones para las ranuras de los anillos de fijación

7.1.1 Dimensiones globales

Las dimensiones globales de los rodamiento, mostradas en las Figs.7.1 a 7.5, son las dimensiones que definen su geometría externa. Incluyen el diámetro interior d, el diámetro exterior D, la anchura B, la anchura (o altura) del rodamiento T, la dimensión del chaflán r, etc. Es necesario conocer todas estas dimensiones al montar un rodamiento en eje y alojamiento. Estas dimensiones límite han sido normalizadas internacionalmente (ISO15) y adoptadas por la JIS B 1512 (dimensiones globales de los rodamientos).

Las dimensiones globales y la serie dimensional de los rodamientos radiales, los rodamientos de rodillos cónicos y los rodamientos de empuje se muestran en las Tablas 7.1 a 7.3 (Páginas A40 a A49).

En estas tablas de dimensiones globales, para cada código del anillo interior, que prescribe el diámetro interior, se muestran el resto de dimensiones para las distintas series. Existe un número muy elevado de series, aunque no todas ellas están disponibles comercialmente y por lo tanto pueden añadirse más en el futuro. En la parte superior de cada tabla de rodamientos (7.1 a 7.3) se muestran los tipos de los rodamientos más representativos y los símbolos de serie (consulte la Tabla 7.5, Símbolos de la serie de rodamientos, Página A55).

Las dimensiones seccionales relativas de los rodamientos radiales (excepto los rodamientos de rodillos cónicos) y los rodamientos de empuje para las distintas clasificaciones de serie se muestran en las Figs. 7.6 y 7.7, respectivamente.

7.1.2 Dimensiones de las ranuras de los anillos de fijación y emplazamiento de los mismos

La normativa ISO 464 especifica las dimensiones de las ranuras para anillos de fijación en la superficie exterior de los rodamientos, así como las dimensiones y precisión de los propios anillos de fijación.

En la Tabla 7.4 se muestran las dimensiones de las ranuras de los anillos de fijación y de los anillos de fijación de posicionamiento para los rodamientos de la serie dimensional 8, 9, 0, 2, 3 y 4 (Páginas A50 a A53).

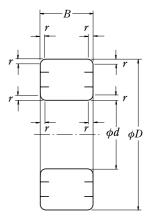


Fig. 7.1 Dimensiones Globales para Rodamientos de Bolas y de Rodillos

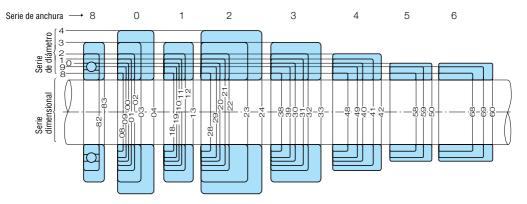


Fig. 7.6 Comparación de Sección Transversal de Rodamientos Radiales (excepto los de Rodillos Cónicos) para distintas Series Dimensionales

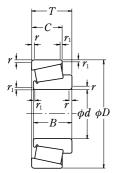


Fig. 7.2 Rodamientos de Rodillos Cónicos

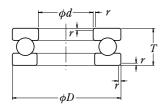


Fig. 7.3 Rodamientos de Bolas de Empuje de Una Sola Dirección

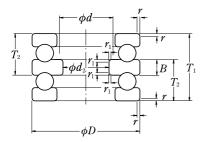


Fig. 7.4 Rodamientos de Bolas de Empuje de Doble Dirección

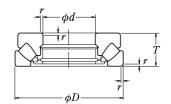


Fig. 7.5 Rodamientos de Rodillos Esféricos de Empuje

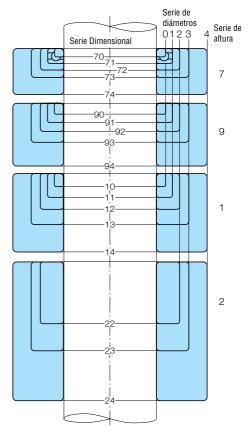


Fig. 7.7 Comparación de Sección Transversal de Rodamientos de Empuje (excepto series de diámetro 5) para distintas Series Dimensionales

DIMENSIONES Y NÚMEROS DE IDENTIFICACIÓN DE LOS RODAMIENTOS

	101	011						,0 .	, L IV		IUAU	IUN L	'L LU	0 110	ווווחע	LIVIO	U			
						rie	10 ~ 60	r (min)	0.15	0.15 0.15 0.15	0.2	0.3	0.3	0.3	0.6			222	222	+ + +
						Serie dimensional	00	7 (n	111	111	111	111	0.3	0.3	0.3	0.3	0.6	0.6	0.6	
							09		111	111	111	25 27	888	844	688	44 50	54 63	63 71	71 80 80	888
					0		20		111	111	111	19	2228	388	34 33	8888	9494	46 54 54	500	67
		NN40		240	Serie diámetro	sional	40		111	111	1.1.1	1 4 5	16 17	22 28	24 52 52	26 27 28	888	888	45 49	222
		NN30		230	erie dia	dimensional	30	В	m	ည် က်	9 ~ 6	211	222	4 9 9	9 2 6	282	23 26 26	26 30	30 34 34	37
		N20			Š	Serie	20		111	1.1.1	1.1.1	80P	우우=	544	449	874	19 19 22	22 22 24	24 27 27	333
900		N10					10		2.5	3.88	4 5 9	9 ~ ~	∞ ∞ တ	222	222	5 4 5	91 9	18 20 20	20 22 22	24 24 24
160							8		111	1.1.1	1.1.1	111	1 ~ 8	∞∞∞	0000	000	555	===	644	919
							D		9	L & 6	545	27 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3288	884	52 55	8 6 2 8	883	865	125 130 130	9 1 5 2 5 2 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5
						nal	49~69		111	1.1.1	0.15 0.15	0.15 0.2 0.3	0.3	0.3	0.3	0.6 0.6 0.6	0.6		5	222
						Serie dimensional	19~39 49~69	r (mín)	0.15 0.15	0.15 0.15 0.15	0.15 0.2 0.2	0.3	0.3	0.3	0.3	0.0	0.6		5	222
						- i	60		111	111	111	111	111	0.3	0.3	0.3	0.3	0.3	0.0 0.6 0.6	9.0 9.0 9.0
			NA69				69		111	1.1.1	111	111	3228	888	888	9889	04 45 45	45 54 54	54 28	887
			NA59		60		59		111	1.1.1	111	111	558	3338	3333	27 27 30	888	8 8 8 9	04 49	46 54 54
		NN49	NA49		Serie diámetro	dimensional	49		111	1.1.1	1 22	8==	555	17 13	777	888	3228	322	3303	35 40
		NN39		239	arie di	dimer	39	В	2.3	ω ω 4 τ.	92	~ 66	999	555	555	555	666	23 12 13	28333	30,88
		N29			Ñ	Serie	29		111	1.1.1	1.1.1	111	8 8 8 5	11.85	===	£ £ ₹	4 4 9	91 61	19 19 25	22 24 24
69	2	N19					19		1.6	3.53	440	000	99~	~ 66	000	999	5255	555	668	18
							60		111	111	111	111	111	1 ~ ~	~~~	~ ~ 0	∞ ∞ ത	660	225	===
							D		1 4 5	9 7 8	는 E 단	294	242	848	384	ខ្លួនន	828	885	2 1 1 1 2 1 3	25 25
						Serie dimensional	18~68	r (mín)	0.08	0.08 0.1	0.15 0.15	0.15 0.2 0.2	0.03	0.03	0.03	0.03	0.3	0.0	0.6	
						dime	80	7 (1	111	111	111	111	111	0.3	0.3	0.3	0.3	0.3	0.3	0.00
							89		111	111	1.1.1	111	111	88	888	888	828	888	884	888
					80		58		111	111	1.1.1	111	111	1 9 9	9199	50 90	23 28	27	27 34	888
		NN48	NA48		Serie diámetro	Serie dimensional	48		111	111	1.1.1	1 ∞ ∞	თთთ	12	12	122	15 7	888	888	22 22 22 22 22 22 22 22 22 22 22 22 22
		NN38			erie d	dimer	38	В		3 2 3 8	4 5 9	999	~ ~ ~	~ 0 0	우우우	우우우	222	455	5 5 6	000
		N28			S	Serie	28		111	111	ည် က်	ດາດາດ	999	9 8 1	∞ ∞	∞ ∞	861	5255	555	999
99							18			4. t. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	3.55	8.44	വവവ	7 / 2	~~~	~ ~ ~	2 0	999	555	5 5 5
							88		111	1.1.1	111	111	111	44	444	444	4℃	~ ~ 8	00 D	თთთ
							D		2.5 4	7	ღ ⊏ წ	4 9 1	2423	37 32 34 34 34 34 34 34 34 34 34 34 34 34 34	284	443	288	888	855	55 55 55 55 55 55 55 55 55 55 55 55 55
						onal	17~37	(mín)	0.05	0.05	0.08	0.00	0.2	0.2	0.2	111	111	111	111	111
					etro 7	Serie dimensional	37		112	3.22	00 00 00 50	3.5	5.5	ا ي	ی ا ی	111	111	111	111	111
L					Serie diámetro 7	rie dii	27	В	111	2.5	3.5	_ص ا ا	111	111	111	111	111	111	111	111
					Serie	Š	17		9:	2 1 1 2	22 2 2 2 2 2	3.55	ω44	44	4 4	111	111	111	111	111
Hilera	Hilera	dillos	tujas	dillos			Q		3.52	4 5 9	786	254	13 13	23 _	32 _ 37	111	1.1.1		111	
Rod. Una Hilera de Rolas	Rod Doble Hilera de Bolas	Rod. de Rodillos Cilíndricos	Rod. de Agujas	Rod. de Rodillos Esféricos			g		0.6 1.5	2.5	4 6 9	~ ∞6	525		883		888		883	_
Ŗġ	Roc	Roi	2	Ro	10		imero etro l	ùN màiO	1-1	3 6	4 5 9	8 6	828	248	888	8 0 3	861	554	15 16	818

Tabla 7.1. Dimensiones Globales de Rodamientos Radiales (excepto Rodamientos de Rodillos Cónicos) $-\!-\!1$

	M																
de las ranuras de los anillos exteriores que disponen de ranuras de anillos de fijación. caso de anillo interior) o de superficie exterior (en caso de anillo exterior). lo interior) o de superficie exterior (en caso de anillo exterior).	1.1	112	222	9 9 9 9 5 5	7.5 7.5 9.5	7.5 7.5 7.5	7.5 7.5 7.5	6 6 7.5	999	000	വവവ	440	w 4 4	3.2.1	22.1	22.2	100
s de 1).	1.1	+++	\perp	9.5	7.5 9.5 9.5	7.57	6 7.5	999	9 2 2	20 20 20	440	444	33.7	22.1	2 1 2	222	
anillo		111	111	825 875 —	730 750 800	630 670 690	560 580 615	462 488 515	400 420 450	355 375 400	325 325 355	290 290 325	218 250 250	180 200 218	145 160 180	125 125 136	109
ras de iillo ex	11	111	1.1.1	615 650 —	2900	475 500 515	425 438 462	355 365 388 388	335	272 280 300	243 243 272	218 218 243	966	130	122	95	808
ranu de ar terior)	11	630 650 690	530 545 615	462 475 500	412 412 438	345 365 375	308 315 335	258 272 290	218 218 250	200 212 218	180 200 200	992	140 140 140	001	860	69 75	09
nen de n caso illo ext	1.1	475 500 530	400 412 462	345 355 375	300 308 325	258 272 280	230 236 250	195 200 212	165 167 185	150 157 163	134 135 148	118 121 133	92 104 106	75 82 90	60 67 74	52 53 56	45
dispo rior (e de an		365 375 400	300 315 355	265 272 290	236 243 250	200 212 218	180 185 195	150 155 170	128 128 145	118 122 128	106 106 118	95 95 106	72 82 82	66 72 72	84 84 80 84	45 45 45	98 98
e exter	1.1	280 290 308	230 243 272	200 212 218	185 195	155 165 170	136 140 150	118 128 128	1001	880	888	74 88 48	8888	51 56	844	888	88
teriore perfici ior (er	1.1	1.1.1	1.1.1	145	138	122	888	82 85 92	71 21 80	63 67 71	57 57 63	50 57	34 44 44 44	31 37 37	25 28 31	22 22 24	60
los ex de su exter	1.1	2240 2360 2500	1850 1950 2120	1580 1660 1750	1360 1500	1150 1220 1280	980	820 870 920	700 720 780	620 650 680	540 560 600	460 480 520	360 420 420	290 310 340	240 280 280	200 210 225	182
os anil ior) o erficie	21	9.5	7.5 9.5 9.5	7.5	7.5	999	000	000	വവവ	444	w 4 4	ოოო	2.2.2.	25.2	222	2 rč rč	22
is de lo o inter de sup	12	9.5	9.5	7.5	7.5	999	999	0 20 20	വവവ	444	ω44	ოოო	2522	25.2	000	2 1.5	==
ranura e anilk or) o (11	111	7.5	7 7 7 5 5 5 5 5	6 7.5	999	000	വവവ	444	w 4 4	33.7	2.1.1.	2 2 .5	rci rci	:		9.0
de las i caso di interi	1.1	111	710	615 650 690	545 580 615	462 488 500	412 438 450	345 355 400	308 308 325	250 290 290	218 250 250	218 218 218	145 180 180	125 145 145	109	9600	71
anes c r (en c : anillo	1.1	111	545	462 488 515	400 438 462	355 365 375	308 325 335	258 272 300	230 230 243	190 218 218	966	888	388	109	80 80 92	67 67 80	54
Chafl; nterio	530	462 475 500	400 425 450	335 355 375	335	258 272 280	230 243 250	190 200 218	170	1600	140 140 140	2 2 2 8	800	8008	09	200	45
es: (a) ujero i (en c	400	345 355 375	300 315 335	250 272 280	224 236 250	195 200 206	180	140 150 165	128 138	118	90 106 106	0666	60 75 75	52 60 60	42 52 52	37 45	34
guient ni agu nterior	308	265 280 290	230 243 258	195 206 218	175 185 195	150 155 165	136 140 145	118	9000	8888	75 82 83	72 22 22	8488	2484	38 45	888	24
a los siguientes: (a) Chaflanes reborde ni agujero interior (en gujero interior (en caso de anill	230	212	185	120	132	115	103 106 112	90 100	78 78 82	65 74 74	56 65 65	56 56	38 4 4 6	888	3388	24 28 8	20
ente a sin re el agu	1.1	111	128	109	95 103 109	882	73 78 80	63 71	54 57 57	50 50 50	0.44 7.44 4.4	37 37 37	31	22 25 25	19	919	£ 1
																	150
ariam dremo itera y	2430	2060 2180 2300	1720 1820 1950	1460 1540 1630	1250 1320 1400	1060 1120 1180	900 950 1000	750 800 850	650 670 710	560 620 620	480 520 540	420 440 460	320 360 380	280 300 300	230	180 190 210	===
necesariam del extremo delantera y	9.5 2430 9.5 —	7.5 2060 7.5 2180 9.5 2300	6 1720 7.5 1820 7.5 1950	6 1460 6 1540 6 1630	5 1250 6 1320 6 1400	5 1120 5 1180	4 4 900 5 1000	3 750 4 850	3 650 3 670 3 710	2.1 560 2.1 600 3 620	2.1 480 2.1 520 2.1 540	2.1 420 2.1 440 2.1 460	330 2 3 360 2 3 380	1.5 260 1.5 280 1.5 300	111 230 111 230 111 250	1.1 1.1 210 210 210	
plican necesariam flanes del extremo i parte delantera y														വവവ			
o se aplican necesariam os chaflanes del extremo ntre la parte delantera y	0 0 7: 10	7.5 7.5 9.5	6.7.5	000	000	വവവ	440	<u>-</u> ωω4	 	3222	5: 22:22	222		വവവ	1111	222	0.0
abla no se aplican necesariam cha, los chaflanes del extremc anes entre la parte delantera y	 0 0 0 0 0 0	7.5 7.5 9.5	6 6 7.5 7.5	000	222	440	644 446	23.0 0.0 0.0 0.0 0.0 0.0	22.7	2 2.1 3.2.1 3.1	1.5 2 2.1 2.2 2.1 2.1	1.55 2.2.1 2.2.2 2.1.1 2.1.1	222	 	0.6 1.1 0.6 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	0.00	40 54 0.6 1
esta tabla no se aplican necesariam n estrecha, los chaflanes del extremc s chaffanes entre la parte delantera y	 0 0 0	 	500 6 6 545 6 7.5 — 7.5	438 5 6 438 5 6 450 6 6	355 400 5 6 6 6 6	325 325 345 5 5 5 5 5	272 290 4 4 308 4 5	218 2.1 3 236 3 3 272 3 4	218 2.1 3 218 2.1 3 218 2.1 3	180 2 2.1 180 2 2.1 218 2.1 3	145 1.5 2.1 180 2 2.1 180 2 2.1	145 1.5 2.1 145 1.5 2.1 145 1.5 2.1	109 109 125 1.1 2 2 2 2 2	90 90 1.5	71 0.6 1.1 80 0.6 1.1 80 0.6 1.1	63 0.6 1.1 63 0.6 1.1 71 0.6 1.1	54 0.6 1
ran en esta tabla no se aplican necesariam ección estrecha, los chaflanes del extremo lar, los chaflanes entre la parte delantera y	400 - 9.5		375 500 6 6 400 545 6 7.5 — — 7.5	325 438 5 6 325 438 5 6 335 450 6 6	272 355 5 5 300 400 5 6 300 400 5 6	243 325 4 5 243 325 4 5 258 345 5 5	200 272 3 4 218 290 4 4 230 308 4 5	160 218 2.1 3 175 236 3 3 200 272 3 4	160 218 2.1 3 160 218 2.1 3 160 218 2.1 3	136 180 2 2.1 136 180 2 2.1 160 218 2.1 3	109 145 1.5 2.1 136 180 2 2.1 136 180 2 2.1	109 145 1.5 2.1 109 145 1.5 2.1 109 145 1.5 2.1	80 109 1 2 80 109 1 2 95 1.1 2	67 90 1 1.5 67 90 1 1.5 67 9 1 1.5	54 71 0.6 1.1 60 80 0.6 1.1 60 80 0.6 1.1	46 63 0.6 1.1 46 63 0.6 1.1 54 71 0.6 1.1	30 40 54 0.6 1 30 40 54 0.6 1
nuestran en esta tabla no se aplican necesariam s de sección estrecha, los chaflanes del extremo a angular, los chaflanes entre la parte delantera y	300 400 — — 9.5 325 425 — — 9.5	265 345 — — 7.5 272 355 — — 7.5 290 375 — — 9.5	280 375 500 6 6 300 400 545 6 7.5 315 — — 7.5	243 325 438 5 6 250 335 450 6 6	200 272 355 5 5 2 218 300 400 5 6 218 300 400 5 6	180 243 325 4 5 180 243 325 4 5 190 258 345 5 5	150 200 272 3 4 160 218 290 4 4 170 230 308 4 5	118 160 218 2.1 3 128 175 236 3 3 150 200 272 3 4	118 160 218 2.1 3 118 160 218 2.1 3 118 160 218 2.1 3	100 136 180 2 2.1 100 136 180 2 2.1 118 160 218 2.1 3	80 109 145 1.5 2.1 100 136 180 2 2.1 100 136 180 2 2.1	80 109 145 1.5 2.1 80 109 145 1.5 2.1 80 109 145 1.5 2.1	60 80 109 1 2 60 80 109 1 2 69 95 125 1.1 2	50 67 90 1 1.5 50 67 90 1 1.5 50 67 90 1 1.5	40 54 71 0.6 1.1 45 60 80 0.6 1.1 45 60 80 0.6 1.1	35 46 63 0.6 1.1 35 46 63 0.6 1.1 40 54 71 0.6 1.1	23 30 40 54 0.6 1 23 30 40 54 0.6 1
ue se muestran en esta tabla no se aplican necesariam ndricos de sección estrecha, los chaflanes del extremo mitacto anglar. Os chaflanes entre la parte delamiera y considera o considera e considera	230 300 400 — — 9.5 250 325 425 — — 9.5	265 345 — — 7.5 272 356 — — 7.5 290 375 — — 9.5	206 280 375 500 6 6 224 300 400 545 6 7.5 243 315 — — 7.5	180 243 325 438 5 6 180 243 325 450 6 6	150 200 272 355 5 5 165 218 300 400 5 6 165 218 300 400 5 6	136 180 243 325 4 5 136 180 243 325 4 5 140 190 258 345 5 5	112 150 200 272 3 4 118 160 218 290 4 4 128 170 230 308 4 5 1	90 118 160 218 2.1 3 98 128 175 236 3 3 112 150 200 272 3 4	90 118 160 218 2.1 3 90 118 160 218 2.1 3 90 118 160 218 2.1 3	75 100 136 180 2 2.1 75 100 136 180 2 2.1 90 118 160 218 2.1 3	60 80 109 145 1.5 2.1 75 100 136 180 2 2.1 75 100 136 180 2 2.1	60 80 109 145 1.5 2.1 60 80 109 145 1.5 2.1 60 80 109 145 1.5 2.1	45 60 80 109 1 2 45 60 80 109 1 2 52 69 95 125 1.1 2	37 50 67 90 1 1.5 37 50 67 90 1 1.5 37 50 67 90 1 1.5	30 40 54 71 0.6 1.1 34 45 60 80 0.6 1.1 34 45 60 80 0.6 1.1	26 35 46 63 0.6 1.1 26 35 46 63 0.6 1.1 30 40 54 71 0.6 1.1	19 23 30 40 54 0.6 1
nes que se muestran en esta tabla no se aplican necesariam os cilíndricos de sección estrecha, los chaflanes del extremo contacto analudar, los chaflanes entre la parte delantera y de contacto analudar, los chaflanes entre la parte delantera y de contacto analudar, los chaflanes entre la parte delantera y del contacto analudar, los chaflanes entre la parte delantera y del contacto analudar, los chaflanes entre la parte delantera y del contacto analudar, los chaflanes entre la contacto analudar del con	300 400 — — 9.5 325 425 — — 9.5	200 265 345 - 7.5 206 272 355 - 7.5 218 290 375 - 9.5	165 206 280 375 500 6 6 175 224 300 400 545 6 7.5 185 243 315 — — 7.5 7.5	140 180 243 325 438 5 6 140 180 243 325 438 5 6 145 185 250 335 450 6 6	118 150 200 272 355 5 5 128 165 218 300 400 5 6 128 165 218 300 400 5 6	106 136 180 243 325 4 5 106 136 180 243 325 4 5 112 140 190 258 345 5 5	88 112 150 200 272 3 4 95 118 160 218 290 4 4 4 100 128 170 230 308 4 5 1	72 90 118 160 218 2.1 3 78 98 128 175 236 3 3 88 112 150 200 272 3 4	72 90 118 160 218 2.1 3 72 90 118 160 218 2.1 3 72 90 118 160 218 2.1 3	60 75 100 136 180 2 2.1 60 75 100 136 180 2 2.1 72 90 118 160 218 2.1 3	48 60 80 109 145 1.5 2.1 60 75 100 136 180 2 2.1 60 75 100 136 180 2 2.1	48 60 80 109 145 1.5 2.1 48 60 80 109 145 1.5 2.1 48 60 80 109 145 1.5 2.1	36 45 60 80 109 1 2 36 45 60 80 109 1 2 42 52 69 95 125 1.1 2	30 37 50 67 90 1 1.5 30 37 50 67 90 1 1.5 30 37 50 67 90 1 1.5	13 20 24 30 40 54 71 0.6 1.1 14 22 27 34 45 60 80 0.6 1.1 14 22 27 34 45 60 80 0.6 1.1	22 26 35 46 63 0.6 1.1 22 26 35 46 63 0.6 1.1 24 30 40 54 71 0.6 1.1	16 19 23 30 40 54 0.6 1
chaflanes que se muestran en esta tabla no se aplican necesariamente a los siguientes: (a) Chaflanes de las ranuras de los amillos exteriores que disponen de ranuras de amillos prodicios de sección estrecha, los chaflanes del extremo sin reborde ni agujero interior (en caso de anillo interior) o de superficie exterior (en caso de anillo exterior) bolas de contacto anqual nos chaflanes entre la parte delantera y el agujero interior (en caso de anillo interior) o de superficie exterior (en caso de anillo exterior).	230 300 400 — — 9.5 250 325 425 — — 9.5	200 265 345 - 7.5 206 272 355 - 7.5 218 290 375 - 9.5	122 165 206 280 375 500 6 6 132 175 224 300 400 545 6 7.5 140 185 243 315 — — 7.5	106 140 180 243 325 438 5 6 106 140 180 243 325 438 5 6 117 145 185 250 335 450 6 6	90 118 150 200 272 355 5 5 100 128 165 218 300 400 5 6 100 128 165 218 300 400 5 6	82 106 136 180 243 325 4 5 82 106 136 180 243 325 4 5 85 112 140 190 258 345 5 5	69 88 112 150 200 272 3 4 74 95 118 160 218 290 4 4 7 178 170 230 308 4 5 1	56 72 90 118 160 218 2.1 3 60 78 98 128 175 236 3 3 69 88 112 150 200 272 3 4	56 72 90 118 160 218 2.1 3 56 72 90 118 160 218 2.1 3 56 72 90 118 160 218 2.1 3	46 60 75 100 136 180 2 2.1 46 60 75 100 136 180 2 2.1 56 72 90 118 160 218 2.1 3	38 48 60 80 109 145 1.5 2.1 46 60 75 100 136 180 2 2.1 46 60 75 100 136 180 2 2.1	38 48 60 80 109 145 1.5 2.1 38 48 60 80 109 145 1.5 2.1 38 48 60 80 109 145 1.5 2.1	28 36 45 60 80 109 1 2 28 36 45 60 80 109 1 2 33 42 52 69 95 125 1.1 2	24 30 37 50 67 90 1 1.5 24 30 37 50 67 90 1 1.5 24 30 37 50 67 90 1 1.5	20 24 30 40 54 71 0.6 1.1 22 27 34 45 60 80 0.6 1.1 22 27 34 45 60 80 1.1	18 22 26 35 46 63 0.6 1.1 20 24 30 40 54 71 0.6 1.1	10 16 19 23 30 40 54 0.6 1 10 16 19 23 30 40 54 0.6 1
de los chaflanes que se muestran en esta tabla no se aplican necesariam tos de rodillos cilindricos de sección estrecha, los chaflanes del extremo de bolas de contacto andigal, los chaflanes entre la parte delantera y contacto andigal, los chaflanes entre la parte delantera y control de contacto andigal, los chaflanes entre la parte delantera y control de contacto andigal control control de contacto and control de	- 175 230 300 400 - - 9.5 - 190 250 325 425 - - 9.5	- 155 200 265 345 - - 7.5 - 160 206 272 385 - - 7.5 - 165 218 290 375 - - 9.5	88 122 165 206 280 375 500 6 6 95 132 175 224 300 400 545 6 7.5 - 140 185 243 315 7.5	78 106 140 180 243 325 438 5 6 78 106 140 180 243 325 438 5 6 8 80 112 145 185 250 335 450 6 6	63 90 118 150 200 272 355 5 5 7 1100 128 165 218 300 400 5 6 7 1 100 128 165 218 300 400 5 6	980 57 82 106 138 180 243 325 4 5 1030 57 82 106 138 180 243 325 4 5 1090 60 85 112 140 190 258 345 5 5	820 48 69 88 112 150 200 272 3 4 870 50 74 96 118 160 218 290 4 4 4 920 54 78 100 128 170 230 308 4 5	680 37 56 72 90 118 160 218 2.1 3 730 42 60 78 98 128 175 236 3 3 780 48 69 88 112 150 200 272 3 4	600 37 56 72 90 118 160 218 2.1 3 620 37 56 72 90 118 160 218 2.1 3 650 37 56 72 90 118 160 218 2.1 3	520 31 46 60 75 100 136 180 2 2.1 540 31 46 60 75 100 136 180 2 2.1 580 37 56 72 90 118 160 218 2.1 3	440 25 38 48 60 80 109 145 1.5 2.1 480 31 46 60 75 100 136 180 2 2.1 500 31 46 60 75 100 136 180 2 2.1	380 25 38 48 60 80 109 145 15 21 400 25 38 48 60 80 109 145 15 21 420 25 38 48 60 80 109 145 15 21	19 28 36 45 60 80 109 1 2 19 28 36 45 60 80 109 1 2 22 33 42 52 69 95 125 1.1 2	240 16 24 30 37 50 67 90 1 1.5 270 16 24 30 37 50 67 90 1 1.5 270 16 24 30 37 50 67 90 1 1.5	200 13 20 24 30 40 54 71 0.6 1.1 215 14 22 27 34 45 60 80 0.6 1.1 225 14 22 27 34 45 60 80 0.6 1.1	165 11 18 22 26 35 46 63 0.6 1.1 175 11 18 22 26 35 46 63 0.6 1.1 190 13 20 24 30 40 54 71 0.6 1.1	140 10 16 19 23 30 40 54 0.6 1
ones de los chafanes que se muestran en esta tabla no se aplican necesariam amientos de rodillos cilíndricos de sección estrecha, los chaflanes del extremcamientos de bolas de contacto angular, los chaflanes entre la parte delantera y contracto angular, los chaflanes entre la parte delantera y	2300 - 175 230 300 400 - 9.5 2430 - 190 250 325 425 9.5	1950 - 155 200 265 345 - - 7.5 2060 - 160 206 272 385 - - 7.5 2180 - 166 218 290 375 - - 7.5 9.5 - - - - - 9.5	1600 88 122 165 226 280 375 500 6 6 1700 95 132 175 224 300 400 545 6 7.5 1820 140 186 243 315 — — 7.5	1360 78 106 140 180 243 325 438 5 6 1420 78 106 140 180 243 325 438 5 6 1500 80 112 145 185 250 335 450 6 6	1220 71 100 128 165 218 300 400 5 6 7 1280 71 100 128 165 218 300 400 5 6	980 57 82 106 138 180 243 325 4 5 1030 57 82 106 138 180 243 325 4 5 1090 60 85 112 140 190 258 345 5 5	- 820 48 69 88 112 150 200 272 3 4 - 870 50 74 95 118 160 218 290 4 4 4 - 920 54 78 100 128 170 230 308 4 5 1	680 37 56 72 90 118 160 218 2.1 3 730 42 60 78 98 128 175 236 3 3 780 48 69 88 112 150 200 272 3 4	- 600 37 56 72 90 118 160 218 2.1 3 - 620 37 56 72 90 118 160 218 2.1 3 - 650 37 56 72 90 118 160 218 2.1 3 - 650 37 56 72 90 118 160 218 2.1 3	- 520 31 46 60 75 100 136 180 2 2.1 - 540 31 46 60 75 100 136 180 2 2.1 - 580 37 56 72 90 118 160 218 2.1 3	- 440 25 38 48 60 80 109 145 1.5 2.1 - 480 31 46 60 75 100 136 180 2 2.1 - 500 31 46 60 75 100 136 180 2 2.1		300 19 28 36 45 60 80 109 1 2 320 19 28 36 45 60 80 109 1 2 350 22 33 42 52 69 95 125 1.1 2	240 16 24 30 37 50 67 90 1 1.5 270 16 24 30 37 50 67 90 1 1.5 270 16 24 30 37 50 67 90 1 1.5	- 200 13 20 24 30 40 54 71 0.6 1.1 5.2 14 22 27 34 45 60 80 0.6 1.1 5.2 14 22 27 34 45 60 80 0.6 1.1	165 11 18 22 26 35 46 63 0.6 1.1 175 11 18 22 26 35 46 63 0.6 1.1 190 13 20 24 30 40 54 71 0.6 1.1	- 150 10 16 19 23 30 40 54 0.6 1
mensiones de los chaflanes que se muestran en esta tabla no se aplican necesariam ra rodamientos de rodillos cilindricos de sección estrecha, los chaflanes del extremcra rodamientos de bolas de contacto angular, los chaflanes entre la parte delantera y	- 2300 - 175 230 300 400 95 - 2430 - 190 250 325 425 9.5	1950 155 200 285 345 75 2060 160 206 272 355 7.5 2180 165 218 290 375 7.5 318 165 218 290 375 9.5	- 1600 88 122 165 206 280 375 500 6 6 7.5 1700 95 132 175 224 300 400 545 6 7.5 7.5 1820 - 140 185 243 315 7.5	- 1360 78 106 140 180 243 325 438 5 6 - 1420 78 106 140 180 243 325 438 5 6 - 1500 80 1112 145 185 250 335 450 6 6	- 1150 63 90 118 150 200 272 355 5 5 5 120 212 300 400 5 6 128 165 218 300 400 5 6 128 165 218 300 400 5 6 128 165 218 300 400 5 6 128 165 218 300 400 5 6 128 165 218 300 400 5 6 128 165 218 300 400 5 6 128 128 128 128 128 128 128 128 128 128	- 1030 57 82 106 136 180 243 325 4 5 - 1030 57 82 106 136 180 243 325 4 5 - 1090 60 85 112 140 190 258 345 5 5	820 48 69 88 112 150 200 272 3 4 4 6 6 6 70 72 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	- 680 37 56 72 90 118 160 218 2.1 3 - 730 42 60 78 98 128 176 236 3 3 - 780 48 69 88 112 150 200 272 3 4	- 600 37 56 72 90 118 160 218 2.1 3 - 620 37 56 72 90 118 160 218 2.1 3 - 650 37 56 72 90 118 160 218 2.1 3 - 650 37 56 72 90 118 160 218 2.1 3	- 520 31 46 60 75 100 136 180 2 2.1 - 540 31 46 60 75 100 136 180 2 2.1 - 580 37 56 72 90 118 160 218 2.1 3	- 440 25 38 48 60 80 109 145 1.5 2.1 - 480 31 46 60 75 100 136 180 2 2.1 - 500 31 46 60 75 100 136 180 2 2.1	380 25 38 48 60 80 109 145 15 21 - 400 25 38 48 60 80 109 145 1.5 21 420 25 38 48 60 80 109 145 1.5 21	- 300 19 28 36 45 60 80 109 1 2 8 36 45 60 80 109 1 2 9 320 19 28 36 45 60 80 109 1 2 9 35 22 33 42 52 69 95 125 1.1 2	- 250 16 24 30 37 50 67 90 1 1.5 - 250 16 24 30 37 50 67 90 1 1.5 - 270 16 24 30 37 50 67 90 1 1.5	216 14 22 27 34 45 60 80 0.6 1.1 - 225 14 22 27 34 45 60 80 0.6 1.1	165 11 18 22 26 35 46 63 0.6 1.1 175 11 18 22 26 35 46 63 0.6 1.1 190 13 20 24 30 40 54 71 0.6 1.1	
Las dimensiones de los chaflanes que se muestran en esta tabla no se aplican necesariam (b) Para rodamientos de rodillos cilindricos de sección estrecha, los chaflanes del extremción para rodamientos de bolas de contacto angular, los chaflanes entre la parte delantera y (c) Para rodamientos de bolas de contacto angular, los chaflanes entre la parte delantera y (c) Para rodamientos de bolas de contacto angular, los chaflanes entre la parte delantera y (c) Para rodamientos de bolas de contacto angular, los chaflanes entre la parte delantera y	- - 2300 - 175 230 300 400 - - 9.5 - - 2430 - 190 250 325 425 - - 9.5	1950 - 155 200 265 345 75 75 - 75 - 75 - 75 - 75 - 9.5 - 9.5	- 100 88 122 165 206 280 375 500 6 6 6 7.5 - 120 95 132 175 224 300 400 545 6 7.5 - 1820 - 140 185 243 315 7.5 7.5	- 1360 78 106 140 180 243 325 438 5 6 - 1420 78 106 140 180 243 325 438 5 6 - 1500 80 112 145 185 250 335 450 6 6	- 1220 71 100 128 165 218 300 400 5 6 - 1280 71 100 128 165 218 300 400 5 6 6 - 1280 71 100 128 165 218 300 400 5 6 6 7	980 57 82 106 136 180 243 325 4 5 - 1030 57 82 106 136 180 243 325 4 5 - 1090 60 85 112 140 190 258 345 5 5	820 48 69 88 112 150 200 272 3 4 4 6 6 6 70 72 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	- - 680 37 56 72 90 118 160 218 2.1 3 - - 730 42 60 78 98 128 175 236 3 3 - - 780 48 69 88 112 150 200 272 3 4	- 600 37 56 72 90 118 160 218 2.1 3 - 620 37 56 72 90 118 160 218 2.1 3 - 650 37 56 72 90 118 160 218 2.1 3	- 520 31 46 60 75 100 136 180 2 2.1 - 540 31 46 60 75 100 136 180 2 2.1 - 580 37 56 72 90 118 160 218 2.1	440 25 38 48 60 80 109 145 1.5 2.1 480 31 46 60 75 100 136 180 2 2.1 500 31 46 60 75 100 136 180 2 2.1	380 25 38 48 60 80 109 145 15 2.1 400 25 38 48 60 80 109 145 1.5 2.1 420 25 38 48 60 80 109 145 1.5 2.1	- - 300 19 28 36 45 60 80 109 1 2 - - 320 19 28 36 45 60 80 109 1 2 - - - 350 22 33 42 52 69 95 125 1.1 2	- 240 16 24 30 37 50 67 90 1 1.5 - 250 16 24 30 37 50 67 90 1 1.5 - 270 16 24 30 37 50 67 90 1 1.5	216 14 22 27 34 45 60 80 0.6 1.1 - 225 14 22 27 34 45 60 80 0.6 1.1	165 11 18 22 26 35 46 63 0.6 1.1 175 11 18 22 26 35 46 63 0.6 1.1 190 13 20 24 30 40 54 71 0.6 1.1	
Las dimensiones de los ch (b) Para rodamientos de r (c) Para rodamientos de b	2330 - 175 230 300 400 0 9.5 - 0 9.5 - 0 9.5 - 0 9.5	- - - 1950 - 155 200 206 345 - - - 7.5 - - - 2060 - 160 206 272 356 - - 7.5 - - - 2180 - 165 218 290 375 - - 9.5	1600 88 122 165 206 280 375 500 6 6 7.5 - 1700 95 132 175 224 300 400 545 6 7.5 - 1820 - 140 185 243 315 7.5	1360 78 106 140 180 243 325 438 5 6 - 1420 78 106 140 180 243 325 438 5 6 - 1500 80 112 145 185 250 335 450 6 6	1150 63 90 118 150 200 272 355 5 6 1			- - - 680 37 56 72 90 118 160 218 2.1 3 - - - 730 42 60 78 98 128 175 236 3 3 - - - 780 48 69 88 112 150 200 272 3 4	620 37 56 72 90 118 160 218 2.1 3 650 37 56 72 90 118 160 218 2.1 3 650 37 56 72 90 118 160 218 2.1 3		480 31 46 60 75 100 136 180 2 2.1	380 25 38 48 60 80 109 145 1.5 2.1 420 25 38 48 60 80 109 145 1.5 2.1	- - - 300 19 28 36 45 60 80 109 1 2 - - - 320 19 28 36 45 60 80 109 1 2 - - - 350 22 33 42 52 69 95 125 1.1 2	250 16 24 30 37 50 67 90 1 1.5 250 16 24 30 37 50 67 90 1 1.5 270 16 24 30 37 50 67 90 1 1.5	216 14 22 27 34 45 60 80 0.6 1.1 - 225 14 22 27 34 45 60 80 0.6 1.1	165 11 18 22 26 35 46 63 0.6 1.1 175 11 18 22 26 35 46 63 0.6 1.1 190 13 20 24 30 40 54 71 0.6 1.1	
2 - 0 :	2330 - 175 230 300 400 95 2430 - 190 250 325 425 95	1950 - 155 200 285 345 7 75 2060 - 160 206 272 355 7 7.5 2180 - 165 218 290 375 95	1600 88 122 165 206 280 375 500 6 6 75 1700 95 132 175 224 300 400 645 6 7.5 1820 - 140 186 243 315 7.5	1360 78 106 140 180 243 325 438 5 6	1160 128 150 200 272 355 55 150 128 150 200 272 355 55 150 128 150 200 272 355 55 150 200 272 355 55 150 200 272 355 25 150 200 272 27	100 100			600 37 56 72 90 118 160 218 2.1 3 650 37 56 72 90 118 160 218 2.1 3 650 37 56 72 90 118 160 218 2.1 3					240 16 24 30 37 50 67 90 1 1.5 250 16 24 30 37 50 67 90 1 1.5 270 16 24 30 37 50 67 90 1 1.5	200 13 20 24 30 40 54 71 0.6 1.1 215 14 22 27 34 45 60 80 0.6 1.1 225 14 22 27 34 45 60 80 0.6 1.1	165 11 18 22 26 35 46 63 0.6 1.1 175 11 18 22 26 35 46 63 0.6 1.1 190 13 20 24 30 40 54 71 0.6 1.1	

Tabla 7.1. Dimensiones Globales de Rodamientos Radiales (excepto Rodamientos de Rodillos Cónicos)-2-

						Serie di- mensional	04 ~ 24	(mín)	111	111	111	9.0	1.1	551	5.1 5.	1.5	2.1	3.11	m m ++	et et					
					4		24 04	<u>~</u>	111		111		19 19 1		40 4		24 22 20		2288	066					
74	104	N 4	+		Serie diámetro	Serie dimensional	04 2	B			111	18=	555	1 9 4	23 .	25 27	333333	35 42	44 52 52						
	_		1		Serie	Р	Q			111		88	52 53	26.	8 6	82	130	2008	190 200 210	225					
						nal		_		1 20		003	9.0	-==	222	1.5.5		22.7	32.1	mm					
						Serie dimensional	83 03	r (mín)	111	111	111	111	0 0 0 0 0 0 0 0 0 0	9.0	9:00	9.0	=	<u></u>	2 1.5	- 5					
633	333	N 33					33		111	~	901	5559	000	22.2 22.2 25	25.4 30.2 30.2	32 34.9 36.5	39.7 44.4 49.2	54 58.7 63.5	68.3 73	73					
623	233	N 23		223	Serie diámetro 3	Serie diámetro 3	Serie diámetro 3	Serie diámetro 3	rie diámetro 3	rie diámetro 3	ınal	23		111	111	=	1433	7.7.7	21 21	24 24 27	3318	36 40 43	46 51	52 58 60	64
											ie diáme	Serie dimensional	13	В	111	111	111	111	111	111	111	111	111	111	111
32	13	N 3		213					Serie di	03		111	%	7.65	660	125	15	19 19	20 21 23	25 27 29	333	37	43		
													83		111	111	111	111	000	225	1332	4 1 1 9	119	22 24 25	27 28 30
							Q		111	۱ ۱ 5	19 19 19	30 28	35 37 42	47 52 56	62 68 72	75 80 90	120	130 150	160 170 180	190					
						ie sional	02 ~ 42	(ii	111	0.15	0.33	0000	9:0	9:0-1		-==	222		2 2 2	2					
						Serie dimensional	82	r (mín)	111	1 1 5	0.15 0.15 0.2	0.33	0.33	00.3	0.3 0.6 0.6	9:0	9:0		=	==					
							42		111	111	111	111	70	22 27 27	27 30 32	33 37 40	45	2999	56 65 65	69					
632	532	N 32		232	ro 2	-B	32		111	3	7 8 10	125	14.3 15.9 15.9	17.5 20.6 20.6	20.6 23 23.8	25 27 30.2	30.2 30.2 33.3	36.5 38.1 39.7	41.3 44.4 49.2	52.4					
622	42 22	N 22		222	Serie diámetro 2	Serie dimensional	22	В	111	111	111	111	4 4 4	222	81 20 20	23	23 23 25	28 31 31	31 33 36	40					
					Serie	erie din	12	7	111	111	111	111	111	111	111	111	111	111	111	1 1					
222	12	N 2				0,	02		111	4	922	~ 8 8	901	144	11 16 16	7,7,1	19 20 21	22 23 24	25 26 28	30					
							82		111	2.5	8 8 9 4 5	6.55	7 / 8	ထတတ	222	125	554	222	119	22					
							Q		1.1.1	6	19 13	24 5 24 5	32 32 32	246	888	828	885	5 5 5 5 5 5 5	846	95					
						Serie dimensional	01 11~41	r (mín)	111	111	111	111	111	111	111	111	111	111	111	25					
						dimer	01	, , , , , , , , , , , , , , , , , , ,	111	111	111	111	111	111	111		111	111	111						
				241	-		41		111	111	111	14 15 16	888	20 24 25	25 27 28	3333	35 40	45 45	20 20 20 20	99					
		NN 31		231	Serie diámetro	nsional	31		111	111	100	12 27							37 41						
			1		Serie d	Serie dimensional	21	B	1 1 1	111	"	9,00	222	5559	91 14	19 21 22	22 22 24	24 27 27	300	33					
			1			Ser	11		1 1 1	111	111	111	111	111	111	111	111	111	111						
			1				01		111	111	111	111	111	111	111	111	111	111	111						
era	lera	Rod, de Rodillos Cilíndricos Rod, de Agujas		soll			D				4 tc 9									150					
Rod. Una Hilera de Bolas	Doble Hil de Bolas	Rod. de Rodillos Cilíndricos Rod. de Agujas	,	Rod. de Rodillos Esféricos		p			1.5	2.5	, .		12 12	-22	388	884	4 2 2	982	85 85	6 9					

440	വവവ	യവവ	999	6 7.5 7.5	7.5 9.5 9.5	9.5 12.5	222	555	5 55	15	111	111	111	111
988	138	142 145 150	155	190 206 224	236 250 265	280 300 315	325 335 345	365 375 400	412 438 450	475	111	111	111	111
60 65 72	78 82 85	95 95 95	98 102 115	132 140	150 155 165	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	206 212 218	230 236 250	258 272 280	230	111	111	111	111
260 280 310	340 380 380	450 440	460 480 540	580 620 670	710 750 800	850 950 950	980 1030 1060	1120 1150 1220	1280 1360 1420	1500	111	111	1.1.1	111
ოოო	444	444	വവവ	000	7.5	7.5	0000	9.5 12 12	225	5 5 5	500	6 6 I	111	111
2; e, e,	ω4	111	111	111	111	111	111	111	111	111	111	111	111	111
87.3 92.1 106	118	136 140 150	155 165 180	195 206 224	236 258 272	300	315 345 365	375 388 412	438 462 488	515 530 560	630 630 650	670 710	111	111
77 80 86	93 102 108	1170 120 126	132 138 145	155 165 175	185 200 212	224 230 243	250 265 280	290 300 325	335 355 375	400 412 438	462 488 500	515 545 —	111	111
53 62	99 70 75	88	92 97 106	1123	140 155 165	170 175 185	190 200 212	218 230 243	258 272 280	300 325 325	355 375 388	400	111	111
50 52 55	58 65 65	68 72 75	78 88 88	95 102 108	112	125 128 136	136 145 155	160 170 180	190 200 206	218 224 236	258 272 280	300	111	111
44 42	1 20 4	111	111	111	111	111	111	111	111	111	111	111	111	111
225 240 260	280 320 320	340 360 380	400 420 460	500 540 580	620 670 710	750 780 820	850 900 950	980 1030 1090	1150 1220 1280	1360 1420 1500	1600 1700 1780	1850	111	111
27.17	ოოო	ω44	444	400	000	999	7 7 7 5 5 5 5	7.5 7.5 9.5	9.5 12.5	222	5 5 5	15	111	111
1 :5:5	111	111	111	111	111	111	111	111	111	111	111	111	111	111
888	001	128 140 140	150 160 180	200 218 218	243 258 280	290 300 315	335 345 365	388 412 450	475 488 515	545 560 615	615 650 670	710	111	111
65.1 69.8 76	88 96 96	401 110 112	120 128 144	160 174 176	192 208 224	232 240 256	272 280 296	310 336 355	365 388 412	438 450 475	488 515 515	530	111	111
50 53 58	64 68 73	8888	98 98 108	120 130 130	140 150 165	170 175 185	195 200 212	224 243 258	272 280 300	315 325 345	355 375 388	412 425 —	111	111
42	46 54 54	58 62 62	65 70 78	82 00 00	98 118 118	122 132 140	150 155 165	170 185 200	206 212 230	243 250 265	272 280 300	315	111	111
38 40	445 45	48 52 52	55 58 65	72 80 80	85 92 92	95 95 103	109	125 136 145	150 155 165	175 180 195	200 206 218	230 243	111	111
27	111	111	111	111	111	111	111	111	111	111	111	111	111	111
190 200 215	220 220 220 220	290 310 320	340 360 400	440 480 500	540 580 620	650 680 720	760 790 830	870 920 980	1030 1090 1150	1220 1280 1360	1420 1500 1580	1660 1750 —	1.1.1	111
000	22.1	32.7	∞∞4	440	വവവ	യവവ	6 7.5	7.5 7.5 7.5	7.5 7.5 7.5	7.5 9.5 9.5	9.5 12 12	122	51.5	100
	2,1.5	222	ოოო	444	വവവ	000	999	6 7.5 7.5	7.5	7.5 9.5 9.5	9.5	555	111	111
888	088 100 100	109	128 140 150	160 180 180	200 218 243	243 243 250	280 280 300	308 325 335	355 375 400	412 438 475	475 500 515	545 580 600	630 670 710	750 775 800
29 29 29 29	488	888	104 112 120	128 144 146	160 176 190	192 194 200	224 226 240	248 264 272	280 300 315	336 345 365	375 400 412	438 462 475	475 500 530	560 580 600
4 4 4 4 8 8 2 8	48 50 60	66 66 72	78 82 88	95 106 106	118 128 140	140 140 145	165 165 175	180 190 195	206 218 230	243 250 272	272 290 300	315 335 345	365 388 400	425 450 462
8888	38 440 46	511	69 69	74 82 82	866	106	122 132 132	136 145 150	160 170 175	185 195 206	212 224 230	243 258 265	280 290 308	325 345 355
22 22 25	25 27 31	34 37 37	4 4 4 4 4 8	50 57 57	63 71 78	78 78 80	9 8 8 6	996	1122 122 128	130	55 1 29 1	175 185 190	111	111
142 200 200	210 225 250	270 280 300	320 340 370	440 460 460	500 540 580	600 620 650	700 720 760	790 830 870	920 980 1030	1090 1150 1220	1280 1360 1420	1500 1580 1660	1750 1850 1950	2060 2180 2300
			200 200 200 200									950 1000 1060	1120 1180 1250	1320 1400 1500
22 24	30 88 8	37 34 36	844	52 56	68	72 76 80	88 92	96 /500 /530	/200 /600 /630	/710 /750	820 820 900	,4000 1000 1000	/1120 /1180 /1250	/1320 /1400 /1500

Las dimensiones de los chafanes que se muestran en esta tabla no se aplican necesariamente a los siguientes: (a) Chaflanes de las ranuras de los anillos exteriores que disponen de ranuras de anillo exterior).

(b) Para rodamientos de rodificios de sección estrecha, los chaflanes del extremo sin reborde ni agujero interior (en caso de anillo interior) o de superficie exterior (en caso de anillo exterior).

(c) Para rodamientos de bolas de contacto angular, los chaflanes entre la parte delantera y el agujero interior (en caso de anillo interior) o de superficie exterior (en caso de anillo exterior).

A 43

DIMENSIONES Y NÚMEROS DE IDENTIFICACIÓN DE LOS RODAMIENTOS

Tabla 7. 2 Dimensiones globales de

de F	lam. Rod. icos					329						32	0 X				330					33	31		
	.000				Serie	Diame	etral 9							Serie	Diame	etral 0					S	erie Dia	metral	1	
o Inter				Ser	ie dime	ensiona	al 29		Dimen:	sión del flån		Saria	dimens	rional	Saria	dimen	rional	Dimen	sión del ıflán		Saria	dimens	rional	Dimen:	sión del
Jiámetı	d		1			2			Cono	Сора		00110	20	SiOnai	OCITO	30	Jionai	Cono	Сора		00110	31	Jionai	Cono	Сора
Número de Diámetro Interior		D	В	C	T	В	C	T	% (1	min)	D	В	С	Т	В	С	T	<i>r</i> (1	min)	D	В	С	Т	% (1	min)
00 01 02	10 12 15	- - -	- - -	- - -	- - -	- - -	 - -	 - -	- - -	- - -	28 32	- 11 12	- - -	- 11 12	- 13 14	- - -	- 13 14	- 0.3 0.3	- 0.3 0.3	- - -	- - -			- - -	- - -
03 04 /22	17 20 22	- 37 40	- 11 -	- - -	- 11.6 -	12 12	9 9	- 12 12	- 0.3 0.3	0.3 0.3	35 42 44	13 15 15	- 12 11.5	13 15 15	15 17 -	- - -	15 17 -	0.3 0.6 0.6	0.3 0.6 0.6	- - -		- - -	-	- - -	- - -
05 /28 06	25 28 30	42 45 47	11 - 11		11.6 - 11.6	12 12 12	9 9 9	12 12 12	0.3 0.3 0.3	0.3 0.3 0.3	47 52 55	15 16 17	11.5 12 13	15 16 17	17 - 20	14 - 16	17 - 20	0.6 1 1	0.6 1 1	- - -	- - -	- - -	-	- - -	- - -
/32 07 08	32 35 40	52 55 62	- 13 14		- 14 15	15 14 15	10 11.5 12	14 14 15	0.6 0.6 0.6	0.6 0.6 0.6	58 62 68	17 18 19	13 14 14.5	17 18 19	21 22	- 17 18	21 22	1 1 1	1 1 1	- - 75	- 26	- 20.5	- 26	- - 1.5	- - 1.5
09 10 11	45 50 55	68 72 80	14 14 16	- - -	15 15 17	15 15 17	12 12 14	15 15 17	0.6 0.6 1	0.6 0.6 1	75 80 90	20 20 23	15.5 15.5 17.5	20 20 23	24 24 27	19 19 21	24 24 27	1 1 1.5	1 1 1.5	80 85 95	26 26 30	20.5 20 23	26 26 30	1.5 1.5 1.5	1.5 1.5 1.5
12 13 14	60 65 70	85 90 100	16 16 19	-	17 17 20	17 17 20	14 14 16	17 17 20	1 1 1	1 1 1	95 100 110	23 23 25	17.5 17.5 19	23 23 25	27 27 31	21 21 25.5	27 27 31	1.5 1.5 1.5	1.5 1.5 1.5	100 110 120	30 34 37	23 26.5 29	30 34 37	1.5 1.5 2	1.5 1.5 1.5
15 16 17	75 80 85	105 110 120	19 19 22	-	20 20 23	20 20 23	16 16 18	20 20 23	1 1 1.5	1 1 1.5	115 125 130	25 29 29	19 22 22	25 29 29	31 36 36	25.5 29.5 29.5	31 36 36	1.5 1.5 1.5	1.5 1.5 1.5	125 130 140	37 37 41	29 29 32	37 37 41	2 2 2.5	1.5 1.5 2
18 19 20	90 95 100	125 130 140	22 22 24		23 23 25	23 23 25	18 18 20	23 23 25	1.5 1.5 1.5	1.5 1.5 1.5	140 145 150	32 32 32	24 24 24	32 32 32	39 39 39	32.5 32.5 32.5	39 39 39	2 2 2	1.5 1.5 1.5	150 160 165	45 49 52	35 38 40	45 49 52	2.5 2.5 2.5	2 2 2
21 22 24	105 110 120	145 150 165	24 24 27	- - -	25 25 29	25 25 29	20 20 23	25 25 29	1.5 1.5 1.5	1.5 1.5 1.5	160 170 180	35 38 38	26 29 29	35 38 38	43 47 48	34 37 38	43 47 48	2.5 2.5 2.5	2 2 2	175 180 200	56 56 62	44 43 48	56 56 62	2.5 2.5 2.5	2 2 2
26 28 30	130 140 150	180 190 210	30 30 36	- - -	32 32 38	32 32 38	25 25 30	32 32 38	2 2 2.5	1.5 1.5 2	200 210 225	45 45 48	34 34 36	45 45 48	55 56 59	43 44 46	55 56 59	2.5 2.5 3	2 2 2.5	- - -	= = =	- - -	- - -	- - -	- - -
32 34 36	160 170 180	220 230 250	36 36 42	- - -	38 38 45	38 38 45	30 30 34	38 38 45	2.5 2.5 2.5	2 2 2	240 260 280	51 57 64	38 43 48	51 57 64	- - -	- - -	- - -	3 3 3	2.5 2.5 2.5	- - -	- - -	- - -	- - -	- - -	- - -
38 40 44	190 200 220	260 280 300	42 48 48	- - -	45 51 51	45 51 51	34 39 39	45 51 51	2.5 3 3	2 2.5 2.5	290 310 340	64 70 76	48 53 57	64 70 76	- - -	- - -	- - -	3 3 4	2.5 2.5 3	- - -	- - -	- - -	- - -	- - -	- - -
48 52 56	240 260 280	320 360 380	48 - -	- - -	51 - -	51 63.5 63.5	39 48 48	51 63.5 63.5	3 3 3	2.5 2.5 2.5	360 400 420	76 87 87	57 65 65	76 87 87	- - -	- - -	- - -	4 5 5	3 4 4	- - -	= =	- - -	- - -	- - -	- - -
60 64 68 72	300 320 340 360	420 440 460 480	- - -	- - -	- - -	76 76 76 76	57 57 57 57	76 76 76 76	4 4 4 4	3 3 3 3	460 480 - -	100 100 - -	74 74 -	100 100 - -	-	- - -	- - -	5 5 -	4 4 - -	- - -	- - -	- - -	- - -	- - -	- - -

Observaciones

- 1. Las otras series que no coinciden con esta tabla también están especificadas por ISO.
- En la serie dimensional de la serie diametral 9, la Clasificación 1 es la especificada por la normativa antigua, y la Clasificación 2 es la especificada por la ISO.
 - 2. La serie dimensional no clasificada cumple con las dimensiones (D, B, C, T) especificadas por ISO.
- Las dimensiones del chaflán mostradas son las mínimas admisibles especificadas por ISO. No son aplicables a los chaflanes de la cara frontal.

Rodamientos de Rodillos Cónicos

Unidades: mm

		.00			057				000					0 (2 :	205			040					Jilida	des: m	Rod	lam.
	3	302 322 332 Serie diametral 2									30	3 ó 30	ารบ			313				323			de F cón	Rod. icos		
				Serie Serie					In:	-15 1						Serie	diame	etral 3				D:	-14- 2 .		nterior	
	dim	Serie ension		dim		al 22	dim		al 32	Cono	sión del aflán Copa		Seri	ie dime	ensiona	al 03	dim	Serie ensiona	al 13	dim	Serie ension		Cono	nsión del aflán Copa	d	ámetro I
D	В	С	Т	В	С	T	В	С	Т	r (min)	D	В	С	C (1)	T	В	С	Т	В	С	T	r (min)		Número de Diámetro Interior
30 32 35	9 10 11	- 9 10	9.7 10.75 11.75	14 14 14	- - -	14.7 14.75 14.75	- - -		-	0.6 0.6 0.6	0.6 0.6 0.6	35 37 42	11 12 13	- - 11	-	11.9 12.9 14.25	- - -	- - -	- - -	17 17 17	- - 14	17.9 17.9 18.25	0.6 1 1	0.6 1 1	10 12 15	00 01 02
40 47 50	12 14 14	11 12 12	13.25 15.25 15.25	16 18 18	14 15 15	17.25 19.25 19.25	-	-	-	1 1 1	1 1 1	47 52 56	14 15 16	12 13 14	-	15.25 16.25 17.25	- - -	- - -	- - -	19 21 21	16 18 18	20.25 22.25 22.25	1 1.5 1.5	1 1.5 1.5	17 20 22	03 04 /22
52 58 62	15 16 16	13 14 14	16.25 17.25 17.25	18 19 20	15 16 17	19.25 20.25 21.25	22 24 25	18 19 19.5	22 24 25	1 1 1	1 1 1	62 68 72	17 18 19	15 15 16	13 14 14	18.25 19.75 20.75	- - -	= = =	=- =-	24 24 27	20 20 23	25.25 25.75 28.75	1.5 1.5 1.5	1.5 1.5 1.5	25 28 30	05 /28 06
65 72 80	17 17 18	15 15 16	18.25 18.25 19.75	21 23 23	18 19 19	22.25 24.25 24.75	26 28 32	20.5 22 25	26 28 32	1 1.5 1.5	1 1.5 1.5	75 80 90	20 21 23	17 18 20	15 15 17	21.75 22.75 25.25	- - -	- - -	- - -	28 31 33	24 25 27	29.75 32.75 35.25	1.5 2 2	1.5 1.5 1.5	32 35 40	/32 07 08
85 90 100	19 20 21	16 17 18	20.75 21.75 22.75	23 23 25	19 19 21	24.75 24.75 26.75	32 32 35	25 24.5 27	32 32 35	1.5 1.5 2	1.5 1.5 1.5	100 110 120	25 27 29	22 23 25	18 19 21	27.25 29.25 31.5	- - -		- - -	36 40 43	30 33 35	38.25 42.25 45.5	2 2.5 2.5	1.5 2 2	45 50 55	09 10 11
110 120 125	22 23 24	19 20 21	23.75 24.75 26.25	28 31 31	24 27 27	29.75 32.75 33.25	38 41 41	29 32 32	38 41 41	2 2 2	1.5 1.5 1.5	130 140 150	31 33 35	26 28 30	22 23 25	33.5 36 38	- - -			46 48 51	37 39 42	48.5 51 54	3 3 3	2.5 2.5 2.5	60 65 70	12 13 14
130 140 150	25 26 28	22 22 24	27.25 28.25 30.5	31 33 36	27 28 30	33.25 35.25 38.5	41 46 49	31 35 37	41 46 49	2 2.5 2.5	1.5 2 2	160 170 180	37 39 41	31 33 34	26 27 28	40 42.5 44.5	- - -	- - -	- - -	55 58 60	45 48 49	58 61.5 63.5	3 3 4	2.5 2.5 3	75 80 85	15 16 17
160 170 180	30 32 34	26 27 29	32.5 34.5 37	40 43 46	34 37 39	42.5 45.5 49	55 58 63	42 44 48	55 58 63	2.5 3 3	2 2.5 2.5	190 200 215	43 45 47	36 38 39	30 32 -	46.5 49.5 51.5	- - 51	- - 35	- - 56.5	64 67 73	53 55 60	67.5 71.5 77.5	4 4 4	3 3 3	90 95 100	18 19 20
190 200 215	36 38 40	30 32 34	39 41 43.5	50 53 58	43 46 50	53 56 61.5	68 - -	52 - -	68 - -	3 3 3	2.5 2.5 2.5	225 240 260	49 50 55	41 42 46	-	53.5 54.5 59.5	53 57 62	36 38 42	58 63 68	77 80 86	63 65 69	81.5 84.5 90.5	4 4 4	3 3 3	105 110 120	21 22 24
230 250 270	40 42 45	34 36 38	43.75 45.75 49	64 68 73	54 58 60	67.75 71.75 77		- - -		4 4 4	3 3 3	280 300 320	58 62 65	49 53 55	-	63.75 67.75 72	66 70 75	44 47 50	72 77 82	93 102 108	78 85 90	98.75 107.75 114	5 5 5	4 4 4	130 140 150	26 28 30
290 310 320	48 52 52	40 43 43	52 57 57	80 86 86	67 71 71	84 91 91	- - -		- - -	4 5 5	3 4 4	340 360 380	68 72 75	58 62 64	-	75 80 83	79 84 88	- - -	87 92 97	114 120 126	95 100 106	121 127 134	5 5 5	4 4 4	160 170 180	32 34 36
340 360 400	55 58 65	46 48 54	60 64 72	92 98 108	75 82 90	97 104 114	- - -	-	- - -	5 5 5	4 4 4	400 420 460	78 80 88	65 67 73		86 89 97	92 97 106	- - -	101 107 117	132 138 145	109 115 122	140 146 154	6 6 6	5 5 5	190 200 220	38 40 44
440 480 500	72 80 80	60 67 67	79 89 89	120 130 130	100 106 106	127 137 137	- - -	-	- - -	5 6 6	4 5 5	500 540 580	95 102 108	80 85 90		105 113 119	114 123 132	- - -	125 135 145	155 165 175	132 136 145	165 176 187	6 6 6	5 6 6	240 260 280	48 52 56
540 580	85 92 -	71 75 -	96 104 -	140 150 -	115 125 -	149 159 –	-	-	- - -	6 6 -	5 5 -	- - -	=: =: =:	- - -	-	- - -	- - -	- - -	- - -	-	- - -	 - -	- - -	-	300 320 340	60 64 68 72
-		/5 - -	-	-	-		- -		-	-	-		- -	- -	-			- -	- -	-		-				

Nota (1) Respecto al rodamiento 303D, en DIN, el que corresponde a 303D de JIS tiene el número 313. Para los rodamientos con diámetros internos superiores a 100 mm, los de la serie dimensional 13 tienen el número 313.

Tabla 7. 3 Dimensiones globales de

														ı						
Rodam. d de Empuj	е									511					512		522			
Rodam. d Esféricos														292						
otto			Serie	Diame	tral 0	1		Serie	e Diame	tral 1					Serie	e Diame	tral 2			
)iáme or			Serie	dimens	sional			Serie	dimen	sional				S	erie din	nension	al			
Número de Diámetro Interior	d	D	70	90	10		n	71	91	11	ac (mín)	D	72	92	12	22	22			
mero		D	T			∤ (mín)	D	Т			∤ (mín)	D	T					ndela itral	≯ (min)	γ (mín)
Nú			T					1					T				d_2	В		
4 6 8	4 6 8	12 16 18	4 5 5	- - -	6 7 7	0.3 0.3 0.3	- - -	- - -	- - -	- - -	-	16 20 22	6 6 6	- - -	8 9 9	-	- - -	- - -	0.3 0.3 0.3	- - -
00 01	10 12	20 22	5	- -	7 7	0.3 0.3	24 26	6		9	0.3 0.3	26 28	7 7	-	11 11	-	-	- -	0.6 0.6	-
02	15	26	5	-	7	0.3	28	6	-	9	0.3	32	8	-	12	22	10	5	0.6	0.3
03 04 05	17 20 25	28 32 37	5 6 6	- - -	7 8 8	0.3 0.3 0.3	30 35 42	6 7 8	- - -	9 10 11	0.3 0.3 0.6	35 40 47	8 9 10	- - -	12 14 15	26 28	15 20	6 7	0.6 0.6 0.6	0.3 0.3
06 07 08	30 35 40	42 47 52	6 6 6	- - -	8 8 9	0.3 0.3 0.3	47 52 60	8 8 9	- - -	11 12 13	0.6 0.6 0.6	52 62 68	10 12 13	- - -	16 18 19	29 34 36	25 30 30	7 8 9	0.6 1 1	0.3 0.3 0.6
09 10 11	45 50 55	60 65 70	7 7 7	- - -	10 10 10	0.3 0.3 0.3	65 70 78	9 9 10	- - -	14 14 16	0.6 0.6 0.6	73 78 90	13 13 16	- - 21	20 22 25	37 39 45	35 40 45	9 9 10	1 1 1	0.6 0.6 0.6
12 13 14	60 65 70	75 80 85	7 7 7	- - -	10 10 10	0.3 0.3 0.3	85 90 95	11 11 11	- - -	17 18 18	1 1 1	95 100 105	16 16 16	21 21 21	26 27 27	46 47 47	50 55 55	10 10 10	1 1 1	0.6 0.6 1
15 16 17	75 80 85	90 95 100	7 7 7	- - -	10 10 10	0.3 0.3 0.3	100 105 110	11 11 11	- - -	19 19 19	1 1 1	110 115 125	16 16 18	21 21 24	27 28 31	47 48 55	60 65 70	10 10 12	1 1 1	1 1 1
18 20 22	90 100 110	105 120 130	7 9 9	- - -	10 14 14	0.3 0.6 0.6	120 135 145	14 16 16	21 21	22 25 25	1 1 1	135 150 160	20 23 23	27 30 30	35 38 38	62 67 67	75 85 95	14 15 15	1.1 1.1 1.1	1 1 1
24 26 28	120 130 140	140 150 160	9 9 9	- - -	14 14 14	0.6 0.6 0.6	155 170 180	16 18 18	21 24 24	25 30 31	1 1 1	170 190 200	23 27 27	30 36 36	39 45 46	68 80 81	100 110 120	15 18 18	1.1 1.5 1.5	1.1 1.1 1.1
30 32 34	150 160 170	170 180 190	9 9 9	- - -	14 14 14	0.6 0.6 0.6	190 200 215	18 18 20	24 24 27	31 31 34	1 1 1.1	215 225 240	29 29 32	39 39 42	50 51 55	89 90 97	130 140 150	20 20 21	1.5 1.5 1.5	1.1 1.1 1.1
36 38 40	180 190 200	200 215 225	9 11 11	- - -	14 17 17	0.6 1 1	225 240 250	20 23 23	27 30 30	34 37 37	1.1 1.1 1.1	250 270 280	32 36 36	42 48 48	56 62 62	98 109 109	150 160 170	21 24 24	1.5 2 2	2 2 2
44 48 52	220 240 260	250 270 290	14 14 14	- - -	22 22 22	1 1 1	270 300 320	23 27 27	30 36 36	37 45 45	1.1 1.5 1.5	300 340 360	36 45 45	48 60 60	63 78 79	110 - -	190 - -	24 - -	2 2.1 2.1	2 -
56 60 64	280 300 320	310 340 360	14 18 18	24 24	22 30 30	1 1 1	350 380 400	32 36 36	42 48 48	53 62 63	1.5 2 2	380 420 440	45 54 54	60 73 73	80 95 95	- - -	- - -	- - -	2.1 3 3	- - -

Observaciones

^{1.} Los rodamientos de las series dimensionales 22, 23 y 24 son de doble dirección.

Se ha omitido el diámetro exterior máximo permisible del eje y las arandelas centrales, así como el diámetro interior mínimo permisible del as arandelas del alojamiento. (Consulte las tablas de los rodamientos de empuje).

			•	- `		•	,	— 1 -											Ur	nidades		
			513		523							514		524							las de E	
		293									294										Rodam. Esférico	
			Serie	Diame	tral 3					•	•	Serie	Diame	etral 4				Serie	Diame	tral 5		2
		Se	erie din	nensior	nal						S	erie din	nensior	nal					Serie dim.			Número de Diámetro
	73	93	13	23	23					74	94	14	24	24					95		_	de Di
D						ndela ntral	∤ (mín)	∤ (mín)	D						idela tral	≯ (mín)	∦ (mín)	D			d	nero
	T				d_2	В				T				d_2	В				Т			Nű
20	7	_	11	_	_	_	0.6	_	_	_	_	_	_	_	_	_	_	_	_	_	4	4
24 26	8 8	-	12 12	-	-	-	0.6 0.6	-	-	-	-	-	-	-	-	-	-	-	-	-	6 8	6
30							0.6														10	00
32 37	9 9 10	-	14 14 15	-	-	-	0.6 0.6	-	-	-	-	-	-	-	-	-	-	-	-	-	12 15	01 02
																		52			17	03
40 47 52	10 12 12	-	16 18 18	34	- 20	- 8	0.6 1 1	- - 0.3	- 60	- 16	- 21	- 24	- - 45	15	- - 11	- - 1	- 0.6	60 73	21 24 29	1 1 1.1	20 25	04 05
60 68 78	14 15 17	- - 22	21 24 26	38 44 49	25 30 30	9 10 12	1 1 1	0.3 0.3 0.6	70 80 90	18 20 23	24 27 30	28 32 36	52 59 65	20 25 30	12 14 15	1 1.1 1.1	0.6 0.6 0.6	85 100 110	34 39 42	1.1 1.1 1.5	30 35 40	06 07 08
85 95 105	18 20 23	24 27 30	28 31 35	52 58 64	35 40 45	12 14 15	1.1	0.6 0.6 0.6	100 110 120	25 27 29	34 36 39	39 43 48	72 78 87	35 40 45	17 18 20	1.1 1.5 1.5	0.6 0.6 0.6	120 135 150	45 51 58	2 2 2.1	45 50 55	09 10
							1.1															11
110 115 125	23 23 25	30 30	35 36	64 65	50 55	15 15	1.1	0.6 0.6	130 140 150	32 34	42 45	51 56	93 101	50 50	21 23	1.5	0.6	160 170	60 63	2.1 2.1 3	60 65	12 13
		34	40	72	55	16	1.1	1		36	48	60	107	55	24	2	1	180	67		70	14
135 140	27 27	36 36	44 44	79 79	60 65	18 18	1.5 1.5	1	160 170	38 41	51 54	65 68	115 120	60 65	26 27	2.1	1	190 200	69 73	3	75 80	15 16
150	29	39	49	87	70	19	1.5	1	180	42	58	72	128	65	29	2.1	1.1	215	78	4	85	17
155 170	29 32	39 42	50 55	88 97	75 85	19 21	1.5 1.5	1	190 210	45 50	60 67	77 85	135 150	70 80	30 33	2.1	1.1	225 250	82 90	4	90 100	18 20
190	36	48	63	110	95	24	2	1	230	54	73	95	166	90	37	3	1.1	270	95	5	110	22
210 225	41 42	54 58	70 75	123 130	100 110	27 30	2.1	1.1	250 270	58 63	78 85	102 110	177 192	95 100	40 42	4	1.5	300 320	109 115	5 5	120 130	24 26
240	45	60	80	140	120	31	2.1	1.1	280	63	85	112	196	110	44	4	2	340	122	5	140	28
250 270	45 50	60 67	80 87	140 153	130 140	31 33	2.1	1.1 1.1	300 320	67 73	90 95	120 130	209 226	120 130	46 50	4 5	2 2	360 380	125 132	6	150 160	30 32
280	50	67	87	153	150	33	3	1.1	340	78	103	135	236	135	50	5	2.1	400	140	6	170	34
300 320	54 58	73 78	95 105	165 183	150 160	37 40	3 4	2 2	360 380	82 85	109 115	140 150	245	140	52 -	5 5	3 -	420 440	145 150	6 6	180 190	36 38
340	63	85	110	192	170	42	4	2	400	90	122	155	-	-	-	5	-	460	155	7.5	200	40
360 380	63 63	85 85	112 112	-	-	-	4 4	-	420 440	90 90	122 122	160 160	-		-	6	-	500 540	170 180	7.5 7.5	220 240	44 48
420	73	95	130	-	-	-	5	-	480	100	132	175	-	-	-	6	-	580	190	9.5	260	52
440 480	73 82	95 109	130 140	-	-	-	5	-	520 540	109 109	145 145	190 190	-	-	-	6	-	620 670	206 224	9.5 9.5	280 300	56 60
500	82	109	140	-	-	-	5	-	580	118	155	205	-	-	-	7.5	-	710	236	9.5	320	64

Tabla 7. 3 Dimensiones globales de

Rodam. o	do Dolos				ı	ı			ı		ı		ı	ı	ı				1	
de Empuj										511					512		522			
Esféricos														292						
etro			Serie	Diame	tral 0	1		Serie	e Diame	tral 1	1				Serie	Diame	tral 2		1	
)iám or			Serie	dimens	sional			Serie	dimen	sional				S	erie din	nension	al			
o de Dia Interior	d	D	70	90	10		D	71	91	11		D	72	92	12	22	2			
Número de Diámetro Interior		Ь		Т		γ (min)	D		T		γ (min)	Ъ			Т		Arar cen		γ (min)	∦ (min)
Nú				1					1								d_2	В		
68 72 76	340 360 380	380 400 420	18 18 18	24 24 24	30 30 30	1 1 1	420 440 460	36 36 36	48 48 48	64 65 65	2 2 2	460 500 520	54 63 63	73 85 85	96 110 112	=		-	3 4 4	-
				-															'	
80 84 88	400 420 440	440 460 480	18 18 18	24 24 24	30 30 30	1 1 1	480 500 540	36 36 45	48 48 60	65 65 80	2 2 2.1	540 580 600	63 73 73	85 95 95	112 130 130	=- 	-	- - -	4 5 5	- - -
92 96	460 480	500 520	18 18	24 24	30 30	1	560 580	45 45	60 60	80 80	2.1 2.1	620 650	73 78	95 103	130 135	-	-	- -	5	-
/500	500	540	18	24	30	1	600	45	60	80	2.1	670	78	103	135	-	-	-	5	-
/530 /560 /600	530 560 600	580 610 650	23 23 23	30 30 30	38 38 38	1.1 1.1 1.1	640 670 710	50 50 50	67 67 67	85 85 85	3 3 3	710 750 800	82 85 90	109 115 122	140 150 160	-	-	- - -	5 5 5	- - -
/630 /670 /710	630 670 710	680 730 780	23 27 32	30 36 42	38 45 53	1.1 1.5 1.5	750 800 850	54 58 63	73 78 85	95 105 112	3 4 4	850 900 950	100 103 109	132 140 145	175 180 190	-	-	- -	6 6 6	- - -
		820		42			900			120		1000								
/750 /800 /850	750 800 850	870 920	32 32 32	42 42 42	53 53 53	1.5 1.5 1.5	950 1000	67 67 67	90 90 90	120 120 120	4 4 4	1060 1060 1120	112 118 122	150 155 160	195 205 212	= = =	-	- - -	6 7.5 7.5	- - -
/900 /950 /1000	900 950 1000	980 1030 1090	36 36 41	48 48 54	63 63 70	2 2 2.1	1060 1120 1180	73 78 82	95 103 109	130 135 140	5 5 5	1180 1250 1320	125 136 145	170 180 190	220 236 250	- - -	-	- - -	7.5 7.5 9.5	- - -
/1060 /1120 /1180	1060 1120 1180	1150 1220 1280	41 45 45	54 60 60	70 80 80	2.1 2.1 2.1	1250 1320 1400	85 90 100	115 122 132	150 160 175	5 5 6	1400 1460 1520	155 - -	206 206 206	265 - -	- - -	-	- - -	9.5 9.5 9.5	- - -
/1250 /1320 /1400	1250 1320 1400	1360 1440 1520	50 - -	67 - -	85 95 95	3 3 3	1460 1540 1630	- - -	- - -	175 175 180	6 6 6	1610 1700 1790	- - -	216 228 234	- - -	- - -		- - -	9.5 9.5 12	- - -
/1500 /1600 /1700	1500 1600 1700	1630 1730 1840	= = =	- - -	105 105 112	4 4 4	1750 1850 1970	- - -	- - -	195 195 212	6 6 7.5	1920 2040 2160	- - -	252 264 276	- - -	- - -		- - -	12 15 15	- - -
/1800 /1900 /2000	1800 1900 2000	1950 2060 2160	- - -	- - -	120 130 130	4 5 5	2080 2180 2300	- - -	- - -	220 220 236	7.5 7.5 7.5	2280 - -	- - -	288 - -	- - -	- - -	-	- - -	15 - -	- - -
/2120 /2240 /2360 /2500	2120 2240 2360 2500	2300 2430 2550 2700	- - -	- - - -	140 150 150 160	5 5 5 5	2430 2570 2700 2850	- - - -	- - -	243 258 265 272	7.5 9.5 9.5 9.5	- - - -	- - - -	- - -	- - - -	- - -		- - - -		- - - -

Observaciones

^{1.} Los rodamientos de las series dimensionales 22, 23 y 24 son de doble dirección.

Se ha omitido el diámetro exterior máximo permisible del eje y las arandelas centrales, así como el diámetro interior mínimo permisible de las arandelas del alojamiento. (Consulte las tablas de los rodamientos de empuje).

rodamientos de empuje (asientos planos) — 2 —

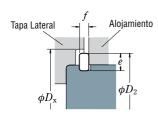
		Un	idades	: mm	
				Rodam. las de Er	
					ae Roalli. Empuje
	Serie	Diame	tral 5		<u>1</u> 20
		Serie dim.			Diáme or
	D	95		d	o de l Interi
(min)	D	Т	∤ (min)		Número Ir
-	750 780 820	243 250 265	12 12 12	340 360 380	68 72 76
-	850 900 950	272 290 308	12 15 15	400 420 440	80 84 88
- - -	980 1000 1060	315 315 335	15 15 15	460 480 500	92 96 /500
-	1090 1150 1220	335 355 375	15 15 15	530 560 600	/530 /560 /600
-	1280 1320 1400	388 388 412	15 15 15	630 670 710	/630 /670 /710
-	- - -	- - -	- - -	750 800 850	/750 /800 /850
- - -	- - -	= = =	- - -	900 950 1000	/900 /950 /1000

																			-	iiuuuuu		
			513		523							514		524							las de E	
		293									294											. de Rodill. os Empuje
			Serie	Diame	etral 3		,	,				Serie	Diame	etral 4				Serie	Diame	etral 5		otto
		S	erie dir	nensio	nal						S	erie din	nensior	nal					Serie dim.			iáme
D	73	93	13	23	23					74	94	14	24	24				D	95		d	de D Iteric
D			Т			ndela itral	∤ (min)	∤ (min)	D	Т				Arar cer		γ (min)	γ (min)	D	Т	r(min)		Número de Diámetro Interior
			•		d_2	В				•				d_2	В				1			Nű
540 560 600	90 90 100	122 122 132	160 160 175	- - -	- - -	- - -	5 5 6	- - -	620 640 670	125 125 132	170 170 175	220 220 224	- - -	- - -	- - -	7.5 7.5 7.5	- - -	750 780 820	243 250 265	12 12 12	340 360 380	68 72 76
620 650 680	100 103 109	132 140 145	175 180 190		- - -	- - -	6 6 6	- - -	710 730 780	140 140 155	185 185 206	243 243 265	- - -	- - -	- - -	7.5 7.5 9.5		850 900 950	272 290 308	12 15 15	400 420 440	80 84 88
710 730 750	112 112 112	150 150 150	195 195 195	- - -	- - -	- - -	6 6 6	- - -	800 850 870	155 165 165	206 224 224	265 290 290	- - -	- - -	- - -	9.5 9.5 9.5	- - -	980 1000 1060	315 315 335	15 15 15	460 480 500	92 96 /500
800 850 900	122 132 136	160 175 180	212 224 236	-	- - -	- - -	7.5 7.5 7.5	- - -	920 980 1030	175 190 195	236 250 258	308 335 335	- - -	- - -	- - -	9.5 12 12	- - -	1090 1150 1220	335 355 375	15 15 15	530 560 600	/530 /560 /600
950 100 106		190 200 212	250 258 272	- - -	- - -	- - -	9.5 9.5 9.5	- - -	1090 1150 1220	206 218 230	280 290 308	365 375 400	- - -	- - -	- - -	12 15 15	- - -	1280 1320 1400	388 388 412	15 15 15	630 670 710	/630 /670 /710
112 118 125	170	224 230 243	290 300 315		- - -	- - -	9.5 9.5 12	- - -	1280 1360 1440	236 250	315 335 354	412 438 -	- - -	- - -	- - -	15 15 15	- - -	- - -	- - -	- - -	750 800 850	/750 /800 /850
132 140 146	200	250 272 276	335 355	- - -	- - -	- - -	12 12 12	- - -	1520 1600 1670	- - -	372 390 402	- - -	- - -	- - -	- - -	15 15 15	- - -	- - -	- - -	- - -	900 950 1000	/900 /950 /1000
154 163 171	- (288 306 318	-	- - -	- - -	- - -	15 15 15	- - -	1770 1860 1950	- - -	426 444 462	- - -	- - -	- - -	- - -	15 15 19	- - -	- - -	- - -	- - -	1060 1120 1180	/1060 /1120 /1180
180 190 200	-	330 348 360			- - -	- - -	19 19 19	- - -	2050 2160 2280	- - -	480 505 530	- - -	- - -	- - -	- - -	19 19 19	- - -	- - -	- - -	- - -	1250 1320 1400	/1250 /1320 /1400
214 227		384 402 -	-	-	-	- - -	19 19 -	- - -	- - -	- - -	-	- - -	- - -	- - -	- - -	- - -	-	- - -	- - -	 - -	1500 1600 1700	/1500 /1600 /1700
-	_	-	-	-	-	- -	-	-	-	-	-	-	-	-	- -	-	-	- -	-	-	1800 1900 2000	/1800 /1900 /2000
		-	-	-	-	-	-	-		-	-	-	-	-	_	-	-	_	_	-		
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	-	-	2120 2240	/2120
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2360 2500	/2360 /2500

DIMENSIONES Y NÚMEROS DE IDENTIFICACIÓN DE LOS RODAMIENTOS

Tabla 7.4 Dimensiones de las Ranuras y de los Anillos de Fijación de posicionamiento (1) Rodamientos de las series dimensionales 18

Rodam	ientos Apl	icables			Ra	ınura de los	Anillos de	Fijación			
	d Dimensional		Diámetro de	la Ranura de			ión a			ra de la 1 de los	Radio de las
		D	los Anillos de		Serie	Dimensiona	al del Roda	miento	Anillos d	e Fijación	Esquinas Inferiores
Serie Din	nensional					18		19	'	,	r_0
18	19		máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.
- - -	10 12 15	22 24 28	20.8 22.8 26.7	20.5 22.5 26.4		- - -	1.05 1.05 1.3	0.9 0.9 1.15	1.05 1.05 1.2	0.8 0.8 0.95	0.2 0.2 0.25
20 22	17 - -	30 32 34	28.7 30.7 32.7	28.4 30.4 32.4	- 1.3 1.3	- 1.15 1.15	1.3	1.15 - -	1.2 1.2 1.2	0.95 0.95 0.95	0.25 0.25 0.25
25 - 28	20 22 -	37 39 40	35.7 37.7 38.7	35.4 37.4 38.4	1.3 - 1.3	1.15 - 1.15	1.7 1.7 -	1.55 1.55 -	1.2 1.2 1.2	0.95 0.95 0.95	0.25 0.25 0.25
30 32 -	25 - 28	42 44 45	40.7 42.7 43.7	40.4 42.4 43.4	1.3 1.3 –	1.15 1.15 -	1.7 - 1.7	1.55 - 1.55	1.2 1.2 1.2	0.95 0.95 0.95	0.25 0.25 0.25
35 40 –	30 32 35	47 52 55	45.7 50.7 53.7	45.4 50.4 53.4	1.3 1.3 –	1.15 1.15 -	1.7 1.7 1.7	1.55 1.55 1.55	1.2 1.2 1.2	0.95 0.95 0.95	0.25 0.25 0.25
45 - 50	40 -	58 62 65	56.7 60.7 63.7	56.4 60.3 63.3	1.3 - 1.3	1.15 - 1.15	1.7	- 1.55 -	1.2 1.2 1.2	0.95 0.95 0.95	0.25 0.25 0.25
- 55 60	45 50 -	68 72 78	66.7 70.7 76.2	66.3 70.3 75.8	- 1.7 1.7	- 1.55 1.55	1.7 1.7 -	1.55 1.55 -	1.2 1.2 1.6	0.95 0.95 1.3	0.25 0.25 0.4
- 65 70	55 60 65	80 85 90	77.9 82.9 87.9	77.5 82.5 87.5	- 1.7 1.7	- 1.55 1.55	2.1 2.1 2.1	1.9 1.9 1.9	1.6 1.6 1.6	1.3 1.3 1.3	0.4 0.4 0.4
75 80 -	70 75	95 100 105	92.9 97.9 102.6	92.5 97.5 102.1	1.7 1.7 -	1.55 1.55 -	2.5 2.5	- 2.3 2.3	1.6 1.6 1.6	1.3 1.3 1.3	0.4 0.4 0.4
85 90 95	80 - 85	110 115 120	107.6 112.6 117.6	107.1 112.1 117.1	2.1 2.1 2.1	1.9 1.9 1.9	2.5 - 3.3	2.3 - 3.1	1.6 1.6 1.6	1.3 1.3 1.3	0.4 0.4 0.4
100 105 110	90 95 100	125 130 140	122.6 127.6 137.6	122.1 127.1 137.1	2.1 2.1 2.5	1.9 1.9 2.3	3.3 3.3 3.3	3.1 3.1 3.1	1.6 1.6 2.2	1.3 1.3 1.9	0.4 0.4 0.6
120 130	105 110 120	145 150 165	142.6 147.6 161.8	142.1 147.1 161.3	2.5 3.3	- 2.3 3.1	3.3 3.3 3.7	3.1 3.1 3.5	2.2 2.2 2.2	1.9 1.9 1.9	0.6 0.6 0.6
140 - 150 160	130 140 –	175 180 190 200	171.8 176.8 186.8 196.8	171.3 176.3 186.3 196.3	3.3 - 3.3 3.3	3.1 - 3.1 3.1	3.7 3.7 -	- 3.5 3.5 -	2.2 2.2 2.2 2.2	1.9 1.9 1.9 1.9	0.6 0.6 0.6 0.6


Observaciones Las dimensiones del chaflán mínimas permisibles r_N en el lado de la ranura de los anillos de fijación de los anillos exteriores son las siguientes:


Serie dimensional 18: Para diámetros exteriores de 78mm e inferiores, utilice un chaflán de 0,3mm.
Para los que superen los 78mm, utilice un chaflán de 0,5 mm.

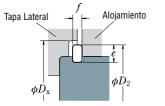
Serie dimensional 19: Para diámetros exteriores de 24mm e inferiores, utilice un chaflán de 0,2mm.

Para 47 mm e inferiores, utilice un chaflán de 0,3 mm. Para los que superen los 47 mm, utilice un chaflán de 0,5 mm.

Unidades: mm

	R	anura de los	s Anillos de	e Fijación			Cubierta lateral
Número de Anillo de Fijación de Posiciona- miento		ansversal e		osor f	Encaja (i Anchura de la	del Anillo de Fijación Ido en la Ranura Referencia) Diámetro Exterior del Anillo de Fijación D ₂	Diámetro del Anillo Interior Escalonado (Referencia)
	máx.	mín.	máx.	mín.	aprox.	máx.	mín.
NR 1022	2.0	1.85	0.7	0.6	2	24.8	25.5
NR 1024	2.0	1.85	0.7	0.6	2	26.8	27.5
NR 1028	2.05	1.9	0.85	0.75	3	30.8	31.5
NR 1030	2.05	1.9	0.85	0.75	3	32.8	33.5
NR 1032	2.05	1.9	0.85	0.75	3	34.8	35.5
NR 1034	2.05	1.9	0.85	0.75	3	36.8	37.5
NR 1037	2.05	1.9	0.85	0.75	3	39.8	40.5
NR 1039	2.05	1.9	0.85	0.75	3	41.8	42.5
NR 1040	2.05	1.9	0.85	0.75	3	42.8	43.5
NR 1042	2.05	1.9	0.85	0.75	3	44.8	45.5
NR 1044	2.05	1.9	0.85	0.75	4	46.8	47.5
NR 1045	2.05	1.9	0.85	0.75	4	47.8	48.5
NR 1047	2.05	1.9	0.85	0.75	4	49.8	50.5
NR 1052	2.05	1.9	0.85	0.75	4	54.8	55.5
NR 1055	2.05	1.9	0.85	0.75	4	57.8	58.5
NR 1058	2.05	1.9	0.85	0.75	4	60.8	61.5
NR 1062	2.05	1.9	0.85	0.75	4	64.8	65.5
NR 1065	2.05	1.9	0.85	0.75	4	67.8	68.5
NR 1068	2.05	1.9	0.85	0.75	5	70.8	72
NR 1072	2.05	1.9	0.85	0.75	5	74.8	76
NR 1078	3.25	3.1	1.12	1.02	5	82.7	84
NR 1080	3.25	3.1	1.12	1.02	5	84.4	86
NR 1085	3.25	3.1	1.12	1.02	5	89.4	91
NR 1090	3.25	3.1	1.12	1.02	5	94.4	96
NR 1095	3.25	3.1	1.12	1.02	5	99.4	101
NR 1100	3.25	3.1	1.12	1.02	5	104.4	106
NR 1105	4.04	3.89	1.12	1.02	5	110.7	112
NR 1110	4.04	3.89	1.12	1.02	5	115.7	117
NR 1115	4.04	3.89	1.12	1.02	5	120.7	122
NR 1120	4.04	3.89	1.12	1.02	7	125.7	127
NR 1125	4.04	3.89	1.12	1.02	7	130.7	132
NR 1130	4.04	3.89	1.12	1.02	7	135.7	137
NR 1140	4.04	3.89	1.7	1.6	7	145.7	147
NR 1145	4.04	3.89	1.7	1.6	7	150.7	152
NR 1150	4.04	3.89	1.7	1.6	7	155.7	157
NR 1165	4.85	4.7	1.7	1.6	7	171.5	173
NR 1175	4.85	4.7	1.7	1.6	10	181.5	183
NR 1180	4.85	4.7	1.7	1.6	10	186.5	188
NR 1190	4.85	4.7	1.7	1.6	10	196.5	198
NR 1200	4.85	4.7	1.7	1.6	10	206.5	208

Tabla 7. 4 Dimensiones de las Ranuras y de los Anillos de Fijación de posicionamiento (2) Rodamiento de las series de diámetro 0, 2, 3, y 4


	Rodami	entos Ap	licables				Ranu	ra de los A	Anillos de	Fijación			
	Ü	d		_	de los . Fiji	de la Ranura Anillos de ación		n de la Rar de fija imensiona	ción a		la Ran los An	ura de iura de illos de ción	Radio de las Esquinas Inferiores
	Serie Din	nensiona	l	D	-	D_1		0	2,	3, 4		b	r_0
0	2	3	4		máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.
10 12	- -	-	- -	26 28	24.5 26.5	24.25 26.25	1.35 1.35	1.19 1.19	- -	- -	1.17 1.17	0.87 0.87	0.2 0.2
15 17	10 12 15	9 - 10	8 9 -	30 32 35	28.17 30.15 33.17	27.91 29.9 32.92	2.06 2.06	1.9 1.9	2.06 2.06 2.06	1.9 1.9 1.9	1.65 1.65 1.65	1.35 1.35 1.35	0.4 0.4 0.4
- 20	17 -	12 - 15	10 - 12	37 40 42	34.77 38.1 39.75	34.52 37.85 39.5	2.06	- 1.9	2.06 2.06 2.06	1.9 1.9 1.9	1.65 1.65 1.65	1.35 1.35 1.35	0.4 0.4 0.4
22 25 -	20 22	17 -	- - -	44 47 50	41.75 44.6 47.6	41.5 44.35 47.35	2.06 2.06 -	1.9 1.9 -	2.46 2.46	2.31 2.31	1.65 1.65 1.65	1.35 1.35 1.35	0.4 0.4 0.4
28 30 -	25 - -	20 - 22	15 - -	52 55 56	49.73 52.6 53.6	49.48 52.35 53.35	2.06 2.08 -	1.9 1.88 -	2.46 - 2.46	2.31 - 2.31	1.65 1.65 1.65	1.35 1.35 1.35	0.4 0.4 0.4
32 35 -	28 30 32	25 –	17 -	58 62 65	55.6 59.61 62.6	55.35 59.11 62.1	2.08 2.08 -	1.88 1.88 -	2.46 3.28 3.28	2.31 3.07 3.07	1.65 2.2 2.2	1.35 1.9 1.9	0.4 0.6 0.6
40 - 45	35 -	28 30 32	20 -	68 72 75	64.82 68.81 71.83	64.31 68.3 71.32	2.49 - 2.49	2.29 - 2.29	3.28 3.28 3.28	3.07 3.07 3.07	2.2 2.2 2.2	1.9 1.9 1.9	0.6 0.6 0.6
50 - 55	40 45 50	35 - 40	25 - 30	80 85 90	76.81 81.81 86.79	76.3 81.31 86.28	2.49 - 2.87	2.29 - 2.67	3.28 3.28 3.28	3.07 3.07 3.07	2.2 2.2 3	1.9 1.9 2.7	0.6 0.6 0.6
60 65 70	55 60	45 50	35 40	95 100 110	91.82 96.8 106.81	91.31 96.29 106.3	2.87 2.87 2.87	2.67 2.67 2.67	3.28 3.28	3.07 3.07	3 3 3	2.7 2.7 2.7	0.6 0.6 0.6
75 - 80	65 70	55 -	45 -	115 120 125	111.81 115.21 120.22	111.3 114.71 119.71	2.87 - 2.87	2.67 - 2.67	4.06 4.06	3.86 3.86	3 3.4 3.4	2.7 3.1 3.1	0.6 0.6 0.6
85 90 95	75 80 –	60 65 -	50 55 –	130 140 145	125.22 135.23 140.23	124.71 134.72 139.73	2.87 3.71 3.71	2.67 3.45 3.45	4.06 4.9 –	3.86 4.65 –	3.4 3.4 3.4	3.1 3.1 3.1	0.6 0.6 0.6
100 105 110	85 90 95	70 75 80	60 65 –	150 160 170	145.24 155.22 163.65	144.73 154.71 163.14	3.71 3.71 3.71	3.45 3.45 3.45	4.9 4.9 5.69	4.65 4.65 5.44	3.4 3.4 3.8	3.1 3.1 3.5	0.6 0.6 0.6
120 - 130	100 105 110	85 90 95	70 75 80	180 190 200	173.66 183.64 193.65	173.15 183.13 193.14	3.71 - 5.69	3.45 - 5.44	5.69 5.69 5.69	5.44 5.44 5.44	3.8 3.8 3.8	3.5 3.5 3.5	0.6 0.6 0.6

Nota (¹) Los anillos de fijación de posicionamiento y las ranuras de los anillos de fijación de estos rodamientos no están especificados por ISO.

Observaciones 1. Las dimensiones de estas ranuras de los anillos de fijación no son aplicables a los rodamientos de las series dimensionales 00, 82 y 83.

^{2.} La dimensión mínima permisible del chaflán r_8 en el lateral del anillo de fijación de los anillos exteriores es de 0,5 mm. Sin embargo, para los rodamientos de la serie de diámetro 0 con diámetros externos de 35 mm o inferiores, es de 0,3 mm.

Unidades: mm

1		Anillo de	Fiiació	n de Posid	cionamier	nto		Cubierta Lateral
	Número de Anillo de Fijación de Posiciona- miento	Altura Trans sal e		Gros f máx.	sor	Geometr Fijación Enc (Re Anchura de la Ranura	iá del Anillo de ajado en la Ranura eferencia) Diámetro Exterior del Anillo de Fijación D_2 máx.	Diámetro del Anillo Interior Escalonado (Referencia) D _X
	NR 26 (1) NR 28 (1) NR 30 NR 32 NR 35 NR 37 NR 40 NR 42 NR 47 NR 50 NR 55 NR 56 NR 58 NR 68 NR 68 NR 72 NR 75 NR 80 NR 85 NR 90 NR 95 NR 110 NR 115	2.06 1 3.25 3 3.25 3 3.25 3 3.25 3 3.25 3 3.25 3 3.25 3 4.04 3 4.05 4 4.85 4	.91 .91 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .	0.84 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.1	0.74 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	approx 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 5 5	28.7 30.7 34.7 36.7 39.7 41.3 44.6 46.3 48.3 52.7 55.7 57.9 60.7 61.7 63.7 67.7 74.6 78.6 81.6 86.6 96.5 101.6 106.5 101.6	29.4 31.4 35.5 37.5 40.5 42 45.5 47 49 53.5 56.5 58.5 61.5 62.5 68.5 71.5 76 80 83 88 89 93 98 103 108 118
	NR 120 NR 125 NR 130 NR 140 NR 145 NR 150 NR 170 NR 170 NR 180 NR 190 NR 200	7.21 7. 7.21 7. 7.21 7. 7.21 7. 7.21 7. 7.21 7. 7.21 7. 9.6 9. 9.6 9. 9.6 9.	.06 .06 .06 .06 .06 .06 .06 .45 .45 .45	2.82 2.82 2.82 2.82 2.82 2.82 2.82 3.1 3.1 3.1 3.1	2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.72	7 7 7 7 7 7 7 10 10 10	129.7 134.7 139.7 149.7 154.7 159.7 169.7 182.9 192.9 202.9 212.9	131.5 136.5 141.5 152 157 162 172 185 195 205 215

(Ejemplo 4) NU3 18 M CM

Juego Radial para Rodamientos

para Motores Eléctricos CM

Jaula de Latón Mecanizada

Diámetro Interior 90 mm

Serie Diametral 3

7.2 Formulación de la Nomenclatura de los Rodamientos

Los números de rodamiento son combinaciones alfanuméricas que indican el tipo de rodamiento, las dimensiones límite, las precisiones dimensionales y de funcionamiento, el juego interno y otras especificaciones relacionadas. Consisten en números básicos y símbolos suplementarios. Las dimensiones globales de los rodamientos de uso más común cumplen por lo general con el concepto organizativo de la norma ISO, y los números de estos rodamientos estándar vienen especificados por la JIS B 1513 (números para rodamientos). Debido a la necesidad de una clasificación más detallada. NSK utiliza símbolos auxiliares distintos además de los especificados por JIS. Los números de los rodamientos consisten en un número básico v símbolos suplementarios. El número báserie de diámetro mostrados en la Tabla 7.5. Los números básicos, símbolos suplementarios y los significados ángulo de contacto y otras designaciones suplementarodamientos:

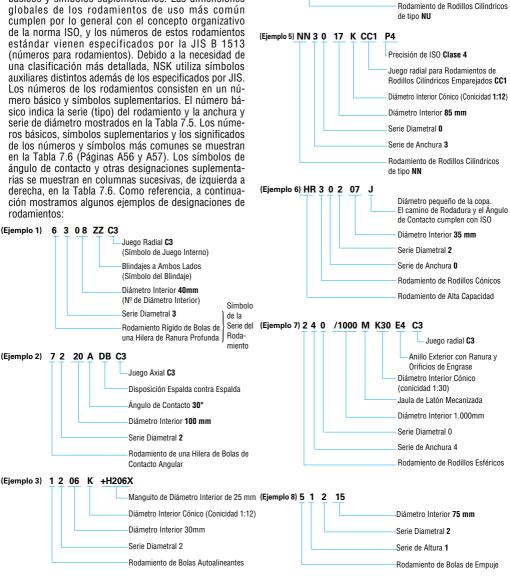


Tabla 7. 5 Símbolos de las Series de Rodamientos

			Símt Dimens	oolos sionales				Símb Dimens	oolos sionales
Tipo de Rodamiento	Símbolos de la Serie del Rodamiento	Símbolos de Tipo	Símbolos de Anchura	Símbolos de Diámetro	Tipo de Rodamiento	Símbolos de la Serie del Rodamiento	Símbolos de Tipo	Símbolos de Anchura o de Altura	Símbolo de Diámet
	68	6	(1)	8	Rodamientos	NNU49	NNU	4	9
Rodamientos Rígidos de	69	6	(1)	9	de Rodillos Cilíndricos de	NN30	NN	3	0
Bolas de una	60	6	(1)	0	Doble Hilera	111100			
Hilera de Ranura Profunda	62	6	(0)	2		NA48	NA	4	8
Ποιαπα	63	6	(0)	3	B 1 1 1 1	NA46 NA49	NA NA	4	9
	70	7	(4)		Rodamientos de Agujas	NA59	NA NA	5	9
Rodamientos de una Hilera	79	7	(1)	9	rigujao	NA69	NA	6	9
de Bolas de	70	7 7	(1)	0		IVAUS	IVA	0	9
Contacto Angular	72 73	7	(0)	2 3		329	3	2	9
Aligulai	/3	/	(0)	3					
	12	1	(0)	2		320	3	2	0
Rodamientos de Bolas	13	1	(0)	3		330	3	3	0
Autoalineantes	22	(1)	2	2	Rodamientos	331	3	3	1
	23	(1)	2	3	de Rodillos	302	3	0	2
	NU10	NU	1	0	Cónicos	322	3	2	2
	NU2	NU	(0)	2		332	3	3	2
	NU22	NU	2	2		303	3	0	3
	NU3	NU	(0)	3		323	3	2	3
	NU23	NU	2	3					
	NU4	NU	(0)	4		230	2	3	0
	NJ2	NJ	(0)	2		231	2	3	1
	NJ22	NJ	2	2	Rodamientos	222	2	2	2
	NJ3	NJ	(0)	3	de Rodillos Esféricos	232	2	3	2
	NJ23	NJ	2	3		213 (¹)	2	0	3
Rodamientos	NJ4	NJ	(0)	4		223	2	2	3
de Rodillos Cilíndricos de	NUP2	NUP	(0)	2					
una Sola Hilera	NUP22	NUP	2	2		511	5	1	1
	NUP3	NUP	(0)	3		512	5	1	2
	NUP23	NUP	2	3	Rodamientos de	513	5	1	3
	NUP4	NUP	(0)	4	Bolas de Empuje con Asiento	514	5	1	4
	N10	N	1	0	Plano	522	5	2	2
	N2	N	(0)	2		523	5	2	3
	N3	N	(0)	3		524	5	2	4
	N4	N	(0)	4					
	NF2	NF	(0)	2	Rodamientos Rodillos	292	2	9	2
	NF3	NF	(0)	3	Esféricos de	293	2	9	3
	NF4	NF	(0)	4	Empuje	294	2	9	4

Nota (1) Observaciones

El símbolo de la serie del rodamiento 213 debería lógicamente ser 203, pero habitualmente está numerado como 213. Los números entre () en la columna de símbolos de anchura normalmente se omiten en el número de rodamiento.

Tabla 7. 6 Formulación de

		Núme	eros Básic	os									
la S	bolos de Serie del		digo del ámetro		nbolo del naulo de	Sím	bolo del Diseño	S	ímbolo del		nbolo de		cterísticas xternas
Roo	lamiento (¹)		nterior		Sontacto		Interno		Material	l la	a Jaula		mbolo de Io y Blindaje
Símbolo	Significado	Símbolo	Significado	Símbolo	Significado	Símbolo	Significado	Símbolo	Significado	Símbolo	Significado	Símbolo	Significado
68 69 60 :	Rodamientos Rígidos de Bolas de una Hilera de Ra- nura Profunda	1 2 3	Diam. 1mm 2 3	Α	(Rodamientos de Bolas de Contac- to Angular) Án- gulo de Contacto Estándar de 30°	A J	El diseño interno es distinto al estándar Anillo Exterior de	g	Acero Endurecido utilizado en los Anillos y los Elementos Rodantes	М	Jaula de Latón Mecanizada	Z ZS	Blindaje sólo en un lado
70 72 73 :	Rodamientos de una Hilera de Bolas de Contacto Angular	9	9	A 5	Ángulo de Con- tacto Estándar de 25°	conforme a la Norma ISO 355		h	Acero Inoxidable utilizado en los Anillos y	w	Jaula de Acero Prensado	ZZ ZZS	Blindajes a ambos lados
12 13 22	Rodamientos de Bolas Au- toalineantes	00 01 02	10 12 15	В	Ángulo de Con- tacto Estándar de 40°				los Elementos Rodantes	_		DU	Sellado de Goma de contacto sólo
-	Rodamientos de Rodillos Cilíndricos	03 /22 /28	17 22 28	С	Ángulo de Con- tacto Estándar de 15°		(para Rodamientos de Alta Capacidad)			T	Jaula de Resina Sintética	DDU	en un lado Sellado de
NN 30 : NA48	Rodamientos	/32	32			С				v	Sin Jaula		Goma de con- tacto a ambos lados
NA49 NA69	de Agujas	04(3) 05	20 25		(Rodamientos de Rodillos	CA	Rodamientos de Rodillos Esféricos					V	Sellado de Goma sin contacto sólo
: 320 322	Rodamientos de Rodillos Cónicos	06	30	Omitido	Cónicos) Ángulo de Contacto Inferior a 17°	EA	J						en un lado
323 : 230	(2) Rodamientos de Rodillos	88	440	С	Ángulo de Con- tacto de aprox. 20°	E	Rodamientos de Rodillos Cilíndricos					VV	Sellado de Goma sin con- tacto a ambos lados
222 223 :	Esféricos	92 96 /500	460 480 500	D	Ángulo de Con- tacto de aprox. 28°	E	Rodamientos de Rodillos Esféricos de Empuje						
511 512 513	Rodamiento de Bolas de Empuje con Asiento Plano	/530 /560	530 560										
292 293 294	Rodamientos de Rodillos Esféricos de Empuje	/2 360	2 360 0 2 500										
LID(4)	Rodamientos de Alta Capa- cidad de Rodi- llos Cónicos	/2 300	v 2 000										
Los	s símbolos	y Núr	meros cum	nplen d	con JIS(5)			Símb	olo NSK			Sím	bolo NSK
				Ma	arcado en los Roda	mientos				No m	arcado en los damientos		

Notas (1) Los símbolos de la serie del rodamiento siguen la Tabla 7.5.

⁽²) Para los números básicos de los rodamientos de rodillos cónicos en la nueva serie de ISO, consulte la Página B107.

^(*) Para los números de diámetro interior de 04 a 96, se obtiene el diámetro en mm multiplicando el número de diámetro interior por cinco (excepto rodamientos de bolas de apoyo de doble dirección).

^{(4) (4)} HR es un prefijo propio de NSK de los Símbolos de la Serie de los Rodamientos.

Referencias de Rodamientos

						Sím	ibolos	Auxiliares						
Símbolo	ÍMbolo o para el Diseño los Anillos	la D	bolo de lisposi- ción			olo de Juego o y de Precarga	la	nbolo de Clase de Ierancia	Espe	mbolo de ecificación especial	Se	nbolo del parador o Manguito		bolo de la Grasa
Símbolo	Significado	Símbolo	Significado	Símbolo	Sig	nificado (Juego Radial)	Símbolo	Significado	Símbolo	Significado	Símbolo	Significado	Símbolo	Significado
K	Diámetro Inte- rior Cónico del Anillo Interior (Conicidad 1:12)	DB	Disposición espalda contra espalda	C1 C2	Rodamientos Radiales	Juego inferior a C2 Juego inferior a CN	Omitido P6	ISO Normal		Rodamientos /Tratados para Estabilización Dimensional	+K	Rodamientos con Separado- res de Anillo Exterior	AS2	Grasa Shell Alvania S2
1/00		DF	Disposición cara a cara	Omitido C3	los Rodamient	Juego CN Juego superior a CN	P6X	ISO Clase 6X	X26	Temperatura de Trabajo Inferior	+L	Rodamientos con Separado- res de Anillo		Grasa ENS
K30	Diámetro Inte- rior Cónico del Anillo Interior (Conicidad 1:30)	DT	Disposición en tándem	C4 C5	Para todos l	Juego superior a C3 Juego superior a C4		ISO Clase 5	X28	a 150°C	+KL	Rodamientos con Separa-	NS7	NS Hi-lube Multemp PS
E	Muesca o Ranura de			CC1	illos Cilíndri- ables	Juego inferior a CC2 Juego inferior a CC	P4	ISO Clase 2	AZO	Trabajo Inferior a 200°C		dores en los Anillos Interior y Exteriores	102	N.2
	Engrase en el Anillo			CC3	de Rodi rcambia	Juego normal Juego superior a CC			X29	Temperatura de Trabajo Inferior a 250°C	Н	Designación del Adaptador		
E 4	Ranura y Agujeros de Engrase en el			CC4 CC5	Para Rodamientos cos no Intel	Juego superior a CC3 Juego superior a CC4		ABMA (⁷) Rodamiento de Rodillos		/ Rodamientos	AH HJ	Designación del Manguito de Desmontaje Designación		
	Anillo Exterior			MC1	Bolas Extra iaturas	Juego inferior a MC2 Juego inferior a MC3	Omitido PN2	Clase 4	S11	de Rodillos Esféricos Tratamiento Térmico de		del Collar de Empuje		
N	Ranura para Anillo de Fijación en el Anillo Exterior			MC3	amientos de Bo Jeños y Miniatu	Juego Normal Juego superior a MC3	PN3	Clase 3		Estabilización para Operar a Temperatura Inferior a 200° C				
NR	Ranura y Anillo de Fijación en el Anillo Exterior				Para Rodar Peque	Juego superior a MC4 Juego superior a MC5	PN0	Clase 0						
				СМ	de B	o en los Rodamientos plas de Ranura Profunda Motores Eléctricos	PN00	Clase 00						
				CT CM	de R	o en los Rodamientos odillos Cilíndricos para ores Eléctricos								
				EL L		arga Extraligera arga Ligera								
				M H		arga Media arga Elevada								
	cialmente al a JIS(5)	lgua	l a JIS(5)	Sím Na		Parcialmente igual a JIS(5)/ BAS(6)	lgı	al a JIS(5)		Símbolo I	NSK, pa	arcialmente igu	al a JIS	(⁵)
		1	E	n princi	pio,	marcado en los rodar	nientos				N	lo marcado en	los rod	amientos

Notas (5)JIS: "Japanese Industrial Standards" (Estándares Industriales Japoneses).
(6)BAS: "The Japan Bearing Industrial Association Standard" (Estándar de la Asociación Industrial de Rodamientos de Japón).
(7)ABMA: "The American Bearing Manufacturers Association" (Asociación Americana de Fabricantes de Rodamientos).

Precisión de los Rodamientos

8. TOLERANCIAS DE LOS RODAMIENTOS

8.1 Estándares de Tolerancia de los Rodamientos

Las tolerancias para las dimensiones geométricas y la precisión de funcionamiento de los rodamientos vienen especificadas por la norma ISO 492/199/582 (Precisiones de los Rodamientos). Se especifican tolerancias para los siguientes elementos:

En relación con las clases de precisión de los

rodamientos, además de la precisión ISO normal, puesto que la precisión mejora, existen las Clases 6X (para rodamientos cónicos), Clase 6, Clase 5, Clase 4 y Clase 2, siendo esta última la más alta de las ISO. Las clases de precisión aplicables para cada tipo de rodamiento y la correspondencia de estas clases se muestran en la Tabla 8.1.

- Tolerancias para los diámetros interior y exterior, anchura del anillo y anchura del rodamiento
- Tolerancias para los diámetros circulares inscritos y circunscritos de los rodillos
- Tolerancias para las dimensiones del chaflán
- Tolerancias para la variación de la anchura
- Tolerancias para los diámetros interiores cónicos

Precisión de Funcionamiento

Elementos necesarios

para especificar el salto
de las partes giratorias
de la máquina

Tolerancias para las Dimensiones

Elementos necesarios para

ensamblar rodamientos

en ejes o alojamientos

- Salto radial permisible de los anillos interiores y exteriores
- Salto permisible de las caras con el camino de rodadura de los anillos interiores y exteriores
 Salto permisible de la cara del anillo interior con diámetro
- interior
 Variación permisible de la inclinación generatriz de la superficie exterior del anillo exterior respecto a la cara
- Variación permisible del grosor entre el camino de rodadura y la cara posterior de los rodamientos de empuje

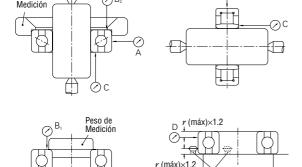
Tabla 8. 1 Tipos de Rodamientos y Clases de Tolerancia

	Tipos de Rodar	nientos		Clases de Tol	lerancia Aplicables	i		Tablas Aplicables	Páginas de Referencia
Rod	lamientos de Bolas	de Ranura Profunda	Normal	Clase 6	Clase 5	Clase 4	Clase 2		
Rod	lamientos de Bolas	de Contacto Angular	Normal	Clase 6	Clase 5	Clase 4	Clase 2		
Rod	lamientos de Bolas	Autoalineantes	Normal	Clase 6 equivalente	Clase 5 equivalente	_	_	Tabla	A60 ~A63
Rod	lamientos Cilíndrico	s	Normal	Clase 6	Clase 5	Clase 4	Clase 2	8.2	~A63
	lamientos de Aguja: o sólido)	3	Normal	Clase 6	Clase 5	Clase 4	_		
Rod	damientos Esféricos		Normal	Clase 6	Clase 5	_	_		
	damientos Diseño Métrico Rodillos Diseño en Pulgadas		Normal Clase 6X	_	Clase 5	Clase 4	_	Tabla 8.3	A64 ~A67
Cóni			ANSI/ABMA CLASE 4	ANSI/ABMA CLASE 2	ANSI/ABMA CLASE 3	ANSI/ABMA CLASE 0	ANSI/ABMA CLASE 00	Tabla 8.4	A68 ~A69
Rod	lamientos para Mag	netos	Normal	Clase 6	Clase 5	_	_	Tabla 8.5	A70 ~A71
Rod	lamientos de Bolas	de Empuje Axial	Normal	Clase 6	Clase 5	Clase 4	_	Tabla 8.4	A72 ~A74
Rod	lamientos Esféricos	de Empuje	Normal	_	_	_	_	Tabla 8.7	A75
	JIS(1)	Clase 0	Clase 6	Clase 5	Clase 4	Clase 2	_	_
valente: a)	DIN(2)		P0	P6	P5	P4	P2	-	-
Estándares equivalentes (Referencia)		Rodamientos de Bolas	ABEC 1	ABEC 3	ABEC 5 (CLASE 5P)	ABEC 7 (CLASE 7P)	ABEC 9 (CLASE 9P)	Tabla 8.2	
stándar (Re	ANSI/ ABMA(³)	Rodamientos de Rodillos	RBEC 3	RBEC 3	RBEC 5	_	_	Tabla [8.8]	
ш		Rodamientos de Rodillos cónicos	CLASE 4	CLASE 2	CLASE 3	CLASE 0	CLASE 00	Tabla [8.4]	

Notas

Observaciones

El límite permisible de las dimensiones del chaflán están en la Tabla 8.9 (Página A78), y las tolerancias y diámetros permisibles del anillo interior cónico están en la Tabla 8.10 (Página A80).


⁽¹) JIS : "Japanese Industrial Standards" (Estándares Industriales Japoneses), (²) DIN : Deutsch Industrie Norm (Normativa Industrial Alemana), (³) ANSI/ABMA : "The American Bearing Manufacturers Association" (Asociación Americana de Fabricantes de Rodamientos)

(Referencia) En la Fig. 8.1 se muestran unas definiciones aproximadas de los elementos listados para la Precisión de Funcionamiento y sus métodos de medición, y se describen con detalle en ISO 5593 (Rodamientos-Vocabulario) y en JIS B 1515 (Métodos de Medición para Rodamientos).

 \bigcirc B

Peso de

Tabla Suplementaria

Precisión de Funcionamiento	Anillo interior	Anillo exterior	Dial de medición
K_{ia}	Girando	Estacionario	Α
Kea	Estacionario	Girando	А
S_{ia}	Girando	Estacionario	В1
S_{ea}	Estacionario	Girando	B ₂
S_d	Girando	Estacionario	С
S_D	_	Girando	D
S_i , $S_{ m e}$	Sólo debe gi alojamiento central.	rar el eje, el o la arandela	E

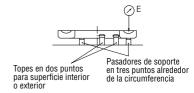


Fig. 8.1 Métodos de Medición para la Precisión de Funcionamiento (resumidos)

Topes (en dos puntos)

Símbolos para Dimensiones Globales y Precisión de Funcionamiento

 K_{ea}

- d Diám. interior del rod., nominal
- Δ_{ds} Desviación de un único diám. interior
- Δ_{dmp} Desviación media del diám. interior de un solo plano
- V_{dp} Variación del diám. interior de un solo plano radial
- V_{dmp} Variación media del diám, interior
- B Anchura del anillo interior, nominal
- Δ_{Bs} Desviación de la anchura de un solo anillo interior
- V_{Rs} Variación de la anchura del anillo interior
- K_{ia} Salto radial del anillo interior de un rodamiento montado
- S_d Salto de la cara de referencia del anillo interior (cara posterior, donde sea aplicable) con el diámetro
- S_{ia} Salto de la cara (posterior) del anillo interior de un rodamiento montado con el camino de rodadura
- S_i, S_e Variación de grosor entre el camino de rodadura y la cara posterior del rod. de empuie
- T Anchura del rod, nominal
- $\Delta \tau_{\rm S}$ Desviación de la anchura real del rod.

- Diám. exterior del rod., nominal
- Δ_{Ds} Desviación de un único diám. exterior
- Δ_{Dmp} Desviación media del diám. exterior de un solo plano
- V_{Dp} Variación del diám. exterior de un solo plano radial
- V_{Dmp} Variación media del diám, exterior
- C Anchura del anillo exterior, nominal
- $\Delta c_{\rm S}$ Desviación de la anchura de un solo anillo exterior
- V_{Cs} Variación de la anchura del anillo exterior
 - Salto radial del anillo exterior de un rodamiento montado
- S_D Variación de la inclinación de la generatriz de la superficie exterior del rod. con el lado de referencia del anillo exterior (posterior)
- Sea Salto del lado (posterior) del anillo exterior de un rod. montado con camino de rodadura

Tabla 8. 2 Tolerancia para los Rodamientos Radiales Tabla 8. 2. 1 Tolerancias para los Anillos Interiores y

															-
Diámetro	Interior Nominal					4	dmp (2)						Δ	ds (2)	
	d											Cl	ase 4		
	(mm)	N	Iormal	C	lase 6	C	lase 5	C	lase 4	(Clase 2	dime	Serie ensional	С	lase 2
												0, 1,	2, 3, 4		
más de	hasta	alta	baja	alta	baja	alta	baja	alta	baja	alta	baja	alta	baja	alta	baja
0.6(1) 2.5 10	2.5 10 18	0 0 0	- 8 - 8 - 8	0 0 0	- 7 - 7 - 7	0 0 0	- 5 - 5 - 5	0 0 0	- 4 - 4 - 4	0 0 0	-2.5 -2.5 -2.5	0 0 0	- 4 - 4 - 4	0 0 0	-2.5 -2.5 -2.5
18 30 50	30 50 80	0 0 0	- 10 - 12 - 15	0 0	- 8 -10 -12	0 0 0	- 6 - 8 - 9	0 0 0	- 5 - 6 - 7	0 0 0	-2.5 -2.5 -4	0 0 0	- 5 - 6 - 7	0 0 0	-2.5 -2.5 -4
80 120 150 180	120 150 180 250	0 0 0 0	- 20 - 25 - 25 - 30	0 0 0	-15 -18 -18 -22	0 0 0 0	-10 -13 -13 -15	0 0 0 0	- 8 -10 -10 -12	0 0 0	-5 -7 -7 -8	0 0 0	- 8 -10 -10 -12	0 0 0	-5 -7 -7 -8
250 315 400	315 400 500	0 0 0	- 35 - 40 - 45	0 0 0	-25 -30 -35	0 0	-18 -23 -	<u>-</u>		- - -	_ _ _	_	_	_ _ _	_ _ _
500 630 800	630 800 1 000	0 0 0	- 50 - 75 -100	0 -	-40 - -	=	=	-	=	_ _ _	_ _ _	_	_	_ _ _	_ _ _
1 000 1 250 1 600	1 250 1 600 2 000	0 0 0	-125 -160 -200	_ _ _	<u>-</u> -	 - -	<u>-</u>	 - -	_ _ _	- - -	_ _ _	 - -	<u>-</u>	_ _ _	_ _ _

				4	Bs (0 ⊿ ,	Cs)(3)							V	$B_{ m Bs}$ (0 V	$_{C\mathrm{s}})$	
	Ro	damie	nto simpl	е			Rodan	niento	s combina	idos (4)	Anillo int Anillo ext	erior (o erior) (3)	Α	nillo inter	ior
	Normal Clase 6		lase 5 lase 4	C	lase 2		ormal lase 6		lase 5 lase 4	C	lase 2	Normal	Cl	Clase 5	Clase 4	Clas 2
alta	baja	alta	baja	alta	baja	alta baja alta baja alta baja				máx.	máx.	máx.	máx.	máx		
0 0 0	- 40 - 120 - 120	0 0 0	- 40 - 40 - 80	0 0 0	- 40 - 40 - 80	_ 0 0	 -250 -250	0 0 0	-250 -250 -250	0 0 0	-250 -250 -250	12 15 20	12 15 20	5 5 5	2.5 2.5 2.5	1.5 1.5 1.5
0 0 0	- 120 - 120 - 150	0 0 0	-120 -120 -150	0 0 0	-120 -120 -150	0 0 0	-250 -250 -380	0 0 0	-250 -250 -250	0 0 0	-250 -250 -250	20 20 25	20 20 25	5 5 6	2.5 3 4	1.5 1.5 1.5
0 0 0 0	- 200 - 250 - 250 - 300	0 0 0	-200 -250 -250 -300	0 0 0 0	-200 -250 -250 -300	0 0 0 0	-380 -500 -500 -500	0 0 0 0	-380 -380 -380 -500	0 0 0 0	-380 -380 -380 -500	25 30 30 30	25 30 30 30	7 8 8 10	4 5 5 6	2.5 2.5 4 5
0 0 0	- 350 - 400 - 450	0 0 -	-350 -400 -	_ _ _	_ _ _	0 0 -	-500 -630 -	0 0 -	-500 -630 -	 - -	_ _ _	35 40 50	35 40 45	13 15 —	_ _ _	=
0 0 0	- 500 - 750 -1 000	_ _ _		_		- - -	=	- - -	=	<u>-</u>	_ _ _	60 70 80	50 - -	- - -	_ _ _	_ _
0 0	-1 250 -1 600 -2 000	_		_		_	=	<u>-</u>	=	=	_	100 120 140	_ _ _	_ _	_ _ _	_

Notas (1) 0.6 mm está incluido en el grupo.

- (2) Aplicable a rodamientos con anillos interiores cilíndricos.
 (3) Tolerancia para la desviación de anchura y los límites de tolerancia para la variación de anchura del anillo exterior deben ser iguales. Las tolerancias para la variación de anchura del anillo exterior de las Clases 5, 4, y 2 se indican en
- (4) Aplicable a anillos individuales fabricados para rodamientos combinados.
- (5) Aplicable a rodamientos de bolas como los rodamientos de bolas de ranura profunda, rodamientos de bolas de contacto angular, etc.

Unidades : um

(sin incluir los Rodamientos Cónicos)

Anchuras de los Anillos Exteriores

					V_{dp} (2))							V_{dr}	_{np} (2)		
	Norma	l		Clase 6	i	Cla	se 5	Cla	se 4	Clase 2						
Serie	e dimens	ional	Serie	e dimens	sional	Serie din	nensional	Serie dir	nensional	Serie dimensional	Normal	Clase 6	Clase 5	Clase 4	Clase 2	
9	0, 1	2, 3, 4	9	0, 1	2, 3, 4		0,1,2,3,4		0,1,2,3,4			_	_	_	_	
	máx.			máx.		ma	máx.		áx.	máx.	máx.	máx.	máx.	máx.	máx.	
10 10 10	8 8 8	6 6 6	9 9 9	7 7 7	5 5 5	5 5 5	4 4 4	4 4 4	3 3 3	2.5 2.5 2.5	6 6 6	5 5 5	3 3 3	2 2 2	1.5 1.5 1.5	
13 15 19	10 12 19	8 9 11	10 13 15	8 10 15	6 8 9	6 8 9	5 6 7	5 6 7	4 5 5	2.5 2.5 4	8 9 11	6 8 9	3 4 5	2.5 3 3.5	1.5 1.5 2	
25 31 31 38	25 31 31 38	15 19 19 23	19 23 23 28	19 23 23 28	11 14 14 17	10 13 13 15	8 10 10 12	8 10 10 12	6 8 8 9	5 7 7 8	15 19 19 23	11 14 14 17	5 7 7 8	4 5 5 6	2.5 3.5 3.5 4	
44 50 56	44 50 56	26 30 34	31 38 44	31 38 44	19 23 26	18 23 —	14 18 —	=	_ _ _	_ _ _	26 30 34	19 23 26	9 12 —	_ 	_ _ _	
63 - -	63 - -	38 _ _	50 - -	50 - -	30	=	_ 	_ 	_	_ _ _	38 - -	30 _ _	_ _	_ _ _	_ _ _	
-	_	-	_	-	-	-	_	_	_	_	_	_	_	_	_	
_	_	_	_	_	_	_	_	_	_	=	_	_	_	=	_	

aues . μπ	Office											
or Nominal	Diámetro Interio		S ia (5)			S_d				K_{ia}		
	d (mm)	Clase 2	Clase 4	Clase 5	Clase 2	Clase 4	Clase 5	Clase 2	Clase 4	Clase 5	Clase 6	Normal
hasta	más de	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.
2.5 10 18	0.6(1) 2.5 10	1.5 1.5 1.5	3 3 3	7 7 7	1.5 1.5 1.5	3 3 3	7 7 7	1.5 1.5 1.5	2.5 2.5 2.5	4 4 4	5 6 7	10 10 10
30 50 80	18 30 50	2.5 2.5 2.5	4 4 5	8 8 8	1.5 1.5 1.5	4 4 5	8 8 8	2.5 2.5 2.5	3 4 4	4 5 5	8 10 10	13 15 20
120 150 180 250	80 120 150 180	2.5 2.5 5	5 7 7 8	9 10 10 13	2.5 2.5 4 5	5 6 6 7	9 10 10 11	2.5 2.5 5	5 6 6 8	6 8 8 10	13 18 18 20	25 30 30 40
315 400 500	250 315 400	1 1 1		15 20 —	_ _ _	_ 	13 15 —	_ 	_ 	13 15 —	25 30 35	50 60 65
630 800 1 000	500 630 800		_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	40 - -	70 80 90
1 250 1 600 2 000	1 000 1 250 1 600				_ _ _	_ _	_ _ _	_ _ _	_ 	<u> </u>	_ 	100 120 140

Observaciones 1. El límite de tolerancia (alto) del diámetro del agujero cilíndrico del lado "no-go" especificado en esta tabla no se aplica necesariamente en distancias de 1.2 veces la dimensión del chaflán r (máx.) desde la cara del anillo.

ABMAStd 20-1996 fue modificado: ABEC1-RBEC1, ABEC3-RBEC3, ABEC5-RBEC5, ABEC7-RBEC7 y ABEC9-RBEC9 son equivalentes respectivamente a las Clases Normal, 6, 5, 4, y 2.

Tabla 8. 2 Tolerancias para Rodamientos

Tabla 8, 2, 2 Tolerancias

						Δ	Dmp						Δ	l_{Ds}	
Diámetro Exterio D (mm)	r Nominal	N	ormal	CI	ase 6	CI	ase 5	C	lase 4	С	lase 2	S	ase 4 eries nsionales 2, 3, 4	С	lase 2
más de	incl	alta	baja	alta	baja	alta	baja	alta	baja	alta	baja	alta	baja	alta	baja
2.5(¹) 6 18	6 18 30	0 0 0	- 8 - 8 - 9	0 0 0	- 7 - 7 - 8	0 0 0	- 5 - 5 - 6	0 0 0	- 4 - 4 - 5	0 0 0	- 2.5 - 2.5 - 4	0 0 0	- 4 - 4 - 5	0 0 0	- 2.5 - 2.5 - 4
30 50 80	50 80 120	0 0 0	- 11 - 13 - 15	0 0 0	- 9 -11 -13	0 0 0	- 7 - 9 -10	0 0 0	- 6 - 7 - 8	0 0 0	- 4 - 4 - 5	0 0 0	- 6 - 7 - 8	0 0 0	- 4 - 4 - 5
120 150 180	150 180 250	0 0 0	- 18 - 25 - 30	0 0 0	-15 -18 -20	0 0 0	-11 -13 -15	0 0 0	- 9 -10 -11	0 0 0	- 5 - 7 - 8	0 0 0	- 9 -10 -11	0 0 0	- 5 - 7 - 8
250 315 400	315 400 500	0 0 0	- 35 - 40 - 45	0 0 0	-25 -28 -33	0 0 0	-18 -20 -23	0 0 -	-13 -15 -	0 0 -	- 8 -10 -	0 0 —	-13 -15 -	0 0 -	- 8 -10 -
500 630 800	630 800 1 000	0 0 0	- 50 - 75 -100	0 0 0	-38 -45 -60	0 0 -	-28 -35 -	_ _ _	_ _ _	- - -	_ _ _	=	_ _ _	_ 	_ _ _
1 000 1 250 1 600 2 000	1 250 1 600 2 000 2 500	0 0 0 0	-125 -160 -200 -250	_ _ _ _	_ _ _	- - - -	_ _ _	- - -	= = =	- - -	= = =	_ _ _	_ _ _	_ _ _ _	_ _ _

Notas

- (1) 2,5 mm está incluido en el grupo.
- (2) Sólo es aplicable cuando no se utiliza un anillo de fijación de posicionamiento.
- (3) Aplicable a rodamientos de bolas como los rodamientos de bolas de ranura profunda y rodamientos de bolas de contacto angular.
- (4) Las tolerancias para la variación de anchura del anillo exterior de los rodamientos de las Clases Normal y 6 se muestran en la Tabla 8.2.1.

Observaciones

- Las tolerancias (bajas) del diámetro exterior "no-go side" especificado en esta tabla no se aplica necesariamente en distancias de 1.2 veces la dimensión del chaflán r (máx.) desde la cara del anillo.
- 2. El estándar ABMA 20-1987 se ha modificado: ABEC1·RBEC1, ABEC3·RBEC3, ABEC5·RBEC5, ABEC7·RBEC7a y ABEC9·RBEC9 equivalen a las Clases Normal, 6, 5, 4 y 2 respectivamente.

(sin incluir los Rodamientos Cónicos) Radiales para Anillos Exteriores

					V_{Dp} ([2]			V	_{Dmp} (2)	١						
	Nor	mal			Cla	se 6		Cla	se 5	Cla	se 4	Clase 2					
Tip	oo Abier	to	Sellado Blindado	Tij	oo Abie	rto	Sellado Blindado	Tipo A	Abierto			Tipo Abierto	Normal		Clase	Clase	Clase
Ser	ries Dim	ensional	es	Ser	ies Din	ension	ales	Series Se		Se Dimens	ries sionales	Series Dimensionales	l .	6	5	4	2
9	0, 1	2, 3, 4	2, 3, 4	9	0, 1	2, 3, 4	0,1,2,3,4	9	0,1,2,3,4	9	0,1,2,3,4	0,1,2,3,4					
	má	X.			m	áx.		m	áx.	m	áx.	máx.	máx.	máx.	máx.	máx.	máx.
10 10 12	8 8 9	6 6 7	10 10 12	9 9 10	7 7 8	5 5 6	9 9 10	5 5 6	4 4 5	4 4 5	3 3 4	2.5 2.5 4	6 6 7	5 5 6	3 3 3	2 2 2.5	1.5 1.5 2
14 16 19	11 13 19	8 10 11	16 20 26	11 14 16	9 11 16	7 8 10	13 16 20	7 9 10	5 7 8	6 7 8	5 5 6	4 4 5	8 10 11	7 8 10	4 5 5	3 3.5 4	2 2 2.5
23 31 38	23 31 38	14 19 23	30 38 -	19 23 25	19 23 25	11 14 15	25 30 —	11 13 15	8 10 11	9 10 11	7 8 8	5 7 8	14 19 23	11 14 15	6 7 8	5 5 6	2.5 3.5 4
44 50 56	44 50 56	26 30 34		31 35 41	31 35 41	19 21 25	=	18 20 23	14 15 17	13 15 —	10 11 —	8 10 —	26 30 34	19 21 25	9 10 12	7 8 —	4 5 —
63 94 125	63 94 125	38 55 75	_ _ _	48 56 75	48 56 75	29 34 45	_ _ _	28 35 —	21 26 —	- - -	_ _ _	_ _ _	38 55 75	29 34 45	14 18 -	_ _ _	_ _ _
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
-	-	-	-	–	-	-	-	_	_	-	-	_	-	-	-	_	-
_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

Un	iidad	des	:	μn
----	-------	-----	---	----

		K_{ea}				S_D			S ea (3)			V_{Cs} (4)			
Normal	Clase 6	Clase 5	Clase 4	Clase 2	Clase 5	Clase 4	Clase 2	Clase 5	Clase 4	Clase 2	Clase 5	Clase 4	Clase 2	Diámetro Exterio D (mm)	r Nominal
máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	más de	incl
15 15 15	8 8 9	5 5 6	3 3 4	1.5 1.5 2.5	8 8 8	4 4 4	1.5 1.5 1.5	8 8 8	5 5 5	1.5 1.5 2.5	5 5 5	2.5 2.5 2.5	1.5 1.5 1.5	2.5 (¹) 6 18	6 18 30
20 25 35	10 13 18	7 8 10	5 5 6	2.5 4 5	8 8 9	4 4 5	1.5 1.5 2.5	8 10 11	5 5 6	2.5 4 5	5 6 8	2.5 3 4	1.5 1.5 2.5	30 50 80	50 80 120
40 45 50	20 23 25	11 13 15	7 8 10	5 5 7	10 10 11	5 5 7	2.5 2.5 4	13 14 15	7 8 10	5 5 7	8 8 10	5 5 7	2.5 2.5 4	120 150 180	150 180 250
60 70 80	30 35 40	18 20 23	11 13 -	7 8 —	13 13 15	8 10 –	5 7 —	18 20 23	10 13 -	7 8 —	11 13 15	7 8 —	5 7 —	250 315 400	315 400 500
100 120 140	50 60 75	25 30 —	_ _ _		18 20 –	_ _ _	_ _ _	25 30 –	_ _ _	_ _ _	18 20 –	_ _ _	_ _ _	500 630 800	630 800 1 000
160 190 220 250	_ _ _	- - - -	_ _ _ _	- - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	_ _ _ _	- - - -	- - - -	1 000 1 250 1 600 2 000	1 250 1 600 2 000 2 500

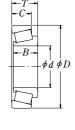
Tabla 8. 3 Tolerancias para Rodamientos de Rodillos Cónicos de Diseño Métrico
Tabla 8. 3. 1 Tolerancias para el Diámetro Interior y Precisión de Funcionamiento

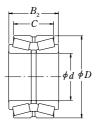
	tro Interior ominal			_	1 _{dmp}				Δ_{ds}		V	dp			V_a	<i>l</i> mp	
	d (mm)		ormal ase 6X		ase 6 ase 5	Cl	ase 4	Cl	ase 4	Normal Clase 6X	Clase 6	Clase 5	Clase 4	Normal Clase 6X	Clase 6	Clase 5	Clase 4
más (le hasta	alta	baja	alta	baja	alta	baja	alta	baja	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.
10	30	0	- 8	0	- 7	0	- 5	0	- 5	8	7	5	4	6	5	5	4
18		0	-10	0	- 8	0	- 6	0	- 6	10	8	6	5	8	6	5	4
30		0	-12	0	-10	0	- 8	0	- 8	12	10	8	6	9	8	5	5
50	120	0	-15	0	-12	0	- 9	0	- 9	15	12	9	7	11	9	6	5
80		0	-20	0	-15	0	-10	0	-10	20	15	11	8	15	11	8	5
120		0	-25	0	-18	0	-13	0	-13	25	18	14	10	19	14	9	7
180	315	0	-30	0	-22	0	-15	0	-15	30	22	17	11	23	16	11	8
250		0	-35	0	-25	0	-18	0	-18	35	-	—	-	26	-	-	-
315		0	-40	0	-30	0	-23	0	-23	40	-	—	-	30	-	-	-
400	630	0	-45	0	-35	0	-27	0	-27	_	_	_	_	_	-	_	_
500		0	-50	0	-40	-	-	-	-	_	_	_	_	_	-	_	_
630		0	-75	0	-60	-	-	-	-	_	_	_	_	_	-	_	_

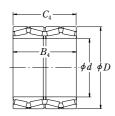
Observaciones

- Las tolerancias (alta) del diámetro interior "no-go" especificado en esta tabla no se aplica necesariamente en distancias de 1.2 veces la dimensión del chaflán r (máx.) desde la cara del anillo.
- 2. Algunas de estas tolerancias cumplen con los estándares de NSK.

Tabla 8. 3. 2 Tolerancias para el Diámetro Exterior del Anillo Exterior y Precisión de Funcionamiento


Diámetro Nom				Δ	Dmp			_	$1_{D\mathrm{s}}$		V	Dp			V_{I}	Этр	
(mi			ormal ase 6X		ase 6 ase 5	Cl	ase 4	Cl	ase 4	Normal Clase 6X	Clase 6	Clase 5	Clase 4	Normal Clase 6X	Clase 6	Clase 5	Clase 4
más de	hasta	alta	baja	alta	baja	alta	baja	alta	baja	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.
18	30	0	- 9	0	- 8	0	- 6	0	- 6	9	8	6	5	7	6	5	4
30	50	0	- 11	0	- 9	0	- 7	0	- 7	11	9	7	5	8	7	5	5
50	80	0	- 13	0	-11	0	- 9	0	- 9	13	11	8	7	10	8	6	5
80	120	0	- 15	0	-13	0	-10	0	-10	15	13	10	8	11	10	7	5
120	150	0	- 18	0	-15	0	-11	0	-11	18	15	11	8	14	11	8	6
150	180	0	- 25	0	-18	0	-13	0	-13	25	18	14	10	19	14	9	7
180	250	0	- 30	0	-20	0	-15	0	-15	30	20	15	11	23	15	10	8
250	315	0	- 35	0	-25	0	-18	0	-18	35	25	19	14	26	19	13	9
315	400	0	- 40	0	-28	0	-20	0	-20	40	28	22	15	30	21	14	10
400	500	0	- 45	0	-33	0	-23	0	-23	45	_	_	_	34	_	-	-
500	630	0	- 50	0	-38	0	-28	0	-28	50	_	_	_	38	_	-	-
630	800	0	- 75	0	-45	—	-	—	-	—	_	_	_	-	_	-	-
800	1 000	0	-100	0	-60	_	-	_	-	_	_	_	_	_	_	_	

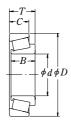

Observaciones

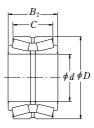

- Las tolerancias (bajas) del diámetro exterior "no-go" especificadas en esta tabla no se aplica necesariamente en distancias de 1.2 veces la dimensión del chaflán r (máx.) desde la cara del anillo.
- 2. Algunas de estas tolerancias cumplen con los estándares de NSK.

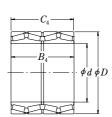
				Uni	dades : μ	ım
	K	ia		S	d	S ia
Normal	Clase	Clase	Clase	Clase	Clase	Clase
Clase 6X	6	5	4	5	4	4
máx.	máx.	máx.	máx.	máx.	máx.	máx.
15	7	3.5	2.5	7	3	3
18	8	4	3	8	4	4
20	10	5	4	8	4	4
25	10	5	4	8	5	4
30	13	6	5	9	5	5
35	18	8	6	10	6	7
50	20	10	8	11	7	8
60	25	13	10	13	8	10
70	30	15	12	15	10	14
70	35	18	14	19	13	17
85	40	20	-	22	-	—
100	45	22	-	27	-	—

Unidades : µm

	K	ea		s	D	S ea
Normal	Clase	Clase	Clase	Clase	Clase	Clase
Clase 6X	6	5	4	5	4	4
máx.	máx.	máx.	máx.	máx.	máx.	máx.
18	9	6	4	8	4	5
20	10	7	5	8	4	5
25	13	8	5	8	4	5
35	18	10	6	9	5	6
40	20	11	7	10	5	7
45	23	13	8	10	5	8
50	25	15	10	11	7	10
60	30	18	11	13	8	10
70	35	20	13	13	10	13
80	40	23	15	15	11	15
100	50	25	18	18	13	18
120	60	30	—	20	—	—
120	75	35	_	23	_	_


Tabla 8.3 Tolerancias para Rodamientos de Rodillos Tabla 8.3.3 Tolerancias para Ancho, Ancho General del Rodamiento,


	Diáme Inter Nomi	ior			4	$\mathcal{A}_{B\mathrm{s}}$					4	∆ _{C s}					Δ_T	's		
	d			ormal lase 6	Cla	ase 6X		lase 5 lase 4		ormal lase 6	Cla	ase 6X		lase 5 lase 4		rmal use 6	Clase	6X		ise 5 ise 4
r	nás de	incl	alta	baja	alta	baja	alta	baja	alta	baja	alta	baja	alta	baja	alta	baja	alta	baja	alta	baja
	10 18 30	18 30 50	0 0 0	-120 -120 -120	0 0 0	-50 -50 -50	0 0 0	-200 -200 -240	0 0 0	-120 -120 -120	0 0 0	-100 -100 -100	0 0 0	-200 -200 -240	+200 +200 +200	0 0 0	+100 +100 +100	0	+200 +200 +200	-200 -200 -200
	50 80 120	80 120 180	0 0 0	-150 -200 -250	0 0 0	-50 -50 -50	0 0 0	-300 -400 -500	0 0 0	-150 -200 -250	0 0 0	-100 -100 -100	0 0 0	-300 -400 -500	+200 +200 +350	0 -200 -250	+100 +100 +150	0 0 0	+200 +200 +350	-200 -200 -250
	180 250 315	250 315 400	0 0 0	-300 -350 -400	0 0 0	-50 -50 -50	0 0 0	-600 -700 -800	0 0 0	-300 -350 -400	0 0 0	-100 -100 -100	0 0 0	-600 -700 -800	+350 +350 +400	-250 -250 -400	+150 +200 +200	0 0 0	+350 +350 +400	-250 -250 -400
	400 500 630	500 630 800	0 0 0	-450 -500 -750	_ _ _	- -	0 0 0	-800 -800 -800	0 0 0	-450 -500 -750	- - -	- - -	0 0 0	-800 -800 -800	+400 +500 +600	-400 -500 -600	- - -	_ _ _	+400 +500 +600	-400 -500 -600


Observaciones

El ancho efectivo de un anillo interior con rodillos T_1 se define como el ancho general del rodamiento de un anillo interior con rodillos combinado con un anillo exterior maestro.

El ancho efectivo de un anillo exterior T_2 se define como la anchura general del rodamiento de un anillo exterior combinado con un anillo interior maestro con rodillos.

Cónicos de Diseño Métrico y Ancho Combinado del Rodamiento

ŀ		lo con Rodillos T 1s	3	Desviaciór		Ancho del Anill T 2s	lo Exterior		eneral del Ancho (B 2s	de un Rodamiento $arDelta_{B\mathrm{4s}}$,		Diám Interior l	
Nor	mal	Clase	e 6X	Nor	mal	Clase	e 6X		rodamientos le hilera	Todo tipo de de cuatro	rodamientos o hileras	(m	<i>t</i> m)
alta	baja	alta	baja	alta	baja	alta	baja	alta	baja	alta	baja	más de	incl
+100	0	+ 50	0	+100	0	+ 50	0	+ 200	- 200	_	_	10	18
+100	0	+ 50	0	+100	0	+ 50	0	+ 200	- 200	_	_	18	30
+100	0	+ 50	0	+100	0	+ 50	0	+ 200	- 200	_	_	30	50
+100	0	+ 50	0	+100	0	+ 50	0	+ 300	- 300	+ 300	- 300	50	80
+100	-100	+ 50	0	+100	-100	+ 50	0	+ 300	- 300	+ 400	- 400	80	120
+150	-150	+ 50	0	+200	-100	+100	0	+ 400	- 400	+ 500	- 500	120	180
+150	-150	+ 50	0	+200	-100	+100	0	+ 450	- 450	+ 600	- 600	180	250
+150	-150	+100	0	+200	-100	+100	0	+ 550	- 550	+ 700	- 700	250	315
+200	-200	+100	0	+200	-200	+100	0	+ 600	- 600	+ 800	- 800	315	400
-	-	-	-	-	-	-	_	+ 700	- 700	+ 900	- 900	400	500
-	-	-	-	-	-	-	_	+ 800	- 800	+1 000	-1 000	500	630
-	-	-	-	-	-	-	_	+1 200	-1 200	+1 500	-1 500	630	800

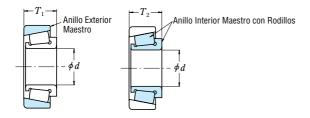
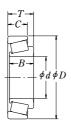
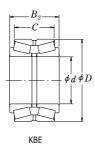


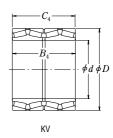
Tabla 8. 4 Tolerancias para Rodamientos de Rodillos Cónicos de Dise $\tilde{\mathbf{n}}$ o en Pulgadas

Tabla 8. 4. 1 Tolerancias para el Diámetro Interior del Anillo Interior

	Diámetro Inte	1				Δ	ds		
más de	Э	hasta		CLAS	E 4, 2	CLAS	E 3, 0	CLA	SE 00
(mm)	1/25.4	(mm)	1/25.4	alta	baja	alta	baja	alta	baja
76.200 266.700	3.0000 10.5000	76.200 266.700 304.800	3.0000 10.5000 12.0000	+ 13 + 25 + 25	0 0 0	+13 +13 +13	0 0 0	+8 +8 -	0 0 —
304.800 609.600 914.400 1 219.200	12.0000 24.0000 36.0000 48.0000	609.600 914.400 1 219.200 —	24.0000 36.0000 48.0000	+ 51 + 76 +102 +127	0 0 0 0	+25 +38 +51 +76	0 0 0 0	_ _ _ _	- - - -


Tabla 8. 4. 2 Tolerancias para el Diámetro Exterior del Anillo Exterior


	Diámetro Exte					Δ	Ds		
más de	1	hasta		CLAS	E 4, 2	CLAS	E 3, 0	CLAS	SE 00
(mm)	1/25.4	(mm)	1/25.4	alta	baja	alta	baja	alta	baja
_ 266.700 304.800	_ 10.5000 12.0000	266.700 304.800 609.600	10.5000 12.0000 24.0000	+ 25 + 25 + 51	0 0 0	+13 +13 +25	0 0 0	+8 +8 -	0 0 —
609.600 914.400 1 219.200	24.0000 36.0000 48.0000	914.400 1 219.200 —	36.0000 48.0000 —	+ 76 +102 +127	0 0 0	+38 +51 +76	0 0 0	_ _ _	=


Tabla 8. 4. 3 Tolerancias para

	Diámetro Into	erior Nominal d						Δ	Ts				
más	s de	ha	sta	CL	ASE 4	CLA	SE 2	D≦508.	CLA 000 (mm)	SE 3 D>508	.000 (mm)	CLAS	E 0, 00
(mm)	1/25.4	(mm) 1/25.4		alta	baja	alta	baja	alta	baja	alta	baja	alta	baja
_ 101.600	_ 4.0000	101.600 304.800	4.0000 12.0000	+203 +356	0 - 254	+203 +203	0	+203 +203	-203 -203	+203 +203	-203 -203	+203 +203	-203 -203
304.800 609.600	12.0000 24.0000	609.600 —	24.0000 —	+381 +381	-381 -381	+381	-381 -	+203 +381	-203 -381	+381 +381	-381 -381	1-1	=

y Salto Radial de los Anillos Interior y Exterior

Unidades : μm

			$K_{i\mathrm{a}}$, K_{ea}		
_	CLASE 4	CLASE 2	CLASE 3	CLASE 0	CLASE 00
	máx.	máx.	máx.	máx.	máx.
	51 51 51	38 38 38	8 8 18	4 4 —	2 2 —
	76 76 76	51 - -	51 76 76	_ _ _	_ _ _

Ancho General y Ancho Combinado

			Rodami		era Doble (Ti <i>B</i> 2s	po KBE)				Hil (Tip	os de Cuatro eras o KV) , Δ_{C4s}
C	ASE 4	CLAS	SE 2	D≦508.0	CLA 000 (mm)	SE 3 D>508.	000 (mm)	CLASE 0,00		CLAS	SE 4, 3
alta	baja	alta	baja	alta	baja	alta	baja	alta	baja	alta	baja
+406 +711	0 -508	+406 +406	0 -203	+406 +406	-406 -406	+406 +406	-406 -406	+406 +406	-406 -406	+1 524 +1 524	-1 524 -1 524
+762 +762	-762 -762	+762 -	-762 -	+406 +762	-406 -762	+762 +762	-762 -762	_	Ξ	+1 524 +1 524	-1 524 -1 524

Tabla 8. 5 Tolerancias
Tabla 8. 5. 1 Tolerancias para los Anillos

	netro Nominal <i>1</i>			Δ	$d\mathrm{mp}$				V_{dp}			$V_{d\mathrm{mp}}$			⊿ _{Bs} (0 .	⊿ _{Cs}) (¹	1)
(mm)		Normal Clase 6		Cla	ase 5	Normal	Clase 6	Clase 5	Normal Clase Clase 5			Normal Clase 6		Clase 5			
más de	hasta	alta	baja	alta	baja	alta	lta baja r		máx.	máx.	máx.	máx.	máx.	alta	baja	alta	baja
2.5	10	0	- 8	0	- 7	0	- 5	6	5	4	6	5	3	0	-120	0	- 40
10	18	0	- 8	0	- 7	0	- 5	6	5	4	6	5	3	0	-120	0	- 80
18	30	0	-10	0	-8	0	-6	8	6	5	8	6	3	0	-120	0	-120

Nota

 La desviación de ancho y la variación de ancho de un anillo exterior se determina según el anillo interior del mismo rodamiento.

Observaciones

Las tolerancias (alta) del diámetro interior "no-go side" especificado en esta tabla no se aplica necesariamente en distancias de 1.2 veces la dimensión del chaflán r (máx.) desde la cara del anillo.

Table 8. 5. 2 Tolerancias

	Exterior					_	Δ_{I}	Omp			0 : 1				$V_{D\mathrm{p}}$		
j			K	odamient	os Serie	Ł			Ro	damiento	s Serie I	=N			a.	-	
(m	m)	Norr	nal	Clas	e 6	Clas	se 5	Nor	mal	Clas	se 6	Clas	se 5	Normal	Clase 6	Clase 5	
más de	hasta	alta	baja	alta	baja	alta	baja	alta baja a		alta	baja	alta	baja	máx.	máx.	máx.	
6	18	+ 8	0	+7	0	+5	0	0	- 8	0	- 7	0	- 5	6	5	4	
18	30	+ 9	0	+8	0	+6	0	0	- 9	0	-8	0	-6	7	6	5	
30	50	+11	0	+9	0	+7	0	0	-11	0	- 9	0	- 7	8	7	5	

Observaciones

Las tolerancias (bajas) del diámetro exterior "no-go side" no se aplican necesariamente en distancias de 1.2 veces la dimensión del chaflán r (máx.) desde la cara del anillo.

para los Rodamientos para Magnetos Interiores y Ancho de los Anillos Exteriores

			Unidad	es:μm				
$V_{B{ m s}}$ (or	V _{Cs}) (1)	Δ	T s		K_{ia}		S_d	$S_{\it ia}$
Normal Clase 6	Clase 5	Normal Clase 6 Clase 5		Normal	Clase 6	Clase 5	Clase 5	Clase 5
máx.	máx.	alta baja		máx.	máx.	máx.	máx.	máx.
15	5	+120 -120		10	6	4	7	7
20	5	+120 -120		10	7	4	7	7
20	5	+120	- 120	13	8	4	8	8

para Anillos Exteriores

,					Uni	dades : į	ım
	$V_{D{ m mp}}$			K_{ea}		Sea	S_D
Normal	Clase 6	Clase 5	Normal	Clase 6	Clase 5	Clase 5	Clase 5
máx.			máx.	máx.	máx.	máx.	máx.
6	5 3		15	8	5	8	8
7	6 3		15	9	6	8	8
8	8 7 4		20	10	7	8	8

Tabla 8. 6 Tolerancias para Rodamientos de Bolas de Contacto Angular

Tabla 8. 6. 1 Tolerancias para el Diámetro Interior de las Arandelas del Eje y Precisión de Funcionamiento

Unidades : µm

Diámetro Inter d o			$\Delta_{d ext{mp}}$ 0	$\Delta_{d2\mathrm{mp}}$		$V_{d\mathrm{p}}$ o	$V_{d2\mathrm{p}}$		S_i o	S _e (¹)	
(mn	1)	Cla	rmal ise 6 ise 5	Cla	ise 4	Normal Clase 6 Clase 5	Clase 4	Normal	Clase 6	Clase 5	Clase 4
más de	hasta	alta	baja	alta baja		máx.	máx.	máx.	máx.	máx.	máx.
_	18	0	- 8	0	- 7	6	5	10	5	3	2
18	30	0	- 10	0	- 8	8	6	10	5	3	2
30	50	0	- 12	0	-10	9	8	10	6	3	2
50	80 120		- 15	0	-12	11	9	10	7	4	3
80			- 20	0	-15	15	11	15	8	4	3
120			- 25	0	-18	19	14	15	9	5	4
180	250	0	- 30	0	-22	23	17	20	10	5	4
250	315	0	- 35	0	-25	26	19	25	13	7	5
315	400	0	- 40	0	-30	30	23	30	15	7	5
400	500	0	- 45	0	-35	34	26	30	18	9	6
500	630	0	- 50	0	-40	38	30	35	21	11	7
630	800	0	- 75	0	-50	—	—	40	25	13	8
800 1 000	1 000 1 250	0	-100 -125	_ _	_	_ _	_ _	45 50	30 35	15 18	_

Nota $egin{array}{ll} \mbox{Nota} & \mbox{(1)} \mbox{ Para rodamientos de doble dirección, la variación de grosor no depende del diámetro interior <math>d_2$, sino de d en los rodamientos de dirección única con el mismo D en la misma serie dimensional. La variación de grosor de las arandelas de los alojamientos, $S_{\rm e}$, se aplica sólo a los rodamientos de apoyo de asiento plano.

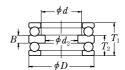
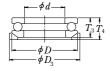



Tabla 8. 6. 2 Tolerancias para el Diámetro Exterior de las Arandelas de Alojamiento y de las Arandelas del Asiento de Alineación

ı	Unid	lade	es :	μr

Diámetro Exterior Nominal del Rodamiento o de la Arandela del Asiento de Alineación		Tipo de As		<i>D</i> mp	Tipo de A Asiento de	randela del e Alineación	V	Dp	Exterior de del Asiento	del Diámetro la Arandela de Alineación D 3s
D o D_3 (mm)	Cla	rmal ase 6 ase 5	Cla	ise 4		rmal se 6	Normal Clase 6 Clase 5	Clase 4	Clase 4 Norma Clase 6	
más de hasta			alta	baja	max	max	alta	baja		
10 18	0	- 11	0	- 7	0	- 17	8	5	0	- 25
18 30	0	- 13	0	- 8	0	- 20	10	6	0	- 30
30 50	0	- 16	0	- 9	0	- 24	12	7	0	- 35
50 80	0	- 19	0	-11	0	- 29	14	8	0	- 45
80 120	0	- 22	0	-13	0	- 33	17	10	0	- 60
120 180	0	- 25	0	-15	0	- 38	19	11	0	- 75
180 250	0	- 30	0	-20	0	- 45	23	15	0	- 90
250 315	0	- 35	0	-25	0	- 53	26	19	0	-105
315 400	0	- 40	0	-28	0	- 60	30	21	0	-120
400 500	0	- 45	0	-33	0	- 68	34	25	0	-135
500 630	0	- 50	0	-38	0	- 75	38	29	0	-180
630 800	0	- 75	0	-45	0	-113	55	34	0	-225
800 1 000 1 000 1 250 1 250 1 600	0 0 0	-100 -125 -160	_ _ _	_ _ _	_ _ _	_ _ _	75 — —	_ _ _	_ _ _	<u>-</u> -

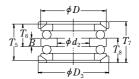
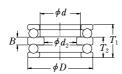
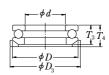


Tabla 8. 6. 3 Tolerancias para la Altura de los Rodamientos de Bolas de Empuje y la de las Arandelas Centrales

С	Diámetro	Interior		Tipo de As	iento Plano		Tipo de A	Arandela del	Asiento de	Alineación	Con Ara	ndela del A	siento de a			ón de altura idela central
	Nom		Δ_{Ts}	0 ⊿ _{T2s}	Δ	T1s	△ _{T3s}	0 <i>A</i> _{T6s}	Δ	<i>T</i> 5s	$\Delta_{T_{4s}}$	o ⊿ _{T8s}	Δ	T7s		$1_{B\mathbf{s}}$
	d (l, Clase 6 i, Clase 4				ormal ase 6		rmal se 6		rmal se 6	Noi Cla	rmal se 6		l, Clase 6 5, Clase 4
ı	más de	hasta	alta	baja	alta	baja	alta			baja	alta	baja	alta	baja	alta	baja
	_ 30 50	30 50 80	0 0 0	- 75 -100 -125	+ 50 + 75 +100	-150 -200 -250	0 0 0	- 75 -100 -125	+ 50 + 75 +100	-150 -200 -250	+ 50 + 50 + 75	- 75 -100 -125	+150 +175 +250	-150 -200 -250	0 0 0	- 50 - 75 -100
	80 120 180	120 180 250	0 0 0	-150 -175 -200	+125 +150 +175	-300 -350 -400	0 0 0	-150 -175 -200	+125 +150 +175	-300 -350 -400	+ 75 +100 +100	-150 -175 -200	+275 +350 +375	-300 -350 -400	0 0 0	-125 -150 -175
	250 315	315 400	0 0	-225 -300	+200 +250	-450 -600	0	-225 -300	+200 +250	-450 -600	+125 +150	-225 -275	+450 +550	-450 -550	0	-200 -250


Nota


(1) Para rodamientos de doble dirección, su clasificación depende de d en los rodamientos de dirección única con

Observaciones

la misma D en las mismas series dimensionales. $\Delta_{T^{\rm S}}$ en la tabla es la desviación en la altura respectiva T en las figuras siguientes.

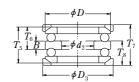


Tabla 8. 7 Tolerancias para los Rodamientos de Empuje de Rodillos Esféricos

Tabla 8. 7. 1 Tolerancias para los Diámetros Internos de los Anillos del Eje y de la Altura

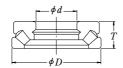
(Clase Normal)

Unidades : µm

Diámetro Interior Nominal					Referencia	
d (mm)	Δ	dmp	V_{dp}	S_d	Δ	Ts
más de hasta	alta	baja	máx.	máx.	alta	baja
50 80 80 120 120 180	0 0 0	-15 -20 -25	11 15 19	25 25 30	+150 +200 +250	-150 -200 -250
180 250 250 315 315 400	0 0 0	-30 -35 -40	23 26 30	30 35 40	+300 +350 +400	-300 -350 -400
400 500	0	- 45	34	45	+450	- 450

Observaciones

Las tolerancias (alta) del diámetro interior "no-go side" especificado en esta tabla no se aplica necesariamente en distancias de 1.2 veces la dimensión del chaflán r (máx.) desde la cara del anillo.


Tabla 8. 7. 2 Tolerancias para el Diámetro Interior del Anillo del Alojamiento (Clase Normal)

Unidades: µm

Diámetro Exte D (mr)	Δ	Dmp
más de	incl	alta	baja
120 180 250	180 250 315	0 0 0	- 25 - 30 - 35
315 400 500	400 500 630	0 0 0	- 40 - 45 - 50
630 800	800 1 000	0	- 75 -100

Observaciones

Las tolerancias (bajas) del diámetro exterior "no-go side" especificado en esta tabla no se aplica necesariamente en distancias de 1.2 veces la dimensión del chaflán r (máx.) desde la cara del anillo.

Tabla 8. 8 Tolerancias de CLASE 5P, CLASE 7P, y CLASE 9P

(1) Tolerancias para los Anillos

	Diáme Interio			Δá	/mp			Δ	ds		V	dp	V_{d}	'mp	Δ_{Bs}	
	Nominal d (mm)		SE 5P SE 7P						CLASE 5P CLASE 7P	CLASE 9P	CLASE 5P CLASE 7P		Rod. simple CLASE 5P CLASE 7P CLASE 9P			
Ī	más de	hasta	alta	baja	alta	baja	alta	baja	alta	baja	máx.	máx.	máx.	máx.	alta	baja
ı	-	10	0	- 5.1	0	- 2.5	0	- 5.1	0	- 2.5	2.5	1.3	2.5	1.3	0	- 25.4
	10	18	0	- 5.1	0	- 2.5	0	- 5.1	0	- 2.5	2.5	1.3	2.5	1.3	0	- 25.4
	18	30	0	- 5.1	0	- 2.5	0	- 5.1	0	-2.5	2.5	1.3	2.5	1.3	0	-25.4

Nota

(1) Aplicable a los rodamientos para los que el juego axial (precarga) debe ajustarse combinando dos rodamientos seleccionados.

Observaciones

Para la CLASE 3P y las tolerancias de los Rodamientos de Bolas de los Instrumentos de diseño Métrico, se recomienda consultar a NSK.

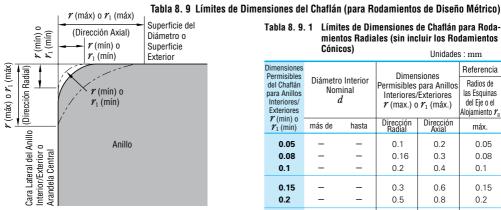
(2) Tolerancias para

	Diám		$\it \Delta_{Dmp}$				$\it \Delta_{\it Ds}$						$V_{D\mathrm{p}}$			$V_{D\mathrm{mp}}$		
	Exterior Nominal D (mm)	inal	CLA	SE 5P			CLASE 5P CLASE 7P				CLASE 9P		CLASE 5P CLASE 7P		CLASE 9P	CLASE 5P CLASE 7P		CLASE 9P
		n)	CLASE 7P		CLASE 9P		Abierto		Blindado sellado		Abierto		Abierto	Blindado sellado	Abierto	Abierto	Blindado sellado	Abierto
Ī	más de	hasta	alta	baja	alta	baja	alta	baja	alta	baja	alta	baja	máx.	máx.	máx.	máx.	máx.	máx.
	-	18	0	- 5.1	0	- 2.5	0	- 5.1	+1	- 6.1	0	- 2.5	2.5	5.1	1.3	2.5	5.1	1.3
	18	30	0	- 5.1	0	-3.8	0	- 5.1	+1	- 6.1	0	-3.8	2.5	5.1	2	2.5	5.1	2
	30	50	0	- 5.1	0	-3.8	0	-5.1	+1	-6.1	0	-3.8	2.5	5.1	2	2.5	5.1	2

Notas

- (1) Aplicable a variaciones de ancho de la brida para rodamientos embridados.
- (2) Aplicable a la cara posterior de la brida.

los Rodamientos de Bolas de los Instrumentos (Diseño en pulgadas) (ANSI/ABMA Equivalente)


Interiores y Ancho de los Anillos Exteriores

Unidades : $\mu\,m$

(o 🛭 ,	Cs)		V_{Bs}		K_{ia}				S_{ia}		S_d		
Rod. combir CLASI CLASI CLASI	E 5P E 7P	CLASE 5P	CLASE 7P	CLASE 9P									
alta b	oaja	máx.											
0 -	-400	5.1	2.5	1.3	3.8	2.5	1.3	7.6	2.5	1.3	7.6	2.5	1.3
0 -	-400	5.1	2.5	1.3	3.8	2.5	1.3	7.6	2.5	1.3	7.6	2.5	1.3
0 -	-400	5.1	2.5	1.3	3.8	3.8	2.5	7.6	3.8	1.3	7.6	3.8	1.3

Anillos Exteriores

5P 7P 9P máx. máx. máx			S_D			K _{ea}				S _{ea}		Desviación del Diámetro Exterior de la Brida		Desviación del Ancho de la Brida		la Cara Posterior de la Brida con	
CLASE	CLASE	CLASE	CLASE	CLASE	CLASE	CLASE	CLASE	CLASE	CLASE	CLASE	CLASE	Lexit of the latest the second of the lexit of the lexitor of the lexit of the lexit of the lexit of the lexit of the lex		Δ_{C1s}		Camino de Rodadura (2) S _{ea1}	
5P	7P	9P	5P	7P	9P	5P	7P	9P	5P	7P	9P			CLASE 5P CLASE 7P		CLASE 5P CLASE 7P	
máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	alta	baja	alta	baja	máx.	
5.1	2.5	1.3	7.6	3.8	1.3	5.1	3.8	1.3	7.6	5.1	1.3	0	-25.4	0	-50.8	7.6	
5.1	2.5	1.3	7.6	3.8	1.3	5.1	3.8	2.5	7.6	5.1	2.5	0	-25.4	0	-50.8	7.6	
5.1	2.5	1.3	7.6	3.8	1.3	5.1	5.1	2.5	7.6	5.1	2.5	0	-25.4	0	- 50.8	7.6	

Observaciones

No se ha especificado la forma precisa de las superficies del chaflán pero su perfil en el plano axial no debería intersecarse con un arco de radio r (min.) o r1 (min.) que esté en contacto con la cara lateral de un anillo interior o arandela central y una superficie de diámetro interno, o la cara lateral de un anillo exterior y una superficie exterior.

Tabla 8. 9. 1 Límites de Dimensiones de Chaflán para Rodamientos Radiales (sin incluir los Rodamientos Cónicos)

	Cónic	(sos)	Unidades : mm					
Dimensiones Permisibles del Chaflán para Anillos Interiores/ Exteriores *\mathcal{Y}\text{(min) o} *\mathcal{Y}\text{1}\text{ (min)}	Diámetro Nom a más de	iinal	Dimen Permisibles Interiores/	Referencia Radios de las Esquinas del Eje o el Alojamiento r_a máx.				
0.05			0.1	Dirección Axial	0.05			
0.05	_	_	0.16	0.2 0.3	0.05			
0.1	_	_	0.2	0.4	0.08			
0.15	_	_	0.3	0.6	0.15			
0.15	_	_	0.5	0.8	0.15 0.2			
0.3	- 40	40	0.6 0.8	1 1	0.3			
	40		0.8	ı				
0.6	_	40	1	2	0.6			
0.0	40		1.3	2	0.0			
_	_	50	1.5	3				
1	50	_	1.9	3	1			
	_	120	2	3.5				
1.1	120	_	2.5	4	1			
		100	0.0	4				
1.5	_ 120	120	2.3	4 5	1.5			
	120		-	-				
_	-	80	3	4.5				
2	80 220	220	3.5 3.8	5 6	2			
	220			-				
2.1	-	280	4	6.5	2			
	280		4.5	7				
	_	100	3.8	6				
2.5	100	280	4.5	6	2			
	280	_	5	7				
3	_	280	5	8	2.5			
	280	_	5.5	8	2.5			
4	_	_	6.5	9	3			
5	_	-	8	10	4			
6	_	_	10	13	5			
7.5	_	_	12.5	17	6			
9.5	_	-	15	19	8			
12	_	_	18	24	10			
15	_	_	21	30	12			
19	_	-	25	38	15			
Observaci		Dara re	adamiantaa	oon onobus				

Observaciones

Para rodamientos con anchuras nominales inferiores a 2mm, el valor de r (máx.) en la dirección axial es el mismo que en la dirección radial.

r : Dimensiones del Chaflán del Anillo Interior/Exterior r₁: Dimensiones del Chaflán del Anillo Interior/Exterior (Parte Frontal) o de la Arandela Central de los Rodamientos de Bolas de Empuje

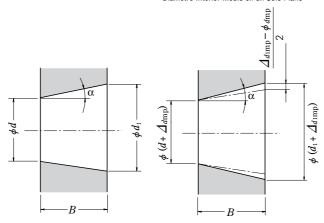
Tabla 8. 9. 2 Límites de las Dimensiones del Chaflán para Rodamientos de Rodillos Cónicos

Unidades : mm

Unidades : mm								
del chaflán para anillos interiores/ exteriores	Diámetros I Interior o E d o	xterior (1)	Permisibles Interiores/ r(n	siones para Anillos Exteriores nax)	Referencia Radios de los chaflanes del Eje o el Alojamiento r_a			
𝒯 (min)	más de	hasta	Dirección Radial	Dirección Axial	máx.			
0.15	_	-	0.3	0.6	0.15			
0.3	- 40	40 —	0.7 0.9	1.4 1.6	0.3			
0.6	- 40	40 -	1.1 1.3	1.7 2	0.6			
1	– 50	50 —	1.6 1.9	2.5 3	1			
1.5	_ 120 250	120 250 —	2.3 2.8 3.5	3 3.5 4	1.5			
2	 120 250	120 250 —	2.8 3.5 4	4 4.5 5	2			
2.5	 120 250	120 250 —	3.5 4 4.5	5 5.5 6	2			
3	- 120 250 400	120 250 400 —	4 4.5 5 5.5	5.5 6.5 7 7.5	2.5			
4	_ 120 250 400	120 250 400 —	5 5.5 6 6.5	7 7.5 8 8.5	3			
5	- 180	180 —	6.5 7.5	8 9	4			
6	_ 180	180 —	7.5 9	10 11	5			
	(1) L	A ! II I			1			

Nota

 $(^{\scriptscriptstyle 1})$ Los Anillos Interiores se clasifican con d y los Anillos exteriores con D.


Tabla 8. 9. 3 Límites de las Dimensiones del Chaflán para Rodamientos de Empuje

		Unidades : mm
Dimensiones	Dimensiones	Referencia
permisibles del Chaflán para las Arandelas del Eje (o Central) / o del Alojamiento	Alojamiento $\mathcal{Y}(\text{máx.})$ o \mathcal{Y}_1 (máx.)	Radios de los chaflanes del Eje o el Alojamiento r _a
$ rac{r}{(min)} \circ rac{r}{1} (min)$	Dirección Radial o Axial	máx.
0.05	0.1	0.05
0.08	0.16	0.08
0.1	0.2	0.1
0.15	0.3	0.15
0.2	0.5	0.2
0.3	0.8	0.3
0.6	1.5	0.6
1	2.2	1
1.1	2.7	1
1.5	3.5	1.5
2	4	2
2.1	4.5	2
3	5.5	2.5
4	6.5	3
5	8	4
6	10	5
7.5	12.5	6
9.5	15	8
12	18	10
15	21	12
19	25	15

Tabla 8.10 Tolerancias para los Diámetros Interiores Cónicos (Clase Normal)

Diámetro Interior Cónico Nominal

Diámetro Interior Cónico con Desviación en un Diámetro Interior Medio en un Solo Plano

d : Diámetro Interior Nominal

 $d_{\scriptscriptstyle 1}$:Diámetro Teórico del Extremo Mayor del Agujero Cónico

Conicidad 1:12 $d_1 = d + 1/12 B$ Conicidad 1:30 $d_1 = d + /30 B$

 $\varDelta_{\rm \,dmp}$: Desviación Media del Diámetro Interior en un Solo Plano en el Diámetro Teórico del Extremo Menor del Agujero Cónico

 Δ_{dimp} : Desviación Media del Diámetro Interior en un Solo Plano en el Diámetro Teórico del Extremo Mayor del Agujero Cónico

 V_{dp} : Variación del diámetro interior en un solo plano radial

B : Anchura Nominal del Anillo Interior

α : La Mitad del Ángulo de Conicidad del Anillo Interior Cónico

Conicidad 1:12 Conicidad 1:30

 $\begin{array}{lll} \alpha = 2^{\circ}23^{\circ}9.4^{\prime\prime} & \alpha = 57^{'}17.4^{\prime\prime} \\ = 2.38594^{\circ} & = 0.95484^{\circ} \\ = 0.041643 \ rad & = 0.016665 \ rad \end{array}$

Conicidad 1:12

Unidades : µm

Diámetro Interior Nominal d (mm)		Δ_d	mp	Δ_{d1mp} -	V _{dp} (1) (2)	
más de	hasta	alta	baja	alta	baja	máx.
18	30	+33	0	+21	0	13
30	50	+39	0	+25	0	16
50	80	+46	0	+30	0	19
80	120	+54	0	+35	0	22
120	180	+63	0	+40	0	40
180	250	+72	0	+46	0	46
250	315	+81	0	+52	0	52
315	400	+89	0	+57	0	57
400	500	+97	0	+63	0	63
500	630	+110	0	+70	0	70
630	800	+125	0	+80	0	—
800	1 000	+140	0	+90	0	—
1 000	1 250	+165	0	+105	0	
1 250	1 600	+195	0	+125	0	

Notas

- (1) Aplicable a todos los planos radiales de los agujeros cónicos.
- (2) No aplicable a los diámetros de las series 7 y 8.

Conicidad 1:30

Unidades : µm

Diámetro Interior No d (mm)		dmp	Δ_{d1mp} -	V _{dp} (1) (2)	
más de has	sta alta	baja	alta	baja	máx.
80 12 120 18 180 25	+25	0 0 0	+35 +40 +46	0 0 0	22 40 46
250 31 315 40 400 50	+40	0 0 0	+52 +57 +63	0 0 0	52 57 63
500 63	+50	0	+70	0	70

Notas

(1) Aplicable a todos los planos radiales de los agujeros cónicos.

(²) No aplicable a los diámetros de las series 7 y 8. **Observaciones** Para valores superiores a 630 mm, contacte con NSK.

8.2 Selección de las clases de precisión

Para aplicaciones generales, las tolerancias Normales de Clase son adecuadas en casi todos los casos para conseguir unas prestaciones satisfactorias, pero en las siguientes aplicaciones, los rodamientos con una clase de precisión de 5,4 o superior resultan más adecuados. Como referencia, en la Tabla 8.11, se listan ejemplos de aplicaciones y clases de tolerancias adecuadas para varios requisitos y condiciones de funcionamiento de los rodamientos.

Tabla 8. 11 Clases de Tolerancia Típica para Aplicaciones Específicas (Referencia)

Requisitos de los Rodamientos, Condiciones de funcionamiento	Ejemplos de Aplicaciones	Clases de tolerancia
Se precisa de una gran precisión en funcionamiento	Husillos Cabezales VTR Husillos para Discos de Ordenador Husillos Principales para Máquinas Herramienta Prensas Rotatorias de Impresión Tablas Rotatorias de Prensas Verticales, etc. Cuellos de Cilindros para Laminación en Frío Rodamientos Pivotantes para Antenas Parabólicas	P5 P5, P4, P2 P5, P4, P2 P5 P5, P4 Superior a P4 Superior a P4
Se precisa velocidad alta	Taladros Dentales Giróscopos Husillos de Alta Frecuencia Sobrecargadores Separadores Centrífugos Ejes principales de Motores a Reacción	CLASS 7P, CLASS 5P CLASS 7P, P4 CLASS 7P, P4 P5, P4 P5, P4 Superior a P4
Se precisa bajo par y baja variación de par	Giróscopos Cardán Servomecanismos Controladores Potenciométricos	CLASS 7P, P4 CLASS 7P, CLASS 5P CLASS 7P

9. AJUSTES Y TOLERANCIAS INTERNAS

9.1 Ajustes

9.1.1 La importancia de un buen ajuste

En caso de que un rodamiento esté ensamblado en el eje solo con interferencia ligera, se podrían producir deslizamientos circunferenciales muy agresivos entre las supercies del anillo interno y del eje. Este deslizamiento del anillo interior, denominado "creep", da como resultado un desplazamiento circunferencial del anillo en relación con el eje si el ajuste de la interferencia no es lo suficientemente apretado. Cuando se produce "creep", las superficies se rayan, desgastándose y dañando el eje de forma considerable. Debido a las abrasivas partículas metálicas que entran en el interior del rodamiento éste también puede sufrir calentamientos y vibraciones anormales.

Es importante evitar el "creep" asegurando una interferencia suficiente para asegurar firmemente el anillo que gira sobre el eje o el alojamiento. El "creep" no siempre se puede eliminar con sólo aplicar apriete axial a través de las caras del anillo del rodamiento. En general, no es necesario, sin embargo, proporcionar interferencias para los anillos sujetos sólo a cargas estacionarias. Los ajustes a veces se realizan sin ninguna interferencia para los anillos interior o exterior, para acomodarse a ciertas condiciones de funcionamiento, o para facilitar el montaje y desmontaje. En este caso, para evitar daños a las superficies de ajuste como consecuencia del "creep", deben tenerse en cuenta la lubricación de las superficies en contacto o algún otro sistema.

9.1.2 Selección del aiuste

(1) Condiciones de Carga y Ajuste

El ajuste correcto puede seleccionarse a partir de la Tabla 9.1 que se basa en la carga y en las condiciones de funcionamiento.

(2) Magnitud de la Carga y de la Interferencia

La interferencia del anillo interior se ve ligeramente reducida por la carga del rodamiento; por lo tanto, la pérdida de interferencia debe estimarse utilizando las siguientes ecuaciones:

$$\Delta d_{\rm F} = 0.08 \ \sqrt{\frac{d}{B} F_{\rm r}} \times 10^{-3} \ \dots \dots \ (\rm N)$$

$$\Delta d_{\rm F} = 0.25 \ \sqrt{\frac{d}{B} F_{\rm r}} \times 10^{-3} \ \dots \ \{\rm kgf\}$$
 \(\text{kgf}\)

siendo Δd_F : Reducción de la interferencia del anillo interior (mm)

d: Diámetro interior del rodamiento (mm)

B: Anchura del anillo interior nominal (mm)

 $F_{\rm r}$: Carga radial aplicada sobre el rodamiento

(N), {kgf}

Tabla 9.1 Condiciones de carga y ajuste

Aplicación de carga	Funcionamiento	del Rodamiento	Condiciones de	e Ajuste		
Apricación de carga	Anillo Interior	Anillo Exterior	carga	Anillo Interior	Anillo Exterior	
Carga Carga	Carga Estacionaria Interior Giratorio					
Carga Rotatoria	Estacionario	Giratorio	Carga del Anillo Exterior Estacionario	Ajuste Apretado	Ajuste Holgado	
Carga Estacionaria	Estacionario	Giratorio	Carga del Anillo Exterior Giratorio Carga del	Ajuste Holgado	Ajuste Apretado	
Carga Rotatoria	Giratorio	Estacionario	Anillo Interior Estacionario			
Dirección de carga indeterminada debido a la variación de la dirección o a una carga desequilibrada	Giratorio o Estacionario	Giratorio o Estacionario	Dirección de Carga Indeterminada	Ajuste Apretado	Ajuste Apretado	

Por lo tanto, la interferencia efectiva ⊿d debe ser mayor que la interferencia indicada en la Ecuación (9.1).

Sin émbargo, en el caso de cargas pesadas en las que la carga radial sobrepase el 20% del índice básico de carga estática COr, se produce una reducción de la interferencia dependiendo de las condiciones de funcionamiento. Por lo tanto, la interferencia debe calcularse usando la ecuación (9.2):

donde Δd : Interferencia Efectiva (mm)

 F_r : Carga radial aplicada sobre el rodamiento (N), {kgf}

B: Anchura del anillo interior nominal (mm)

(3) Variación de la interferencia como consecuencia de la diferencia de Temperaturas entre el Rodamiento y el Eje o el Alojamiento

La interferencia efectiva se reduce como consecuencia del aumento de temperatura del rodamiento durante el funcionamiento. Si la diferencia de temperatura entre el rodamiento y su alojamiento es $\varDelta T$ (°C), entonces se estima que la diferencia de temperatura entre las superficies ajustadas del eje y del anillo interior sean de (0.1~0.15) $\varDelta T$ en el caso de que el eje se refrigere. La disminución de la interferencia del anillo interior debido a esta diferencia de temperatura $\varDelta d_{\rm T}$ puede calcularse por medio de la a ecuación (9.3):

$$\Delta d_{\rm T} = (0.10 \sim 0.15) \times \Delta T \cdot \alpha \cdot d$$

 $= 0.0015 \Delta T \cdot d \times 10^{-3} \dots (9.3)$

donde Δd_{T} : Reducción en la interferencia del anillo interior debida a la diferencia de temperatura (mm)

 ΔT : Diferencia de temperatura entre el interior del rodamiento y elementos contiguos (°C)

 α : Coeficiente de dilatación lineal del acero del rodamiento=12.5x10⁻⁶ (1/°C)

d: Diámetro interior nominal del rodamiento (mm)

Además, dependiendo de la diferencia de temperatura entre el anillo exterior y su alojamiento, o la diferencia entre sus coeficientes de dilatación lineal, la interferencia puede aumentar.

(4) Interferencia Efectiva y Acabado del Eje y Alojamiento

Puesto que la rugosidad de las superficies en contacto se reduce durante el proceso de ajuste, la interferencia efectiva es menor que la interferencia aparente. El valor de la reducción de esta interferencia varia en función de las superficies y puede ser calculada por medio de las siguientes ecuaciones:

Para ejes rectificados
$$\Delta d = \frac{d}{d+2} \Delta d_a$$
 (9.4)

Para ejes mecanizados
$$\Delta d = \frac{d}{d+3} \Delta d_a$$
 (9.5)

donde Δd : Interferencia Efectiva (mm) Δd_0 : Interferencia aparente (mm)

 Δd_a : Interferencia aparente (mm) d: Diámetro interior nominal del rodamiento (mm)

Según las ecuaciones (9.4) y (9.5), la interferencia efectiva de los rodamientos con un diámetro interior entre 30 y 150 mm es de un 95% de la interferencia aparente.

(5) Stress de Ajuste por la Dilatación y Contracción de los Anillos

Cuando se montan los rodamientos con interferencia en un eje o un alojamiento, los anillos se expanden o contraen y se produce estrés. Una interferencia excesiva puede dañar los rodamientos; por lo tanto, como regla general, la interferencia máxima debe ser inferior a un 7/10 000 del diámetro del eje.

La presión entre las superficies ajustadas, la expansión o la contracción de los anillos, y el estrés circunferencial pueden ser calculados usando las ecuaciones de la Sección **15.2**. Ajustes(1) (Páginas A130 y 131).

9.1.3 Ajustes aconsejados

Tal como se ha descrito previamente, al seleccionar el ajuste correcto, deben tenerse en cuenta muchos factores como por ejemplo las características y la magnitud de la carga del rodamiento, las diferencias de temperatura, y los medios para el montaje y desmontaje del rodamiento. Si el alojamiento es delgado o si el montaje se realiza sobre un eje hueco, es posible que se necesite un ajuste con mayor apriete de lo normal. Un alojamiento partido a menudo deforma el rodamiento en forma oval; por lo tanto, debe evitarse un alojamiento partido si se necesita un ajuste más apretado para el anillo exterior.

Los ajustes de los anillos interior y exterior deben tener mucho apriete en aplicaciones en las que el eje esté sujeto a vibraciones considerables.

Los ajustes aconsejados para algunas de las aplicaciones más comunes se indican en las Tablas 9.2 a 9.7. En el caso de condiciones de funcionamiento inusuales, es aconsejable que consulte con NSK. Para la precisión y acabado de los ejes y alojamientos, consulte la Sección 11.1 (Página A100).

Tabla 9.2 Ajustes de Rodamientos Radiales con Ejes

			Di	ámetro del eje (mn	n)	Talamana'		
Condicio	ones de carga	Ejemplos	Rodamientos de bolas Rod. de Rodillos Cónicos Rod. de Rodillos Esféricos		Tolerancia del Eje	Observaciones		
		Rodamie	ntos Radiales con	Diámetros Interior	es Cilíndricos			
Carga Rotatoria	Deseable un fácil desplazamiento axial del anillo interior sobre el eje.	Ruedas en Ejes Estacionarios	Dián	ootroo do todoo loo	Figo	g6	Use g5 y h5 donde se necesite precisión. En rodamientos grandes,	
sobre el Anillo Exterior	Innecesario el fácil desplazamiento axial del anillo interior sobre el eje	Poleas de tensión Levas	Diali	netros de todos los	h6	puede usarse f6 para facilitar movimiento axial.		
		Dispositivos Eléctricos Domésticos, Bombas,	<18	_	_	js5		
	Cargas Ligeras o Variables	Compresores, Vehículos de	18~100	<40	_	js6(j6)		
	(<0.06C _r (1))	Transporte, Maquinaria de Precisión, Máquinas	100~200	40~140	_	k6		
		Herramienta	_	140~200	_	m6		
			<18	_	_	js5~6 (j5~6)	k6 y m6 se pueden	
	$(0.06 \text{ a } 0.13C_{\rm r}(^1))$	Aplicaciones	18~100	<40	<40	k5~6		
Carga			100~140	40~100	40~65	m5~6	usar para rodamientos de rodillos cónicos de una sola hilera y en rodamientos de bolas de contacto angular de	
Rotatoria del Anillo Interior			140~200	100~140	65~100	m6		
o Dirección de Carga			200~280	140~200	100~140	n6		
ndeterminada			_	200~400	140~280	р6	una sola hilera en lugar de k5 y m5.	
			_		280~500	r6		
			_	_	over 500	r7		
		Soportes para Ejes	_	50~140	50~100	n6		
	Cargas grandes o	Ferroviarios, Vehículos Industriales, Motores	_	140~200	100~140	р6	Se necesita en el	
	Cargas de impacto $(>0.13C_r(^1))$	para Tracción, Material de Construcción,	_	over 200	140~200	r6	rodamiento más juego interno que CN.	
		Trituradoras	_	_	200~500	r7		
Sólo cargas axiales			Cua	alquier diámetro de	eje	js6 (j6)	_	
		Rodamientos I	Radiales con Diám	etros Interiores Co	ónicos y Manguito	s		
Todo Tipo de Carga		Aplicaciones Generales de Rodamientos, Soportes para Ejes Ferroviarios	Cus	alquier diámetro de	eie	h9/IT5	IT5 e IT7 significan que la desviación del eje de su verdadera forma geométrica, por ejemplo,	
		Ejes de Transmisión, Husillos de Maquinaria para Madera	Cua	nyuisi ulainisii 0 üe	ojo	h10/IT7	geometrica, por ejemplo, la redondez y cilindricidad deben quedar dentro de las tolerancias de IT5 e IT7 respectivamente.	

Nota Observaciones

Tabla 9.3 Ajustes de Rodamientos Axiales con Ejes

Condiciones de Carga		Ejemplos	Diámetro del eje (mm)	Tolerancia del Eje	Observaciones	
Sólo Cargas	Axiales Centrales	Ejes principales de fresadoras	Diámetros de todos los ejes	h6 o js6 (j6)		
Cargas Axiales			Diámetros de todos los ejes	js6 (j6)		
y Radiales Combinadas	Carga del Anillo	Refinadoras de	<200	k6	_	
(Rodamientos de Rodillos Esféricos		Pulpa de Papel, Extrusionadoras de	200~400	m6		
de Empuje) Indeterminada		Plástico	más de 400	n6		

⁽¹⁾ Cr representa el índice de carga básica del rodamiento. Esta tabla sólo es aplicable a ejes de acero sólido.

Tabla 9.4 Ajustes de Rodamientos Radiales con Alojamientos

	Condicion	es de Carga	Ejemplos	Tolerancias para Diám. Int. de los Alojam.	Desplaz. Axial Anillo Ext.	Observaciones	
		Cargas Pesadas en Rod. en Alojamientos de Paredes Finas o Cargas Pesadas con Impacto Cargas Normales o Pesadas	Cubos de Ruedas Automóviles (Rodamientos de Rodillos), Ruedas de Grúas Móviles	P7			
	Carga rotatoria en anillo	Cargas Normales o Pesadas	Cubos de Ruedas Automóviles (Rodamientos de Bolas), Cribas	N7	Imposible	_	
Alojamientos Sólidos	exterior	Cargas Ligeras o Variables	Rodillos Transporte Levas, Poleas tensoras	M7	шрозыв	_	
		Cargas Pesadas de Impacto	Motores de Tracción				
	Dirección de Carga Indeter-	Cargas Normales o Pesadas	Bombas Rodamientos Principales para Cigüeñales	K7	Generalmente Imposible	Si no se necesita desplazamiento axial del anillo exterior.	
	minada	Cargas Normales o Ligeras	Motores de Tamaño Medio y Grande	JS7 (J7)	Posible	Se necesita desplazamiento axial del anillo exterior.	
Alojamientos Sólidos o	Carga rotatoria en anillo	Cargas de Todo Tipo	Aplicaciones Generales de Rodamientos, Soportes para Ejes Ferroviarios	Н7			
Partidos		Cargas Normales o Ligeras	Soportes de fundición	Н8	Fácilmente Posible	_	
		Alta Elevación de Temperatuara del Anillo Interior a Través del Eje	Secadoras de Papel	G7			
	interior	interior	Deseable Funcionamiento	Rodamientos de Bolas Traseros de Cabezales de Rectificadoras Rodamientos Libres para Compresores Centrífugos de Alta Velocidad		Posible	_
Alojamiento Sólido	Dirección de Carga Indeter- minada	Preciso bajo Cargas Normales o Ligeras	Rodamientos delanteros de los Cabezales de Rectificadoras. Rodamientos fijos de Compresores Centrífugos de alta velocidad.	К6	Generalmente Imposible	Para cargas pesadas, se usan ajustes más apretados que K. Cuando se necesita gran	
	Carga rotatoria sobre	Deseables Funcionamiento Preciso y Alta Rigidez bajo Cargas Variables	Rodamientos de Rodillos Cilíndricos para Husillos Principales de Máquinas Herramienta	M6 o N6	Imposible	precisión, deben usarse par el ajustae tolerancias muy estrictas.	
	el anillo interior	Se necesita un nivel de ruido mínimo	Dispositivos Eléctricos Domésticos	Н6	Fácilmente Posible	_	

Observaciones

Esta tabla sólo es aplicable a alojamientos de acero y de fundición. Para alojamientos de aleaciones ligeras, la interferencia debe ser más ajustada que las de la tabla.

Tabla 9.5 Ajustes de Rodamientos Axiales en los Alojamientos

Condiciones de carga		Tipos de Rodamiento	Tolerancias para Diám. Int. de los Alojam.	Observaciones
			Juego superior a 0.25 mm	Para Aplicaciones Generales
			Н8	Cuando se necesita precisión
	Sólo Cargas Axiales	Rodamientos de Rodillos Esféricos de Empuje Rodamientos de Rodillos Cónicos de Ángulo Pronunciado	El anillo exterior tiene juego radial.	Cuando las cargas radiales están soportadas por otros rodamientos.
Cargas Axiales v Radiales	Cargas Estacionarias en Anillo Exterior	Rodamientos de Rodillos	H7 or JS7 (J7)	_
Combinadas	Cargas Giratorias en Anillo Exterior o	Esféricos de Empuje	K7	Cargas normales
Combinadas	Dirección Indetermianda de Carga		M7	Cargas Radiales Relativamente Pesadas

Tabla 9.6 Ajustes en Eje para Rodamientos de Rodillos Cónicos con Diseño en pulgadas

(1) Rodamientos de Precisión Clases 4 y 2

(')	Houaimentos	Unidades : µm									
C	ondiciones de	Diámetros Interiores Nominales d					cias de Interior ds		cias del o del Eje	- Observaciones	
F	uncionamiento	OVE	er	in	cl					Observaciones	
		(mm)	1/25.4	(mm)	1/25.4	alta	baja	alta	baja		
		_	_	76.200	3.0000	+13	0	+ 38	+ 25		
_	Cargas Normales	76.200	3.0000	304.800	12.0000	+25	0	+ 64	+ 38	Para rodamientos con d≤152,4mm, el juego suele ser superior a CN.	
as el		304.800	12.0000	609.600	24.0000	+51	0	+127	+ 76		
ptator		609.600	24.0000	914.400	36.0000	+76	0	+190	+114		
Cargas Rotatorias en Anillo Interior	Cargas Pesadas	_	-	76.200	3.0000	+13	0	+ 64	+ 38	En general, se usan rodamientos con	
Carc	Cargas de	76.200	3.0000	304.800	12.0000	+25	0		*	juego superior a CN. ** significa que la interferencia	
	Choque	304.800	12.0000	609.600	24.0000	+51	0		*		
	Alta Velocidad	609.600	24.0000	914.400	36.0000	+76	0	+381	+305	media es aprox. 0,0005 d.	
		_	-	76.200	3.0000	+13	0	+ 13	0	El anillo int. no se puede desplazar	
₩		76.200	3.0000	304.800	12.0000	+25	0	+ 25	0	axialmente. Con cargas pesadas o de choque, aplique cifras anteriores	
orias	0	304.800	12.0000	609.600	24.0000	+51	0	+ 51	0	(Cargas rotatorias del anillo int.,	
Ext	Cargas Normales sin	609.600	24.0000	914.400	36.0000	+76	0	+ 76	0	cargas pesadas o de choque).	
Cargas Rotatorias en Anillo Exterior	Choques	_	-	76.200	3.0000	+13	0	0	- 13		
Sarg		76.200	3.0000	304.800	12.0000	+25	0	0	- 25	El anillo interior se puede desplazar	
_		304.800	12.0000	609.600	24.0000	+51	0	0	- 51	axialmente.	
		609.600	24.0000	914.400	36.0000	+76	0	0	- 76		

(2) Rodamientos de Precisión Clases 3 y 0 (1)

Unidades: µm Tolerancias de Tolerancias del Diámetro Interior Diámetros Interiores Nominales dDiámetro del Eje Δ_{ds} Condiciones de Observaciones Funcionamiento más de hasta 1/25.4 1/25.4 alta baja alta (mm) (mm) baja Husillos Principales 76.200 3.0000 + 30 +13 0 +18 para Máguinas 76.200 3.0000 304.800 12.0000 + 30 +13 0 +18 Cargas Rotatorias del Herramienta de 304.800 12.0000 609.600 24.0000 +25 0 + 64 +38 Precisión 609.600 24.0000 914.400 36.0000 0 +102 +64 +38 76.200 3.0000 Cargas Pesadas +13 0 12.0000 Cargas de 76.200 3.0000 304.800 +13 0 Se utiliza una interferencia mínima de aprox. 0.00025 d. Choque 304.800 12.0000 609.600 24.0000 +25 0 Alta Velocidad 609,600 24.0000 914.400 36.0000 +38 0 76.200 3.0000 + 30 +18 +130 Husillos Principales para Máguinas 76.200 3.0000 304.800 12.0000 +13 0 + 30 +18 Herramienta de 304.800 12.0000 609.600 24.0000 +25 0 + 64 +38 Precisión 609.600 24.0000 914,400 36.0000 +38 0 +102 +64

(1) Para rodamientos con d superior a 304.8mm, la Clase 0 no existe.

Tabla 9.7 Ajustes en Alojamiento de los Rodamientos de Rodillos Cónicos con diseño en pulgadas

(1) Rodamientos de Precisión Clases 4 y 2

(1)	Rodamientos	de Precisión	Clases 4 y 2	2						Unidades : µm
(Condiciones de	Diámetros Exteriores Nominales D					cias del Exterior Ds	Toleran Diámetro del Aloja	Interior	Observaciones
F	uncionamiento	más	de	has	sta					ODSELVACIONES
		(mm)	1/25.4	(mm)	1/25.4	alta	baja	alta	baja	
		_	-	76.200	3.0000	+25	0	+ 76	+ 51	
	Utilizado tanto	76.200	3.0000	127.000	5.0000	+25	0	+ 76	+ 51	El collection de la contraction
	en extremo libre como en extremo	127.000	5.0000	304.800	12.0000	+25	0	+ 76	+ 51	El anillo exterior se puede desplaza axialmente con facilidad.
	fijo	304.800	12.0000	609.600	24.0000	+51	0	+152	+102	axiaimente con facilidad.
nior	,	609.600	24.0000	914.400	36.0000	+76	0	+229	+152	
Cargas Rotatorias del Anillo Interior		_	-	76.200	3.0000	+25	0	+ 25	0	
Ani	La posición del anillo exterior se puede ajustar	76.200	3.0000	127.000	5.0000	+25	Ö	+ 25	0	
as de		127.000	5.0000	304.800	12.0000	+25	0	+ 51	0	El anillo exterior se puede desplaza axialmente con facilidad.
tatori	axialmente.	304.800	12.0000	609.600	24.0000	+51	0	+ 76	+ 25	axiaimente con facilidad.
IS Bo		609.600	24.0000	914.400	36.0000	+76	0	+127	+ 51	
Cargo		_	_	76.200	3.0000	+25	0	- 13	- 38	
	La posición del	76.200	3.0000	127.000	5.0000	+25	Ö	- 25	- 51	
	anillo exterior no se puede ajustar	127.000	5.0000	304.800	12.0000	+25	0	- 25	- 51	Generalmente, el anillo exterior se fija axialmente.
	axialmente.	304.800	12.0000	609.600	24.0000	+51	0	- 25	- 76	iija axiaiiiieiile.
		609.600	24.0000	914.400	36.0000	+76	0	- 25	-102	
тŔ		_	-	76.200	3.0000	+25	0	- 13	- 38	
Anillo Ext.	Cargas normales La posición del	76.200	3.0000	127.000	5.0000	+25	Ö	- 25	- 51	
ot. Aı	anillo exterior no	127.000	5.0000	304.800	12.0000	+25	0	- 25	- 51	El anillo exterior se fija axialmente.
Cargas Rot.	se puede ajustar axialmente.	304.800	12.0000	609.600	24.0000	+51	0	- 25	- 76	·
Cari	anaiiiiciile.	609.600	24.0000	914.400	36.0000	+76	0	- 25	-102	

(2) Rodamientos de Precisión Clases 3 y 0 (1)

609.600

Unidades: µm Tolerancias del Tolerancias del Diámetro Interior Diámetros Exteriores Nominales D Diámetro Exterior Δ_{Ds} del Alojamiento Condiciones de Observaciones Funcionamiento más de hasta 1/25.4 1/25.4 (mm) (mm) alta baja alta baja 152,400 6.0000 +25 +130 +38 152.400 6.0000 304.800 12.0000 Utilizado en +130 +38 +25 El anillo exterior se puede desplazar extremo libre 12.0000 24.0000 axialmente. 304.800 609.600 +38 +250 +64 24.0000 609.600 914.400 36.0000 0 +89 +38 +51 Rotatorias del Anillo Interior 6.0000 152.400 +130 +25 +13 Utilizado en 152.400 6.0000 304.800 12.0000 +130 +25 +13 El anillo exterior se puede desplazar extremo fijo axialmente. 304.800 12.0000 609.600 24.0000 +25 0 +51 +25 609,600 24.0000 914.400 36.0000 0 +76 +38 +38 152,400 6.0000 +13 0 +130 La posición del 152.400 6.0000 304.800 12.0000 +130 +25 0 anillo exterior Generalmente, el anillo exterior se se puede ajustar 304.800 12.0000 609.600 24.0000 +25 +25 0 fija axialmente. Ω axialmente. 609,600 24.0000 914.400 36.0000 +38 +38 0 0 -13 152.400 6.0000 +13 0 La posición del 152.400 6.0000 304 800 12.0000 0 -25 +130 anillo exterior no El anillo exterior se fija axialmente. se puede ajustar 304.800 12.0000 609.600 24.0000 0 -25 +250 axialmente 609.600 24.0000 914.400 36.0000 0 -38 +38 0 Rotatorias del 76.200 3.0000 +13 0 -13 -25 Cargas normales Anillo Exterior 76.200 3.0000 152.400 6.0000 +130 -13 -25 La posición del anillo exterior no 152,400 6.0000 304.800 12.0000 -13 -38 El anillo exterior se fija axialmente. +13 0 se puede ajustar 304.800 12.0000 609.600 24.0000 +25 0 -13-38axialmente

36.0000

+38

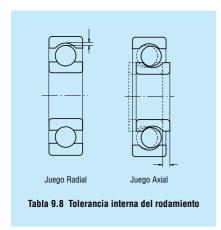
-13

-51

(1) Para rodamientos con D superior a 304.8 mm. la Clase 0 no existe.

914.400

24.0000


9.2 Tolerancias Internas del Rodamiento

9.2.1 Tolerancias Internas v Sus Estándares

El juego interno de los rodamientos en funcionamiento tiene una gran influencia en las prestaciones de los mismos, incluyendo la vida de fatiga, la vibración, el ruido, la generación de calor, etc. En consecuencia, la selección del juego interno adecuado es una de las tareas más importantes a la hora de seleccionar un rodamiento, una vez determinado su tipo y tamaño.

Este juego interno del rodamiento es la combinación de los juegos existentes entre los anillos interiores/ exteriores y los elementos rodantes. Los juegos radial y axial se definen como el desplazamiento total posible de un anillo respecto al otro en las direcciones radial y axial. respectivamente (Fig. 9.1).

Para obtener unas mediciones precisas, el juego se mide generalmente aplicando una carga de medición especificada sobre el rodamiento; por lo tanto, esta medición de juego (llamado a veces "juego medido" para distinguirlo) siempre es ligeramente superior al

juego interno teórico (llamado "juego geométrico" para los rodamientos radiales) debido a la deformación elástica causada por la carga de medición.

Por lo tanto, el juego interno teórico puede obtenerse corrigiendo el juego medido según los valores de deformación elástica. No obstante, en el caso de rodamientos de rodillos esta deformación elástica es insignificantemente pequeña.

Normalmente el juego antes del montaje es el especificado como juego interno teórico.

En la Tabla 9.8, la tabla de referencia y los números de página se muestran por tipos de rodamiento.

Tabla 9.8 Índice de Juegos Internos Radiales por Tipos de Rodamiento

Tipos	de Rodamiento	Número de Tabla	Número de Página
Rodamientos de Bolas	de Ranura Profunda	9.9	A89
Rodamientos de Bolas	Extra Pequeños y Miniaturas	9.10	A89
Rodamientos para Ma	gnetos	9.11	A89
Rodamientos de Bolas	Autoalineantes	9.12	A90
Rodamientos de Bolas de Ranura Profunda	Para Motores	9.13.1	A90
Rodamientos de Rodillos Cilíndricos	1 Para Motores	9.13.2	A90
Rodamientos de Rodillos Cilíndricos	Con Diámetros Interiores Cilíndricos Con Diámetros Interiores Cilíndricos (Emparejados) Con Diámetros Interiores Cónicos (Emparejados)	9.14	A91
Rodamientos de Rodillos Esféricos	Con Diámetros Interiores Cilíndricos Con Diámetros Interiores Cónicos	9.15	A92
Rodamientos de Rod Doble Hilera	illos Cónicos Combinados y de	9.15	A93
Rodamientos de Bola Combinados (1)	s de Contacto Angular	9.17	A94
Rodamientos de Bola	s de Cuatro Puntos de Contacto (¹)	9.18	A94

Nota (1) Los valores se refieren a juegos axiales.

Tabla 9.9 Juegos Internos Radiales en Rodamientos de Bolas de Ranura Profunda

Unidades: um

Diámetro Inte						Jue	ego				
d (mm)		C	2	С	N	С	3	C	4	C	5
más de l	hasta	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.
10 sólo 10 18	18 24	0 0 0	7 9 10	2 3 5	13 18 20	8 11 13	23 25 28	14 18 20	29 33 36	20 25 28	37 45 48
24	30	1	11	5	20	13	28	23	41	30	53
30	40	1	11	6	20	15	33	28	46	40	64
40	50	1	11	6	23	18	36	30	51	45	73
50	65	1	15	8	28	23	43	38	61	55	90
65	80	1	15	10	30	25	51	46	71	65	105
80	100	1	18	12	36	30	58	53	84	75	120
120	120	2	20	15	41	36	66	61	97	90	140
	140	2	23	18	48	41	81	71	114	105	160
	160	2	23	18	53	46	91	81	130	120	180
180	180	2	25	20	61	53	102	91	147	135	200
	200	2	30	25	71	63	117	107	163	150	230
	225	2	35	25	85	75	140	125	195	175	265
250 2	250	2	40	30	95	85	160	145	225	205	300
	280	2	45	35	105	90	170	155	245	225	340
	315	2	55	40	115	100	190	175	270	245	370
355	355	3	60	45	125	110	210	195	300	275	410
	400	3	70	55	145	130	240	225	340	315	460
	450	3	80	60	170	150	270	250	380	350	510
500	500	3	90	70	190	170	300	280	420	390	570
	560	10	100	80	210	190	330	310	470	440	630
	630	10	110	90	230	210	360	340	520	490	690
	710	20	130	110	260	240	400	380	570	540	760
	800	20	140	120	290	270	450	430	630	600	840

Observaciones

Para obtener los valores medidos, utilice el valor de corrección del aumento del juego radial causado por la carga de medición indicada en la tabla siguiente. Para la clase de juego C2, debería utilizarse el valor menor para los rodamientos con un juego mínimo y el valor mayor para los rodamientos cuyo intervalo de juego se acerque al máximo.

Unidades: um

Diámetro I Nominal d			a de ición	Cor	recciói	n del Ju	uego Ra	adial
más de	hasta	(N)	{kgf}	C2	CN	СЗ	C4	C5
10 (incl.) 18 50	18 50 280	24.5 49 147	{2.5} {5} {15}	3~4 4~5 6~8	4 5 8	4 6 9	4 6 9	4 6 9

Observaciones Para valores superiores a 280 mm, contacte con NSK.

Tabla 9.10 Juegos Internos Radiales en Rodamientos de Bolas Extra Pequeños y Miniaturas

Unidades : um

	Símbolo de Juego	M	C1	M	C2	M	СЗ	М	C4	M	C5	M	C6
ı		mín.	máx.										
	Juego	0	5	3	8	5	10	8	13	13	20	20	28

Observaciones

- 1. El juego estándar es MC3.
- Para obtener el valor medido, añada la corrección mostrada en la tabla siguiente.

Unidades : µm

Símbolo de Juego	MC1	MC2	МС3	MC4	MC5	MC6
Valor de Corrección del Juego	1	1	1	1	2	2

Las cargas de medición son las siguientes: Para los rodamientos de bolas miniaturas* 2.5N {0.25kgf}

Para los rodamientos de bolas extra pequeños*

4.4N {0.45kgf} *Para su clasificación, consulte la Tabla 1 en la Página B 31.

Table 9.11 Juegos Internos Radiales en los Rodamientos para Magnetos

Unidades : µm

Diámetro Nom d (n	inal	Series de Rodamientos	Jue	go
más de	hasta		mín.	máx.
0.5	20	EN	10	50
2.5	30	E	30	60

Tabla 9.12 Juegos Internos Radiales en Rodamientos de Bolas Autoalineantes

Unidades : μm

Diámetro I		Jue	go en I	Rodam	nientos	con D	iámetr	os Inte	riores	Cilíndr	icos	Ju	ego en	Roda	miento	s con	Diámet	ros Int	eriores	Cónic	os
Nominal <i>a</i>	(mm)	(2	C	N	C	23	C	4	C	5	C	2	C	N	C	3	C	4		C5
más de	hasta	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.
2.5 6 10	6 10 14	1 2 2	8 9 10	5 6 6	15 17 19	10 12 13	20 25 26	15 19 21	25 33 35	21 27 30	33 42 48	=	=	=	=	=	=	=	=	=	=
14 18 24	18 24 30	3 4 5	12 14 16	8 10 11	21 23 24	15 17 19	28 30 35	23 25 29	37 39 46	32 34 40	50 52 58	 7 9	 17 20	13 15	 26 28	20 23	— 33 39	28 33	42 50	37 44	 55 62
30 40 50	40 50 65	6 6 7	18 19 21	13 14 16	29 31 36	23 25 30	40 44 50	34 37 45	53 57 69	46 50 62	66 71 88	12 14 18	24 27 32	19 22 27	35 39 47	29 33 41	46 52 61	40 45 56	59 65 80	52 58 73	72 79 99
65 80 100	80 100 120	8 9 10	24 27 31	18 22 25	40 48 56	35 42 50	60 70 83	54 64 75	83 96 114	76 89 105	108 124 145	23 29 35	39 47 56	35 42 50	57 68 81	50 62 75	75 90 108	69 84 100	98 116 139	91 109 130	123 144 170
120 140	140 160	10 15	38 44	30 35	68 80	60 70	100 120	90 110	135 161	125 150	175 210	40 45	68 74	60 65	98 110	90 100	130 150	120 140	165 191	155 180	205 240

Tabla 9.13 Juegos Internos Radiales en Rodamientos para Motores Eléctricos

Tabla 9.13.1 Rodamientos de Bolas de Ranura Profunda para Motores Eléctricos

Unidades: µm

Observaciones Juego Diámetro Interior Nominal Diám. d (mm) CMAjuste Recomendado más de hasta mín. máx. Eje Diám. Int. Aloj. js5 (j5) 10 (incl.) 18 4 11 5 18 30 12 30 50 9 17 H6~7 k5 or 50 80 12 22 JS6~7 80 100 18 30 (J6~7)100 120 18 30 m5 120 160 38

Observaciones

El incremento del juego radial causado por la carga de medición equivale a la cantidad de corrección para el juego CN que figura en las observaciones de la Tabla 9.9.

Tabla 9.13.2 Rodamientos de Rodillos Cilíndricos para Motores Eléctricos

Unidades : µm

							ου . μπ
Diám. Int.	Nominal		Jue	ego		Ot	servaciones
Diám. d	(mm)	CT interd	ambiable	CM emp	arejados	Ajust	e aconsejado
más de	hasta	mín.	máx.	mín.	máx.	Eje	Diám. Int. Aloj.
24	40	15	35	15	30	k5	
40	50	20	40	20	35		
50	65	25	45	25	40		
65	80	30	50	30	45		
80	100	35	60	35	55	m5	JS6~7 (J6~7)
100	120	35	65	35	60		or
120	140	40	70	40	65		K6~7
140	160	50	85	50	80		
160	180	60	95	60	90	n6	
180	200	65	105	65	100	1.0	

Tabla 9.14 Juegos Internos Radiales en Rodamientos de Rodillos Cilíndricos y Rodamientos de Rodillos de Agujas de Tipo Sólido Unidades: μm

	Diám Inte	rno	Jueg	jos en	Rodan	nientos	con D	iámetr	os Inte	eriores	Cilíndı	icos		Jueg	os er	n Roda	miento		arejad índrico		Diáme	etros Ir	nteriore	es
	Nom d (m		C	2	С	N	C	3	C	4	C	5	C	C1	С	C2	CC	(1)	C	C3	C	C4		CC5
n	nás de	hasta	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.								
	_ 10 24	10 24 30	0 0 0	25 25 25	20 20 20	45 45 45	35 35 35	60 60 60	50 50 50	75 75 75	65 70	90 95	_ 5 5	15 15	10 10	 20 25	20 25	— 30 35	— 35 40	 45 50	45 50	— 55 60	 65 70	— 75 80
	30 40 50	40 50 65	5 5 10	30 35 40	25 30 40	50 60 70	45 50 60	70 80 90	60 70 80	85 100 110	80 95 110	105 125 140	5 5 5	15 18 20	12 15 15	25 30 35	25 30 35	40 45 50	45 50 55	55 65 75	55 65 75	70 80 90	80 95 110	95 110 130
		80 100 120	10 15 15	45 50 55	40 50 50	75 85 90	65 75 85	100 110 125	90 105 125	125 140 165	130 155 180	165 190 220	10 10 10	25 30 30	20 25 25	40 45 50	40 45 50	60 70 80	70 80 95	90 105 120	90 105 120	110 125 145	130 155 180	150 180 205
	140	140 160 180	15 20 25	60 70 75	60 70 75	105 120 125	100 115 120	145 165 170	145 165 170	190 215 220	200 225 250	245 275 300	10 10 10	35 35 40	30 35 35	60 65 75	60 65 75	90 100 110	105 115 125	135 150 165	135 150 165	160 180 200	200 225 250	230 260 285
	180 200 225	225	35 45 45	90 105 110	90 105 110	145 165 175	140 160 170	195 220 235	195 220 235	250 280 300	275 305 330	330 365 395	15 15 15	45 50 50	40 45 50	80 90 100	80 90 100	120 135 150	140 155 170	180 200 215	180 200 215	220 240 265	275 305 330	315 350 380
	250 280 315	315	55 55 65	125 130 145	125 130 145	195 205 225	190 200 225	260 275 305	260 275 305	330 350 385	370 410 455	440 485 535	20 20 20	55 60 65	55 60 65	110 120 135	110 120 135	165 180 200	185 205 225	240 265 295	240 265 295	295 325 360	370 410 455	420 470 520
	355 400 450	450	100 110 110	190 210 220	190 210 220	280 310 330	280 310 330	370 410 440	370 410 440	460 510 550	510 565 625	600 665 735	25 25 25	75 85 95	75 85 95	150 170 190	150 170 190	225 255 285	255 285 315	330 370 410	330 370 410	405 455 505	510 565 625	585 650 720

Nota

Unidades : µm

Diámetro	Interno																
Nominal	d (mm)	CC	9 (1)	C	C0	С	C1	C	C2	CC	(2)	C	C3	C	C4		CC5
más de	hasta	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.
10	24	5	10	_	—	10	20	20	30	35	45	45	55	55	65	75	85
24	30	5	10	8	15	10	25	25	35	40	50	50	60	60	70	80	95
30	40	5	12	8	15	12	25	25	40	45	55	55	70	70	80	95	110
40	50	5	15	10	20	15	30	30	45	50	65	65	80	80	95	110	125
50	65	5	15	10	20	15	35	35	50	55	75	75	90	90	110	130	150
65	80	10	20	15	30	20	40	40	60	70	90	90	110	110	130	150	170
80	100	10	25	20	35	25	45	45	70	80	105	105	125	125	150	180	205
100	120	10	25	20	35	25	50	50	80	95	120	120	145	145	170	205	230
120	140	15	30	25	40	30	60	60	90	105	135	135	160	160	190	230	260
140	160	15	35	30	50	35	65	65	100	115	150	150	180	180	215	260	295
160	180	15	35	30	50	35	75	75	110	125	165	165	200	200	240	285	320
180	200	20	40	30	50	40	80	80	120	140	180	180	220	220	260	315	355
200	225	20	45	35	60	45	90	90	135	155	200	200	240	240	285	350	395
225	250	25	50	40	65	50	100	100	150	170	215	215	265	265	315	380	430
250	280	25	55	40	70	55	110	110	165	185	240	240	295	295	350	420	475
280 315 355	315 355 400	30 30 35	60 65 75	=	_	60 65 75	120 135 150	120 135 150	180 200 225	205 225 255	265 295 330	265 295 330	325 360 405	325 360 405	385 430 480	470 520 585	530 585 660
400 450	450 500	40 45	85 95	_	=	85 95	170 190	170 190	255 285	285 315	370 410	370 410	455 505	455 505	540 600	650 720	

Notas

Notas (2) CC denota un juego normal para rodamientos de rodillos cilíndricos emparejados y rodamientos de rodillos de agujas de tipo sólido. A 91

⁽¹⁾CC denota un juego normal para rodamientos de rodillos cilíndricos emparejados y rodamientos de rodillos de agujas de tipo sólido.

⁽¹⁾ El Juego CC9 es aplicable a rodamientos de rodillos cilíndricos con diámetros interiores cónicos en las Clases de Tolerancia ISO 5 y 4.

Tabla 9.15 Juegos Internos Radiales en los Rodamientos de Rodillos Esféricos

Unidades : $\mu\,m$

Diám Inte		Ju	ego er	n Roda	amien	tos co	n Diám	etros II	nteriore	s Cilínd	ricos		Juego	en R	odamie	ntos co	n Diám	etros Ir	iteriores	conic	
Nom d (n	inal	C	2	С	N	(C3	C	4	C	25	C	2	(CN	C	3	C	24		C5
más de	hasta	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.
24	30	15	25	25	40	40	55	55	75	75	95	20	30	30	40	40	55	55	75	75	95
30	40	15	30	30	45	45	60	60	80	80	100	25	35	35	50	50	65	65	85	85	105
40	50	20	35	35	55	55	75	75	100	100	125	30	45	45	60	60	80	80	100	100	130
50	65	20	40	40	65	65	90	90	120	120	150	40	55	55	75	75	95	95	120	120	160
65	80	30	50	50	80	80	110	110	145	145	180	50	70	70	95	95	120	120	150	150	200
80	100	35	60	60	100	100	135	135	180	180	225	55	80	80	110	110	140	140	180	180	230
100	120	40	75	75	120	120	160	160	210	210	260	65	100	100	135	135	170	170	220	220	280
120	140	50	95	95	145	145	190	190	240	240	300	80	120	120	160	160	200	200	260	260	330
140	160	60	110	110	170	170	220	220	280	280	350	90	130	130	180	180	230	230	300	300	380
160	180	65	120	120	180	180	240	240	310	310	390	100	140	140	200	200	260	260	340	340	430
180	200	70	130	130	200	200	260	260	340	340	430	110	160	160	220	220	290	290	370	370	470
200	225	80	140	140	220	220	290	290	380	380	470	120	180	180	250	250	320	320	410	410	520
225	250	90	150	150	240	240	320	320	420	420	520	140	200	200	270	270	350	350	450	450	570
250	280	100	170	170	260	260	350	350	460	460	570	150	220	220	300	300	390	390	490	490	620
280	315	110	190	190	280	280	370	370	500	500	630	170	240	240	330	330	430	430	540	540	680
315	355	120	200	200	310	310	410	410	550	550	690	190	270	270	360	360	470	470	590	590	740
355	400	130	220	220	340	340	450	450	600	600	750	210	300	300	400	400	520	520	650	650	820
400	450	140	240	240	370	370	500	500	660	660	820	230	330	330	440	440	570	570	720	720	910
450 500 560	560	140 150 170	260 280 310	260 280 310	410 440 480	410 440 480	550 600 650	550 600 650	720 780 850	720 780 850	900 1 000 1 100	260 290 320	370 410 460	370 410 460	490 540 600	490 540 600	630 680 760	630 680 760	790 870 980	790 870 980	1 000 1 100 1 230
630 710 800	800	190 210 230	350 390 430	350 390 430	530 580 650	530 580 650	700 770 860	700 770 860	920 1 010 1 120	1 010	1 190 1 300 1 440	350 390 440	510 570 640	510 570 640	670 750 840	670 750 840	850 960 1 070	850 960 1 070	1 090 1 220 1 370	1 090 1 220 1 370	1 360 1 500 1 690
900 1 000 1 120 1 250	1 000 1 120 1 250 1 400	260 290 320 350	480 530 580 640	480 530 580 640	710 780 860 950	710 780 860 950	930 1 020 1 120 1 240	930 1 020 1 120 1 240	1 220 1 330 1 460 1 620	1 220 — — —	1 570 — — —	490 530 570 620	710 770 830 910	830	930 1 030 1 120 1 230	1 030	1 190 1 300 1 420 1 560	1 190 1 300 1 420 1 560	1 520 1 670 1 830 2 000	1 520 — — —	

Tabla 9.16 Juegos Internos Radiales en Rodamientos de Rodillos Cónicos Combinados y de Doble Hilera

Unidades : μm

	etro Interior							Juego					
<u>Cilínda</u> Diámet	<u>rico</u> ro Int. Cónico	C	1	C	22	С	N	C	23	C	24		C5
Diámetro International d (_	_	C	1	C	2	С	N	C	3		C4
más de	hasta	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.
18 24	18 24 30	0 0 0	10 10 10	10 10 10	20 20 20	20 20 20	30 30 30	35 35 40	45 45 50	50 50 50	60 60 60	65 65 70	75 75 80
30	40	0	12	12	25	25	40	45	60	60	75	80	95
40	50	0	15	15	30	30	45	50	65	65	80	95	110
50	65	0	15	15	35	35	55	60	80	80	100	110	130
65	80	0	20	20	40	40	60	70	90	90	110	130	150
80	100	0	25	25	50	50	75	80	105	105	130	155	180
100	120	5	30	30	55	55	80	90	115	120	145	180	210
120	140	5	35	35	65	65	95	100	130	135	165	200	230
140	160	10	40	40	70	70	100	110	140	150	180	220	260
160	180	10	45	45	80	80	115	125	160	165	200	250	290
180	200	10	50	50	90	90	130	140	180	180	220	280	320
200	225	20	60	60	100	100	140	150	190	200	240	300	340
225	250	20	65	65	110	110	155	165	210	220	270	330	380
250	280	20	70	70	120	120	170	180	230	240	290	370	420
280	315	30	80	80	130	130	180	190	240	260	310	410	460
315	355	30	80	80	130	140	190	210	260	290	350	450	510
355	400	40	90	90	140	150	200	220	280	330	390	510	570
400	450	45	95	95	145	170	220	250	310	370	430	560	620
450	500	50	100	100	150	190	240	280	340	410	470	620	680
500	560	60	110	110	160	210	260	310	380	450	520	700	770
560	630	70	120	120	170	230	290	350	420	500	570	780	850
630	710	80	130	130	180	260	310	390	470	560	640	870	950
710	800	90	140	150	200	290	340	430	510	630	710	980	1 060
800	900	100	150	160	210	320	370	480	570	700	790	1 100	1 200
900	1 000	120	170	180	230	360	410	540	630	780	870	1 200	1 300
1 000	1 120	130	190	200	260	400	460	600	700	_	_	_	=
1 120	1 250	150	210	220	280	450	510	670	770	_	_	_	
1 250	1 400	170	240	250	320	500	570	750	870	_	_	_	

Observaciones

Juego interno axial $\Delta_{\rm a}$ = $\Delta_{\rm r}$ cot $\alpha = \frac{1.5}{e} \Delta_{\rm r}$

donde

 $\begin{array}{l} \textit{\mathcal{A}_{r}: Juego interno radial}\\ \alpha: \text{ Angulo de Contacto}\\ e: \text{ Constante (mostrada en las tablas de rodamientos)} \end{array}$

Tabla 9.17 Juegos Axiales Internos en Rodamientos de Bolas de Contacto Angular Combinados (Juego Medido)

Unidades: um

			Juego Interno Axial										
	o Interior I d (mm)		Á	ingulo de (Contacto 30)°				Áı	Ángulo de Coi		l°
110111111	()	C	N	(3	C	24	C	N		3		C4
más de	hasta	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.
—	10	9	29	29	49	49	69	6	26	26	46	46	66
10	18	10	30	30	50	50	70	7	27	27	47	47	67
18	24	19	39	39	59	59	79	13	33	33	53	53	73
24	30	20	40	40	60	60	80	14	34	34	54	54	74
30	40	26	46	46	66	66	86	19	39	39	59	59	79
40	50	29	49	49	69	69	89	21	41	41	61	61	81
50	65	35	60	60	85	85	110	25	50	50	75	75	100
65	80	38	63	63	88	88	115	27	52	52	77	77	100
80	100	49	74	74	99	99	125	35	60	60	85	85	110
100	120	72	97	97	120	120	145	52	77	77	100	100	125
120	140	85	115	115	145	145	175	63	93	93	125	125	155
140	160	90	120	120	150	150	180	66	96	96	125	125	155
160	180	95	125	125	155	155	185	68	98	98	130	130	160
180	200	110	140	140	170	170	200	80	110	110	140	140	170

Observaciones Esta tabla es aplicable a rodamientos de las Clases de Tolerancia Normal y 6. Para juegos axiales internos en rodamientos de clases de tolerancia superiores a 5 y ángulos de contacto de 15° y 25°, se recomienda consultar a NSK.

Tabla 9.18 Juegos Axiales Internos en Rodamientos de Bolas de Cuatro Puntos de Contacto (Juegos Medidos)

Unidades : μm

Diámetro Interno Nominal-				Ju	ego Int	erno Ax	kial		
d (r		C	22	С	N	СЗ		C4	
más de	hasta	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.
10	18	15	55	45	85	75	125	115	165
18	40	26	66	56	106	96	146	136	186
40	60	36	86	76	126	116	166	156	206
60	80	46	96	86	136	126	176	166	226
80	100	56	106	96	156	136	196	186	246
100	140	66	126	116	176	156	216	206	266
140	180	76	156	136	196	176	246	226	296
180	220	96	176	156	226	206	276	256	326
220	260	115	196	175	245	225	305	285	365
260	300	135	215	195	275	255	335	315	395
300	350	155	235	215	305	275	365	345	425
350	400	175	265	245	335	315	405	385	475
400	500	205	305	285	385	355	455	435	525

9.2.2 Selección de los Juegos Internos de los Rodamiento

Entre los juegos internos de los rodamientos listados en las tablas, el Juego CN es adecuado para condiciones de funcionamiento estándar. El juego disminuve de forma progresiva de C2 a C1 v aumenta de C3 a C5.

Las condiciones de funcionamiento estándar se definen como aquellas en las cuales la velocidad del anillo interior es inferior al 50% de la velocidad límite que aparece en las tablas de rodamientos, la carga es inferior a la normal (PH = 0.1Cr), y el rodamiento está fijado en el eje.

Como medida para reducir el ruido de los rodamientos en motores eléctricos, el intervalo de juego radial es más estrecho que la clase normal y los valores son algo más pequeños para en rodamientos de bolas de ranura profunda y de rodillos cilíndricos para motores eléctricos. (Consulte las Tablas 9.13.1 y 9.13.2) El juego interno varía por las diferencias de ajuste y la

temperatura de funcionamiento. Los cambios del juego radial en un rodamiento de rodillos se muestran en la Fig. 9.2.

(1) Disminución del Juego Radial Causado por el Ajuste y el Juego Residual

Cuando el anillo interior o el anillo exterior está fijado en un eje o en un alojamiento, se produce una disminución del juego interno radial a causa de la dilatación o la contracción de los anillos de los rodamientos. La disminución varía según el tipo de rodamiento y su tamaño, así como del diseño del eje y del aloiamiento. La cantidad de la disminución es del 70 al 90% de la interferencia (consulte la Sección 15.2, Ajustes (1), Páginas A130 a A133). El juego interno resultante de esta disminución respecto al juego interno teórico \(\Delta 0 \) se llama juego residual. \(\Delta f \).

(2) Disminución del Juego Radial Interno debido a la Diferencia de Temperatura entre los Anillos Interior y Exterior y el Juego Efectivo

El calor friccional generado durante el funcionamiento se disipa a través del eje y del alojamiento. Puesto que los alojamientos generalmente conducen el calor mejor que los ejes, la temperatura del anillo interior y los elementos de rodadura es normalmente mayor que la del anillo exterior de 5 a 10°C. Si el eje aumenta de temperatura o se refrigera el alojamiento, la diferencia de temperatura entre los anillos interior y exterior es superior. El juego radial disminuye a causa de la dilatación térmica que se produce por la diferencia de temperatura entre los anillos interior v exterior. La cantidad de disminución se puede calcular utilizando las siguientes ecuaciones:

$$\delta_t = \alpha \Delta_t D_e$$
....(9.6)

- donde δ_t : Disminución de juego radial a causa de la diferencia de temperatura entre los anillos interior v exterior (mm)
 - α : Coeficiente de dilatación lineal del acero del rodamiento $= 12.5 \times 10^{-6} (1/^{\circ}C)$
 - Δ_t : Diferencia de temperatura entre los anillos interior y exterior (°C)
 - D_e: Diámetro del camino de rodadura del anillo exterior (mm)

Para los rodamientos de bolas

$$D_{\rm e} = \frac{1}{5} (4D + d) \dots (9.7)$$

Para los rodamientos de rodillos

$$D_{\rm e} = \frac{1}{4} (3D + d) \dots (9.8)$$

El juego resultante tras sustraer este dt del juego residual, ∆f se llama juego efectivo, ∠f. En teoría, se puede esperar una mayor vida del rodamiento cuando el juego efectivo es ligeramente negativo. Sin embargo, es difícil obtener esta condición ideal, y un juego negativo excesivo puede disminuir la vida del rodamiento. Por lo tanto, se debe seleccionar un juego de cero o ligeramente positivo, en lugar de uno negativo. Cuando los rodamientos de una hilera de bolas de contacto angular o de rodillos cónicos se usan encarados, debe haber un pequeño juego efectivo, a menos que se requiera precarga. Cuando se usan dos rodamientos de rodillos cilíndricos con reborde en un lado, encarados el uno al otro, es necesario proporcionar el juego axial adecuado para permitir la dilatación del eje durante el funcionamiento. Los juegos radiales usados en algunas aplicaciones específicas vienen indicados en la Tabla 9.19. Baio condiciones de funcionamiento especiales es aconsejable consultar a NSK.

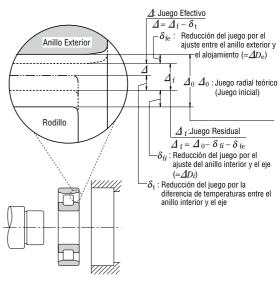


Fig. 9.2 Variación del Juego Radial Interno de los rodamientos.

Tabla 9. 19 Ejemplos de Juegos para Aplicaciones Específicas

Ejemplos	Juego Interno
Ruedas traseras semiflotantes de automóviles	C5 o equivalente
Secadoras en maquinaria para papel	C3, C4
Rodillos de mesa para trenes de laminación	C3
Motores de tracción para ferrocarril	C4
Cribas	C3, C4
Acoplamiento hidráulico	C4
Engranaje reductor final de tractores	C4
Cuellos de cilindros para laminación	C2 o equivalente
Motores pequeños con especificaciones especiales	C1, C2, CM
Ejes principales para tornos	CC9, CC1
	Ruedas traseras semiflotantes de automóviles Secadoras en maquinaria para papel Rodillos de mesa para trenes de laminación Motores de tracción para ferrocarril Cribas Acoplamiento hidráulico Engranaje reductor final de tractores Cuellos de cilindros para laminación Motores pequeños con especificaciones especiales Ejes principales para

10. PRECARGA

Los rodamientos normalmente mantienen un juego interno durante el funcionamiento. En algunos casos, no obstante, es recomendable proporcionar un juego negativo para mantenerlos con estrés interno. Esto se conoce como "precargar". La precarga se aplica normalmente a los rodamientos cuyos juegos pueden ajustarse durante el montaje, como los rodamientos de bolas de contacto angular o los rodamientos de rodillos cónicos. Normalmente, se montan dos rodamientos cara a cara o espalda contra espalda para formar un conjunto doble con precarga.

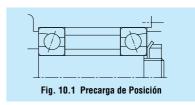
10.1 Finalidad de la Precarga

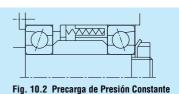
Las principales finalidades y algunas aplicaciones típicas de los rodamientos precargados son las siguientes:

- Para mantener los rodamientos en la posición exacta, tanto radial como axial, y para mantener la precisión de funcionamiento del eje.
 Ejes principales de máquinas herramienta, instrumentos de precisión, etc.
- (2) Para aumentar la rigidez del rodamiento Ejes principales de máquinas herramienta, árboles de mando de engranajes de transmisión de automóviles, etc.
- (3) Para minimizar el ruido debido a la vibración axial y resonancia Motores eléctricos pequeños, etc.
- (4) Para evitar deslizamientos entre los elementos rodantes y los caminos de rodadura debidos a momentos giroscópicos Aplicaciones de alta velocidad o alta aceleración de rodamientos de bolas de contacto angular, y rodamientos de bolas de empuje
- (5) Para mantener los elementos rodantes en su posición correcta con los anillos del rodamiento Rodamientos de bolas de empuje y rodamientos de rodillos de empuje esféricos montados en un eje horizontal

10.2 Métodos de Precarga

10.2.1 Precarga de Posición


La precarga de posición se consigue fijando dos rodamientos opuestos axialmente de tal forma que se les impone una precarga. Una vez fijada, su posición no se modifica durante el funcionamiento.


En la práctica, generalmente se utilizan los siguientes tres métodos para obtener una precarga de posición.

- Instalando un grupo de rodamientos doble con dimensiones del salto de precarga y juego axial previamente ajustados (consulte la Página A7, Fig. 1.1).
- (2) Mediante el uso de un separador o lámina del tamaño adecuado para obtener el espaciado y la precarga requeridos. (Consulte la Fig. 10.1)
- (3) Utilizando tornillos o tuercas para permitir el ajuste de la precarga axial. En este caso, debería medirse el par inicial para verificar la precarga adecuada.

10.2.2 Precarga de Presión Constante

Se obtiene una precarga de presión constante utilizando un muelle en espiral o una anilla que imponga una precarga constante. Incluso si la posición relativa de los rodamientos varía durante el funcionamiento, la magnitud de la precarga permanece relativamente constante (consulte la Fig. 10.2)

10.3 Precarga y Rigidez

10.3.1 Precarga de Posición y Rigidez

Cuando los anillos interiores de los rodamientos dobles mostrados en la Fig.10.3 están fijados axialmente, los rodamientos A y B se desplazan δ_{a^0} y se elimina el espacio axial $2\delta_{a^0}$ entre los anillos interiores. Con esta condición, se impone una precarga F_{a^0} sobre cada rodamiento. En la Fig. 10.4 se muestra un diagrama de precarga que muestra la rigidez del rodamiento, es decir, la relación entre la carga y el desplazamiento con una determinada carga axial F_a impuesta en un conjunto doble.

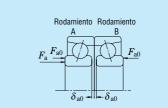
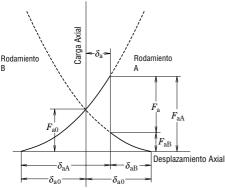


Fig. 10.3 Precarga de Rodamiento Doble Espalda contra Espalda

10.3.2 Precarga de Presión Constante y Rigidez


En la Fig. 10.5 se muestra un diagrama de precarga para dos rodamientos sometidos a una precarga de presión constante. La curva de deflexión del muelle es casi paralela al eie horizontal porque la rigidez de los muelles es menor que la del rodamiento. Como resultado, la rigidez bajo una precarga de presión constante es aproximadamente igual a la de un rodamiento simple con una precarga F_{a0} aplicada al mismo. En la Fig. 10.6 se muestra una comparación de la rigidez de un rodamiento con una precarga de posición y uno con una precarga de presión constante.

10.4 Selección de un Método y del Valor de la Precarga

10.4.1 Comparación de los Métodos de Precarga

La Fig. 10.6 muestra una comparación de la rigidez utilizando ambos métodos de precarga. La precarga de posición y la precarga de presión constante se pueden comparar de la siguiente manera:

- (1) Cuando ambas precargas son iguales, la precarga de posición ofrece una mayor rigidez al rodamiento; en otras palabras, la deflexión debida a las cargas externas es menor para los rodamientos con una precarga de posición.
- (2) En caso de una precarga de posición, la precarga varía dependiendo de factores tales como la diferencia de expansión axial debida a la diferencia de temperatura entre el eje y el alojamiento, la diferencia en expansión radial debida a la diferencia de temperatura entre los anillos interior y exterior. la deflexión debida a la carga, etc.

 F_a : Carga axial aplicada desde el exterior $F_{
m aB}$: Carga axial aplicada sobre el Rodamiento B

 δ_a : Desplazamiento de un grupo de rodamientos doble : Desplazamiento del Rodamiento A

 δ_{aA} $\delta_{
m aB}$: Desplazamiento del Rodamiento B

Fig. 10.4 Desplazamiento Axial con Precarga de Posición

En caso de una precarga de presión constante, es posible minimizar cualquier cambio en la precarga porque la variación de la carga sobre el muelle con contracción o dilatación del eje es insignificante. De la explicación anterior se deduce que las precargas de posición son preferibles para aumentar la rigidez, mientras que las precargas de presión constante son más aconsejables para aplicaciones de alta velocidad. para evitar la vibración axial, para utilizarlas con rodamientos de empuje en ejes horizontales, etc.

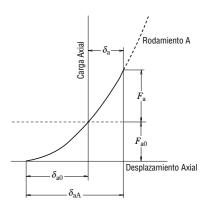


Fig. 10.5 Desplazamiento Axial con Precarga de Presión Constante



Fig. 10.6 Comparación de Rigidez y Métodos de Precarga

 $F_{
m aA}$: Carga axial aplicada sobre el Rodamiento A

10.4.2 Valor de la Precarga

Si la precarga es mayor de lo necesario, puede producirse una generación de calor anormal, un aumento del par de fricción, una reducción de la vida de fatiga, etc. El valor de la precarga debe determinarse cuidadosamente, considerando las condiciones de funcionamiento y la finalidad de la precarga.

(1) Precarga de los Rodamientos de Bolas de **Contacto Angular Dobles**

En la Tabla 10.2 se muestran las precargas medias para rodamientos de bolas de contacto angular dobles (ángulo de contacto de 15°) con una precisión superior a la de la clase P5, que se utilizan en los ejes principales de las máquinas herramienta.

En la Tabla 10.1 se muestran el aiuste recomendado entre el eie y el anillo interior, y entre el alojamiento y el anillo exterior. En el caso de ajustes con alojamientos, debería seleccionarse el límite inferior del intervalo de ajuste para los rodamientos de extremo fijo, y el límite superior para los rodamientos de extremo libre.

Como regla general, debería seleccionar una precarga extra ligera o ligera para husillos de rectificadoras y los ejes principales de centros de mecanizado, mientras que para los ejes principales de tornos que requieran rigidez debería seleccionar una precarga media.

Cuando la velocidad da como resultado un valor de $D_{pw} X n$ (valor $d_{\rm m}n$) superior a 500.000. la precarga debería estudiarse v seleccionarse con mucha atención. En tal caso, consulte primero con NSK.

Tabla 10, 2, 1, Rodamientos Dobles de la Serie 79 Unidades: N

				Ulliuaues . IN
		Prec	argas	
Nº de rodamiento	Precarga Extra Ligera EL	Precarga Ligera L	Precarga Media M	Precarga Alta H
7900 C	7	15	29	59
7901 C	8.6	15	39	78
7902 C	12	25	49	100
7903 C	12	25	59	120
7904 C	19	39	78	150
7905 C	19	39	100	200
7906 C	24	49	100	200
7907 C	34	69	150	290
7908 C	39	78	200	390
7909 C	50	100	200	390
7910 C	50	100	250	490
7911 C	60	120	290	590
7912 C	60	120	290	590
7913 C	75	150	340	690
7914 C	100	200	490	980
7915 C	100	200	490	980
7916 C	100	200	490	980
7917 C	145	290	640	1 270
7918 C	145	290	740	1 470
7919 C	145	290	780	1 570
7920 C	195	390	880	1 770

Tabla 10. 1 Ajuste Recomendado para Rodamientos de Bolas de Contacto Angular Dobles de Alta Precisión con Precarga

				Unidad	les : μm	
Diámetro Interno Nominal d (mm)		Interferencia del Eje de	Diámetro Externo Nominal D (mm)		Juego del Alojamiento de	
más de	hasta	Destino	más de	hasta	Destino	
— 18 30	18 30 50	0 ~ 2 0 ~ 2.5 0 ~ 2.5	— 18 30	18 30 50	— 2~ 6 2~ 6	
50 80 120	80 120 150	0 ~ 3 0 ~ 4 —	50 80 120	80 120 150	3~ 8 3~ 9 4~12	
150 180	180 250	_	150 180	180 250	4~12 5~15	

Tabla 10. 2 Precargas para Rodamientos

Tabla 10. 2. 2 Rodamientos

NO 1		
Nº de	Precarga Extra	Precarga
rodamiento	Ligera EL	Ligera L
7000 C	12	25
7001 C	12	25
7002 C	14	29
7003 C	14	29
7004 C	24	49
7005 C	29	59
7006 C	39	78
7007 C	60	120
7008 C	60	120
7009 C	75	150
7010 C	75	150
7011 C	100	200
7012 C	100	200
7013 C	125	250
7014 C	145	290
7015 C	145	290
7016 C	195	390
7017 C	195	390
7018 C	245	490
7019 C	270	540
7020 C	270	540

(2) Precarga de los Rodamientos de Bolas de Empuje

Cuando las bolas de los rodamientos de empuie giran a velocidades relativamente altas, puede producirse un deslizamiento debido a los momentos giroscópicos de las bolas. Con el fin de evitar dicho deslizamiento. debería utilizarse el mayor de los dos valores obtenidos a partir de las ecuaciones (10.1) y (10.2) como carga axial mínima.

$$F_{\text{a min}} = \frac{C_{0\text{a}}}{100} \left(\frac{n}{N_{\text{max}}} \right)^2 \dots (10.1)$$

$$F_{\text{a min}} = \frac{C_{0\text{a}}}{1000}$$
(10.2)

donde $F_{a \min}$: Carga axial mínima (N), {kgf}

n : Velocidad (rpm)

 C_{0a} : Índice básico de carga estática (N),

 $N_{
m max}$: Velocidad límite (lubricación por

aceite) (rpm)

(3) Precarga de los Rodamientos de Rodillos de Empuie Esféricos

Cuando se utilizan rodamientos de rodillos de empuje esféricos, pueden producirse daños como por ejemplo arañazos debidos al deslizamiento entre los rodillos y el camino de rodadura del anillo exterior. La carga axial mínima $F_{
m a\,min.}$ necesaria para evitar dicho deslizamiento se obtiene a partir de la siguiente ecuación:

$$F_{\rm a \ min} = \frac{C_{0 \rm a}}{1000}$$
(10.3)

de Bolas de Contacto Angular Dobles

Dobles de la Serie 70

Unidades: N

Precargas	Precargas				
Precarga Media M	Precarga Alta H				
49	100				
59	120				
69	150				
69	150				
120	250				
150	290				
200	390				
250	490				
290	590				
340	690				
390	780				
490	980				
540	1 080				
540	1 080				
740	1 470				
780	1 570				
930	1 860				
980	1 960				
1 180	2 350				
1 180	2 350				
1 270	2 550				

Tabla 10, 2, 3 Rodamientos Dobles de la Serie 72

Unidades: N

	Precargas						
Nº de rodamiento	Precarga Extra Ligera EL	Precarga Ligera L	Precarga Media M	Precarga Alta H			
7200 C	14	29	69	150			
7201 C	19	39	100	200			
7202 C	19	39	100	200			
7203 C	24	49	150	290			
7204 C	34	69	200	390			
7205 C	39	78	200	390			
7206 C	60	120	290	590			
7207 C	75	150	390	780			
7208 C	100	200	490	980			
7209 C	125	250	540	1 080			
7210 C	125	250	590	1 180			
7211 C	145	290	780	1 570			
7212 C	195	390	930	1 860			
7213 C	220	440	1 080	2 160			
7214 C	245	490	1 180	2 350			
7215 C	270	540	1 230	2 450			
7216 C	295	590	1 370	2 750			
7217 C	345	690	1 670	3 330			
7218 C	390	780	1 860	3 730			
7219 C	440	880	2 060	4 120			
7220 C	490	980	2 350	4 710			

11. DISEÑO DE LOS EJES Y ALOJAMIENTOS

11.1 Precisión y Acabado de Superficie de los Ejes y Alojamientos

Si la precisión de un eje o del alojamiento no cumple con las especificaciones, las prestaciones de los rodamientos se verán afectadas y no rendirán a plena capacidad. Por ejemplo, la imprecisión en la calidad del chaflán del eje puede desalinear a los anillos interior y exterior del rodamiento, lo que puede reducir la vida de fatiga y añadir una carga lateral además de la carga normal. A veces pueden producirse desgaste y roturas por esta misma razón. Los alojamientos deben ser rígidos para poder ofrecer un soporte firme al rodamiento. Los alojamientos de alta rigidez son ventajosos también desde el punto de vista del ruido, distribución de cargas, etc.

En condiciones normales de funcionamiento, un acabado torneado o un acabado fino son suficientes para la superficie de ajuste; Sin embargo, en aplicaciones en que vibraciones y ruido deban mantenerse en niveles mínimos o en las que se aplican grandes cargas, será necesario un acabado rectificado.

En los casos en que dos o más rodamientos se monten en un alojamiento de una sola pieza, las superficies de ajuste del diámetro interior del alojamiento deben diseñarse de manera que ambos asientos de los rodamientos puedan ser acabados en una misma operación como por ejemplo el perforado en línea. En el caso de alojamientos partidos, debe cuidarse la fabricación del alojamiento de manera que el anillo exterior no se deforme en la instalación. En la

Tabla 11. 1 Precisión y Rugosidad del Eje y el Alojamiento

Elemento	Clase de Rodamientos	Eje	Diámetro Interior del Alojamiento	
Tolerancia para	Normal, Clase 6	$\frac{\text{IT3}}{2} \sim \frac{\text{IT4}}{2}$	$\frac{\text{IT4}}{2} \sim \frac{\text{IT5}}{2}$	
Error de Redondez	Clase 5, Clase 4	IT2 IT3	$\frac{\overline{\text{IT2}}}{2} \sim \frac{\overline{\text{IT3}}}{2}$	
		IT3 IT4	IT4 IT5	
Tolerancia para	Normal, Clase 6	2~2	2~2	
Cilindricidad	Clase 5, Clase 4	<u>IT2</u> <u>IT3</u>	IT2 ~ IT3	
	Clase 3, Clase 4	2 2	2 2	
Tolerancia para	Normal, Clase 6	IT3	IT3~IT4	
Excentricidad del Chaflán	Clase 5, Clase 4	IT3	IT3	
Rugosidad para las Superficies de	Rodamientos Pequeños	0.8	1.6	
Ajuste R _a	Rodamientos Grandes	1.6	3.2	

Observaciones

Esta tabla es para recomendaciones generales utilizando el método de medición del radio, la clase de tolerancia básica (IT debe seleccionarse en función de la clase de precisión del rodamiento. Usando las cifras de IT, consulte la Tabla 11 del Apéndice (página C22). En los casos en que el anillo exterior se monte en el diámetro interno del alojamiento con interferencia o que se monte un rodamiento de sección en cruz en un eje y alojamiento, la precisión del eje y del alojamiento deben ser mayores ya que afecta directamente a la pista de rodadura del rodamiento.

Tabla 11.1 se listan la precisión y el acabado de superficie para ejes y alojamientos en condiciones normales de trabaio.

11.2 Dimensiones del Codo y Chafán

Los codos del eje o alojamiento en contacto con la cara del rodamiento deben ser perpendiculares a la línea central del eje. (Consulte la Tabla 11.1) La cara frontal del chaflán del alojamiento para un rodamiento de rodillos cónicos debe ser paralela con el eje del rodamiento para evitar interferencias con la jaula.

Los topes del eje y del alojamiento no deben estar en contacto con el chaflan del rodamiento; por lo tanto, el radio del tope r_a debe ser menor que la medida mínima del chaflan del rodamiento r o r_1 .

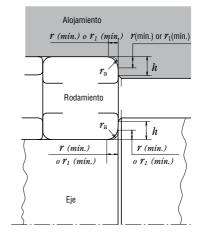


Fig. 11.1 Dimensiones del Chaflan del Rodamiento, Radio del Chaflan de Eje y Alojamiento, y Altura del Codo

La altura del codo para los ejes y alojamientos de los rodamientos radiales debe ser suficiente para ofrecer un buen apoyo sobre el lateral de los rodamientos, pero debe haber apoyo suficiente más allá del chaflán para permitir el uso de herramientas especiales de desmontaje. En la Tabla 11.2 se listan las alturas mínimas recomendadas para rodamientos radiales de series métricas. Las dimensiones nominales asociadas con el montaje de los rodamientos se listan en las tablas de rodamientos incluyendo los diámetros adecuados del codo. Resulta particularmente importante la altura del codo para soportar los rebordes laterales de los rodamientos de rodillos cónicos y de rodillos cilíndricos sujetos a elevadas cargas axiales.

Los valores de h y r_a en la Tabla 11.2 deben ser adoptados en los casos en que el radio de los topes del eje y del alojamiento sean los indicados en la Fig. 11.2 (a), mientras que los valores de la Tabla 11.3 suelen usarse con radios recortados que se producen al rectificar el eje tal como se indica en la Fig. 11.2 (b).

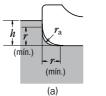


Tabla 11. 2 Alturas de Codo Mínimas Aconsejadas para su Uso con Rodamientos Radiales Métricos

Unidades: mm

Dimensiones		Eje o Alojamien	to
Nominales	Dimensiones	Alturas Mínir	mas del codo
del Chaflán	del chaflán de	h (r	nin)
$oldsymbol{r}$ (mín.) 0 $oldsymbol{r}_1$ (mín.)	eje o alojamiento **Xa (máx.)	Rodam. de Bolas de Ranura Profunda, Rodam. de Bolas Autoalineantes, Rodam. de Rodillos Cilíndricos, Rodamientos de Agujas	Rodamientos de Bolas de Contacto Angular, Rodamientos de Rodillos Cónicos, Rodamientos de Rodillos Esféricos
0.05	0.05	0.2	_
0.08	0.08	0.3	_
0.1	0.1	0.4	_
0.15	0.15	0.6	—
0.2	0.2	0.8	—
0.3	0.3	1	1.25
0.6	0.6	2	2.5
1	1	2.5	3
1.1	1	3.25	3.5
1.5	1.5	4	4.5
2	2	4.5	5
2.1	2	5.5	6
2.5	2	—	6
3	2.5	6.5	7
4	3	8	9
5	4	10	11
6	5	13	14
7.5	6	16	18
9.5	8	20	22
12	10	24	27
15	12	29	32
19	15	38	42

- **Observaciones** 1. Cuando se aplican cargas axiales pesadas, la altura del chaflán debe ser mayor que los valores listados.
 - 2. El radio del tope del ángulo también se aplica a los rodamientos axiales.
 - 3. El diámetro del chaflán se lista en lugar de la altura del chaflán en las tablas de rodamientos.

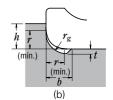


Fig. 11. 2 Dimensiones del Chaflán y Altura de Codo

Tabla 11. 3 Recorte del Eje

Unidades: mm

Dimensiones del Chaflán del anillo interior/exterior	Dimensiones del recorte				
r (mín.) o r_1 (mín.)	t	$r_{ m g}$	b		
1	0.2	1.3	2		
1.1	0.3	1.5	2.4		
1.5	0.4	2	3.2		
2	0.5	2.5	4		
2.1	0.5	2.5	4		
2.5	0.5	2.5	4		
3	0.5	3	4.7		
4	0.5	4	5.9		
5	0.6	5	7.4		
6	0.6	6	8.6		
7.5	0.6	7	10		

Para los rodamientos de empuje, la ortogonalidad y el área de contacto de la cara de apoyo para los anillos del rodamiento debe ser la adecuada. En el caso de rodamientos de bolas de empuje, el diámetro del codo del alojamiento $D_{\rm a}$ debería ser inferior al diámetro de giro de las bolas, y el diámetro del codo del eje $d_{\rm a}$ debería ser superior al diámetro de giro de las bolas (Fig. 11.3).

Para rodamientos de rodillos de empuje, es recomendable que la longitud total de contacto entre los rodillos y los anillos tenga el soporte del eje y del codo del alojamiento (Fig. 11.4).

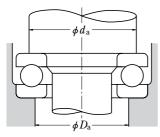
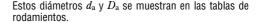



Fig. 11.3 Diametro de los Apoyos para Rodamientos de Empuje de Bolas

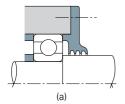
Fig. 11.4 Diámetro de los Apoyos para Rodamientos de Rodillos de Empuje

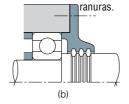
11.3 Sellados de Rodamientos

Para garantizar la máxima vida posible de un rodamiento, puede que sea necesario aplicar sellados para evitar pérdidas de lubricante y la entrada de polvo, agua, y otros cuerpos extraños, como partículas metálicas. Los sellados no deben tener una fricción de funcionamiento excesiva y deben ser indeformables. Su montaje y desmontaje también debería ser sencillo. Es necesario seleccionar el sellado adecuado para cada aplicación, considerando el método de lubricación.

11.3.1 Sellados Sin Contacto

Puede adquirir varios sistemas de sellado que no entran en contacto con el eje, como ranuras de aceite, retenes y laberínticos. Normalmente obtendrá un sellado satisfactorio con estos sellados gracias a su mínima holgura en funcionamiento. La fuerza centrífuga también puede ayudar a evitar la contaminación interna y la pérdida de lubricante.


(1) Sellados de Ranura de Aceite


La efectividad de los sellados de ranura de aceite se debe a la pequeña holgura existente entre el eje y el diámetro interior del alojamiento, así como a las múltiples ranuras en la superficie del diámetro interior del alojamiento, en la superficie del eje, o en ambas (Fig. 11.5 (a), (b)).

La sola utilización de ranuras de aceite no es totalmente eficaz, excepto a bajas velocidades, por lo que a menudo se combinan con un sellado del tipo retén o laberíntico (Fig. 11.5 (c)). La entrada de polvo se impide llenando las ranuras de grasa con una consistencia aproximada de 200.

Cuanto menor sea la holgura entre el eje y el alojamiento, mayor será el efecto de sellado; sin embargo, el eje y el alojamiento no deben entrar en contacto durante el funcionamiento. Las holguras recomendadas se muestran en la Tabla 11.4.

La anchura recomendada de la ranura es de aproximadamente 3 a 5 mm, con una profundidad aproximada de entre 4 y 5 mm. Si los métodos de sellado sólo utilizan ranuras, debería haber tres o más

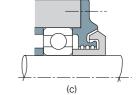


Fig. 11.5 Ejemplos de Ranuras de Aceite

(2) Sellados del Tipo Retén (Deflector)

Un retén está diseñado para forzar la eliminación de agua y polvo por medio de la fuerza centrífuga que actúa sobre cualquier elemento contaminante del eje. Los mecanismos de sellado con retenes en el interior del alojamiento que se muestran en la Fig. 11.6 (a), (b) tienen la principal finalidad de evitar pérdidas de aceite, y se utilizan en entornos relativamente poco polvorientos. La fuerza centrífuga de los retenes, mostrada en las Figs 11.6 (c), (d), evita que entren polvo y humedad.

Tabla 11. 4 Holguras entre los Ejes y los Alojamientos para los Sellados del Tipo de Ranura de Aceite

iámetro del Eje Nominal	Holgura Radial
Inferior a 50	$0.25 \sim 0.4$

50-200

Unidades : mm

 $0.5 \sim 1.5$

(3) Sellados Laberínticos

Los sellados laberínticos están formados por segmentos interdigitados incorporados al eje y al alojamiento, separados por una holgura muy pequeña. Resultan especialmente adecuados para evitar pérdidas de aceite del eje a altas velocidades.

El tipo mostrado en la Fig. 11.7 (a) es muy utilizado debido a su facilidad de montaje, pero los mostrados en la Fig. 11.7 (b), (c) proporcionan un sellado más efectivo.

Tabla 11. 5 Holguras de los Sellados Laberínticos

Unidades: mm

Diámetro del Eje Nominal	Holguras de Laberinto					
Diametro dei Lje Nomina	Holgura Radial	Holgura Axial				
Inferior a 50	$0.25 \sim 0.4$	1~2				
50-200	0.5 ~ 1.5	2 ~ 5				

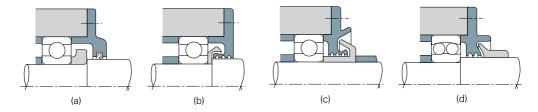


Fig. 11.6 Ejemplos de Configuraciones de Retenes

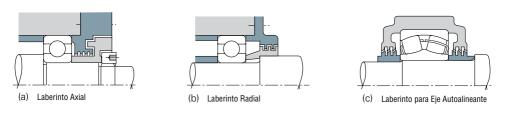


Fig. 11.7 Ejemplos de Diseños Laberínticos

11.3.2 Sellados de Contacto

La efectividad de los sellados de contacto se consigue por contacto físico entre el eje y el sellado, que puede fabricarse de goma sintética, resina sintética, fieltro, etc. Los retenes de aceite por medio de labios de goma son los que se utilizan con más frecuencia

(1) Retenes de Aceite

Pueden usarse muchos tipos de retenes de aceite para evitar pérdidas de lubricante así como para impedir que el polvo, el agua y otros cuerpos extraños entren en el interior del rodamiento (Figs. 11.8 y 11.9)

En Japón, tales retenes de aceite están normalizados (Consulte JIS B 2402) en base al tipo y tamaño. Puesto que muchos retenes de aceite están equipados con muelles perimetrales para mantener una fuerza de contacto adecuada, es posible que los retenes de aceite sigan el movimiento rotatorio no uniforme de un eje en alguna dimensión.

Los materiales de los labios de los retenes suelen ser goma sintética incluyendo nitrillos, acrilatos, silicona, y fluorina. También se utiliza el tetrafluorhidro de etileno. La temperatura de funcionamiento máxima para cada material aumenta en el mismo orden en que se han enumerado.

Los retenes de goma sintética pueden provocar serios problemas como sobrecalentamiento, desgaste, holguras a menos que entre el labio del retén y el eje exista una película de aceite. Por lo tanto, al montar los retenes debe aplicarse lubricante en el labio del retén. También es aconsejable para lubricar en el interior del alojamiento, rociar cierta cantidad de lubricante en las superficies de deslizamiento.

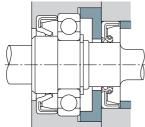


Fig. 11.8 Ejemplo de un Retén de Aceite (1)

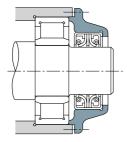


Fig. 11.9 Ejemplo de un Retén de Aceite (2)

La velocidad tangencial permisible para los retenes de aceite varía en función del tipo, acabado de la superficie del eje, líquido a sellar, temperatura, excentricidad del eje, etc. El rango de temperatura para los retenes de aceite queda limitado por el material de los labios. En la Tabla 11.6 se listan las velocidades tangenciales aproximadas así como las temperaturas permitidas en condiciones favorables.

Cuando se usan retenes de aceite en elevadas velocidades tangenciales o bajo elevada presión interna, la superficie de contacto del eje debe tener un acabado muy pulido y la excentricidad del eje debe estar comprendida entre 0.02 y 0.05 mm

La dureza de la superficie de contacto del eje debe ser superior a HRC40 por medio de tratamiento por calor o por recubrimiento de cromo duro con el fin de mejorar la resistencia a la abrasión. Si es posible, se aconseja una dureza superior a HRC 55.

En la Tabla 11.7 se indica el nivel aproximado de acabado exigido en la superficie de contacto para varias velocidades superficiales tangenciales del eje.

(2) Retenes de fieltro

Los retenes de fieltro son el tipo de retén más simple y más utilizado en ejes de transmisión, etc.

Sin embargo, puesto que resultan inevitables las pérdidas si se usa aceite lubricante, este tipo de sellado sólo suele utilizarse en lubricación por grasa, principalmente para evitar que el polvo y otras materias extrañas entren en el interior del rodamiento. Los retenes de fieltro no son aconsejables en velocidades tangenciales superiores a 4m/s; por lo tanto es aconsejable substituirlos por retenes de goma sintética dependiendo de la aplicación.

Tabla 11. 6 Velocidades Tangenciales de Superficie Permisibles y Rango de Temperatura para los Retenes de Aceite

j mange at remperatura para recente at most									
	Materiale	s de los Retenes	Velocidades Tangenciales Permisibles (m/s)	Rango de Temperatura Operativa (°C)(¹)					
	Goma Sintética	Goma de Nitrilo	Menos de 16	-25 a +100					
		Goma Acrílica	Menos de 25	-15 a +130					
		Goma de Silicona	Menos de 32	−70 a + 200					
		Goma con Contenido de Fluorina	Menos de 32	−30 a +200					
		n Tetrafluorhidro e Etileno	Menos de 15	-50 a +220					

Nota (1) El límite superior del rango de temperaturas puede elevarse unos 20 grados C durante cortos intervalos de funcionamiento.

Tabla 11.7 Velocidades Tangenciales de Superficie y Acabado de las Superficies de Contacto

Velocidades Tangenciales de Superficie (m/s)	Acabado Superficial $R_{\rm a}$				
Menos de 5	0.8				
5 a 10	0.4				
Más de 10	0.2				

12. LUBRICACIÓN

12.1 Finalidad de la lubricación

La finalidad principal de la lubricación es reducir la fricción y el desgaste en el interior de los rodamientos que podrían causar fallos prematuros. Los efectos de lubricación se pueden describir brevemente de la siguiente manera:

(1) Reducción de fricción y desgaste

Se impide el contacto metálico directo entre los anillos del rodamiento, los elementos de rodadura y la jaula, componentes esenciales de los rodamientos, por medio de una película de aceite que reduce la fricción y el desgaste en las zonas de contacto.

(2) Ampliación de la vida frente a la fatiga

La vida frente a la fatiga de los elementos rodantes de los rodamientos depende de la viscosidad y grosor de la película entre las zonas de contacto de los elementos rodantes. Una película de mucho grosor prolonga la vida frente a la fatiga, pero la reduce si la viscosidad del aceite es demasiado baja y el grosor de la película es insuficiente.

(3) Disipación del Calor por Fricción y Refrigeración Puede utilizarse un circuito de lubricación para eliminar el calor de fricción o el calor transmitido desde el exterior, con el fin de evitar recalentamientos del rodamiento y la consiguiente degeneración del aceite.

(4) Otros

La lubricación adecuada también ayuda a evitar la entrada de materiales extraños en el rodamiento, además de evitar la corrosión o la oxidación.

12.2 Métodos de lubricación

Los distintos métodos de lubricación se dividen primero en lubricación por grasa o por aceite. Podrán conseguirse unas prestaciones satisfactorias para el rodamiento si se adopta el método de lubricación más adecuado para cada aplicación en particular así como para las condiciones de funcionamiento.

En general, la lubricación por aceite es superior; sin embargo, la lubricación por grasa permite una estructura más simple alrededor de los rodamientos. En la Tabla 12.1 se ofrece una comparación entre la lubricación por grasa y por aceite.

Tabla 12. 1 Comparación de lubricación por grasa y por aceite

Elemento	Lubricación por grasa	Lubricación por aceite			
Estructura del Alojamiento y Método de Sellado	Simple	Puede ser compleja, necesita de mantenimiento cuidadoso.			
Velocidad	La velocidad límite está entre el 65% al 80% de la de la lubricación por aceite.	Velocidad límite más alta			
Efecto Refrigerante	Pobre	Es posible la transferencia de calor con circulación forzada de aceite.			
Fluidez	Pobre	Buena			
Substitución Completa del Lubricante	A veces difícil	Fácil			
Eliminación de Cuerpos Extraños	Imposible la eliminación de partículas en la grasa	Fácil			
Contaminación Externa por Fugas	El entorno raras veces se contamina por fugas.	Fugas frecuentes si no se toman las medidas correctas. No es aconsejable si debe evitarse la contaminación externa.			

12.2.1 Lubricación por grasa

(1) Cantidad de grasa

La cantidad de grasa a colocar en un alojamiento depende del diseño del alojamiento y del espacio libre, de las características de la grasa y de la temperatura ambiente. Por ejemplo, los rodamientos para los ejes de los cabezales de máquinas herramienta, en las que la precisión puede verse afectada por una pequeña variación en la temperatura, sólo necesitan de una pequeña cantidad de grasa. La cantidad de grasa para los rodamientos normales se determina de la forma siguiente.

Debe colocarse grasa suficiente en el interior del rodamientos incluyendo la cara guía de la jaula. El espacio libre en el interior del alojamiento que debe contener la grasa depende de la velocidad de la forma siguiente:

1/2 a 2/3 del espacio Cuando la velocidad es inferior al 50% del límite.

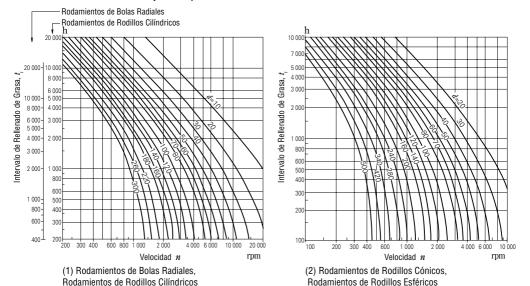
1/3 a 1/2 del espacio Cuando la velocidad es superior al 50% del límite.

(2) Cambio de la Grasa

La grasa, una vez aplicada, en general no será necesario añadir más durante un largo período de tiempo; sin embargo, en condiciones de funcionamiento duras, deberá añadirse o cambiarse la grasa con frecuencia. En tales casos, el alojamiento del rodamiento debe diseñarse para facilitar el rellenado y substitución de

Cuando los intervalos de rellenado son cortos, deberán incluirse vías para rellenar con grasa fresca y descargar la grasa usada en los puntos adecuados. Por ejemplo, el espacio del aloiamiento en la cara de suministro de grasa se puede dividir en varias secciones por medio de particiones. La grasa de las caras particionadas pasa gradualmente a través de los rodamientos y la

A-A


Fig. 12.1 Combinación de Depósito de Grasa Particionado y Válvula para la Grasa

(3) Factor de Carga

grasa vieja se ve forzada desde el mismo rodamiento a descargarse a través de una válvula (Fig. 12.1). Si no se usa una válvula para la grasa, el espacio en el lado de descarga será mayor que en el lado particionado de manera que pueda retener la grasa vieja, de forma que se pueda vaciar la grasa vieja retirando la cubierta periódicamente.

(3) Intervalo de Rellenado

Aunque se use grasa de alta calidad, siempre hay deterioro de sus propiedades con el tiempo; por lo tanto, se necesita de un rellenado periódico. Las Figs 12.2 (1) y (2) indican los intervalos de rellenado para varios tipos de rodamiento girando a distintas velocidades. Estas cifras se aplican sólo si la temperatura del rodamiento es inferior a 70°C; el intervalo de rellenado debe reducirse a la mitad por cada 15 grados C de subida de la temperatura de los rodamientos.

1.5 1 Fig. 12.2 Intervalos de Rellenado de Grasa

0.13 0.16

0.65 0.45

≤0.06 0.1

Factor de Carga

(4) Duración de la Grasa en Rodamientos de Bolas **Totalmente Cerrados**

Cuando la grasa se aplica a rodamientos de bolas de ranura profunda de una sola hilera, la duración de la grasa se puede calcular con las Ecuaciones (12.1) o (12.2) o con la Fig. 12.3:

(Grasa para aplicaciones generales (1))

log
$$t = 6.54 - 2.6 \frac{n}{N_{\text{max}}} - \left(0.025 - 0.012 \frac{n}{N_{\text{max}}}\right) T$$
.....(12.1)

(Grasa de amplio rango de aplicación (2))

$$log t = 6.12 - 1.4 \frac{n}{N_{\text{max}}} - \left(0.018 - 0.006 \frac{n}{N_{\text{max}}}\right) T$$
 (12.2)

donde t: Vida media de la grasa, (h)

n: Velocidad (rpm)

 $N_{
m max}$: Velocidad límite con lubricación por grasa

(valores para ZZ y VV listados en las tablas de los rodamientos)

T: Temperatura operativa °C

Las Ecuaciones (12.1) y (12.2) y la Fig. 12.3 se aplican baio las siguientes condiciones:

(a) Velocidad, n

$$0.25 \leq \frac{n}{N_{\text{max}}} \leq 1$$

donde
$$\frac{n}{N_{\rm max}}$$
 < 0.25 asume $\frac{n}{N_{\rm max}}$ = 0.25

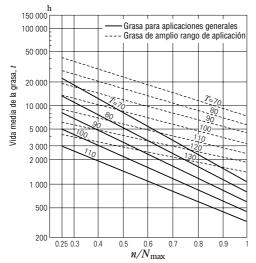


Fig. 12.3 Vida de la Grasa de los Rodamientos de Bolas Selladas

(b) Temperatura Operativa, T Grasa para aplicaciones generales (1)

7́0 °C*≦T*≦110 °C

Grasa de amplio rango de aplicación (2)

70 °C≤T≤130 °C

Cuando T < 70 °C asume T = 70 °C

(c) Cargas de Rodamiento

Las cargas de rodamiento deben ser 1/10 o menos que el índice básico de carga C_r .

- Notas (1) Las grasas con base de aceite mineral (por ejemplo las grasas con base de jabón de litio) que suelen usarse en rangos de temperatura de - 10 a 110 °C.
 - (2) Las grasas de base de aceite sintético suelen usarse en una amplia gama de temperaturas de - 40 a 130 °C.

12.2.2 Lubricación por aceite

(1) Lubricación por Baño de Aceite

La lubricación por baño de aceite se usa ampliamente en velocidades medias o bajas. El nivel de aceite debe estar en el centro del elemento rodante más bajo. Es aconseiable disponer de un indicador de nivel óptico de forma que se pueda controlar fácilmente el nivel de aceite (Fig. 12.4)

(2) Lubricación por Goteo de Aceite

La lubricación por goteo de aceite se usa ampliamente en pequeños rodamientos de bolas que funcionan a velocidades relativamente altas. Tal como se indica en la Fig. 12.5, el aceite se almacena en un depósito de aceite visible. La frecuencia de goteo se controla por medio del tornillo en la parte superior.

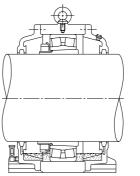


Fig. 12.4 Lubricación por Baño de Aceite

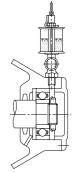


Fig. 12.5 Lubricación por Goteo de Aceite

(3) Lubricación por Salpicadura

Con este método de lubricación, se salpica aceite en los rodamientos mediante engranajes o un simple disco giratorio instalado cerca de los rodamientos, sin sumergir los rodamientos en aceite.

Se utiliza normalmente en transmisiones de automóviles y engranajes de transmisión finales. La Fig. 12.6 muestra este método de lubricación utilizado en un engranaje de reducción.

(4) Lubricación por Circulación

La lubricación por circulación se utiliza normalmente para operaciones de alta velocidad que requieren el enfriamiento de los rodamientos, y para rodamientos utilizados a altas temperaturas. Tal como se muestra en la Fig. 12.7 (a), el aceite entra por el acceso situado en el lado derecho, pasa a través del rodamiento y sale por el acceso del lado izquierdo. Después de enfriarse en un depósito, vuelve al rodamiento a través de una bomba y un filtro.

El orificio de descarga del aceite debería ser mayor que el acceso de suministro, para que no se acumule una cantidad excesiva de aceite en el alojamiento.

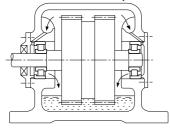


Fig. 12.6 Lubricación por Salpicadura

(5) Lubricación por Chorro

La lubricación por chorro se utiliza a menudo para rodamientos de velocidades ultra altas, como los rodamientos de los motores a reacción con un valor dmn (dm: diámetro de paso del elemento rodante en mm; n: velocidad de rotación en rpm) superior a un millón. El aceite lubricante se pulveriza a presión desde uno o más inyectores directamente dentro del rodamiento

La Fig. 12.8 muestra un ejemplo habitual de lubricación por chorro. El aceite lubricante se pulveriza en el anillo interior y en la cara guía de la jaula. En caso de funcionamiento a alta velocidad, el aire de alrededor del rodamiento gira con él y causa desviaciones en el chorro de aceite. La velocidad del chorro de aceite desde el inyector debería ser superior al 20% de la velocidad circunferencial de la superficie exterior del anillo interior (que también es la cara guía para la jaula).

Se puede obtener una refrigeración más uniforme y una mejor distribución de la temperatura utilizando más inyectores para una determinada cantidad de aceite. Es preferible que el aceite se descargue por la fuerza, para que se reduzca la resistencia de agitación del lubricante y el aceite pueda reducir el calor de forma eficaz.

(6) Lubricación por Niebla de Aceite

La lubricación por niebla de aceite pulveriza una niebla de aceite sobre el rodamiento. Este método tiene las siguientes ventajas:

- (a) Debido a la pequeña cantidad de aceite requerida, la resistencia del aceite a la agitación es baja y se permiten velocidades superiores.
- (b) La contaminación del entorno del rodamiento es

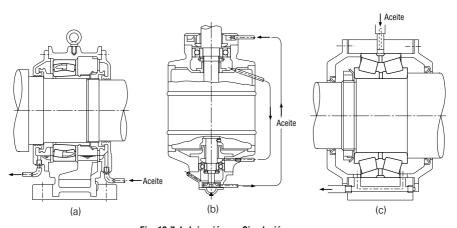


Fig. 12.7 Lubricación por Circulación

baja porque las pérdidas de aceite son reducidas.

(c) Es relativamente fácil suministrar aceite fresco de forma continuada, aumentando así la vida del rodamiento.

Este método de lubricación se utiliza en los rodamientos de los husillos de alta velocidad de las máquinas herramienta, en bombas de alta velocidad, en cuellos de cilindros para laminación, etc. (Fig. 12.9).

Para la lubricación por niebla de aceite de rodamientos de gran tamaño, es recomendable consultar a NSK.

(7) Método de Lubricación por Aceite/Aire

Utilizando el método de lubricación por aceite/aire, se descarga de forma intermitente una cantidad muy pequeña de aceite mediante un pistón de cantidad constante en un tubo que conduce un flujo constante de aire comprimido. El aceite fluye por la pared del tubo y se acerca a un flujo constante.

Las principales ventajas de la lubricación por aceite/aire son:

- (a) Se suministra la cantidad mínima necesaria de aceite, por lo que este método resulta adecuado para altas velocidades porque se genera menos calor.
- (b) Se suministra de forma continua la cantidad mínima de aceite, por lo que la temperatura del rodamiento permanece estable. Además, y debido a la pequeña cantidad de aceite, prácticamente no existe contaminación atmosférica.
- (c) Sólo se suministra aceite fresco a los rodamientos, por lo que no debe tenerse en cuenta el deterioro del aceite.
- (d) Siempre se suministra aire comprimido a los rodamientos, por lo que la presión interna es elevada y evita que entre polvo, fluido de corte, etc.

Por estos motivos, este método se utiliza en los husillos principales de las máquinas herramienta y en otras aplicaciones de alta velocidad (Fig. 12.10).

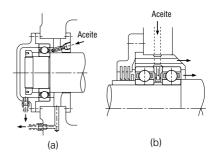


Fig. 12.8 Lubricación por Chorro

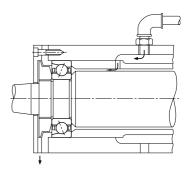


Fig. 12.9 Lubricación por Niebla de Aceite

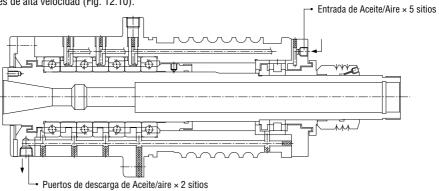


Fig. 12.10 Lubricación por Aceite/Aire

12.3 Lubricantes

12.3.1 Grasa de lubricación

La grasa es un lubricante semisólido formado por una base de aceite y un espesante. Los tipos principales y sus propiedades generales se indican en la Tabla 12.2. Debe tenerse en cuenta que distintas marcas del mismo tipo de grasa pueden tener propiedades distintas.

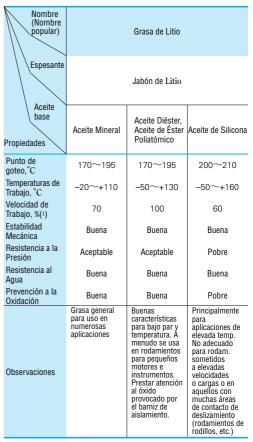
(1) Aceite base

Los aceites minerales o los aceites sintéticos como aceite de silicona o diéster son los más usados como aceite base para grasas. Las propiedades lubricantes de la grasa dependen principalmente de las características de su aceite base. Por lo tanto, la viscosidad del aceite base es tan importante al seleccionar una grasa como al seleccionar un tipo de aceite. En general, las grasas formadas por aceites base de baja viscosidad son los más adecuados para altas velocidades y bajas temperaturas, mientras que las grasas formadas por aceites base de alta viscosidad son más adecuados para altas temperaturas y orandes caroas.

Sin embargo, el espesante también influye en las propiedades lubricantes de la grasa; por lo tanto, los criterios de selección para la grasa no son los mismos que para el aceite de lubricación.

(2) Espesante

Como espesantes para grasa de lubricación, existen varios tipos de jabones metálicos, espesantes inorgánicos como gel de sílice y bentonita, y espesantes orgánicos resistentes al calor como la poliurea y los compuestos de flúor.


El tipo de espesante está muy relacionado con el punto de goteo de la grasa (1); en general, la grasa con un elevado punto de goteo también tiene una alta capacidad para resistir elevadas temperaturas durante el funcionamiento. Sin embargo, este tipo de grasa no tiene una elevada temperatura de trabajo a menos que el aceite base sea resistente al calor. La temperatura de trabajo más alta posible para la grasa tiene que determinarse teniendo en cuenta la resistencia al calor del aceite base.

La resistencia al agua de la grasa depende del tipo de espesante. Las grasas de jabón de sodio o las grasas compuestas que contienen sodio emulsifican al ser expuestas al agua o alta humedad, y por lo tanto, no se pueden usar cuando la humedad prevalece.

(3) Aditivos

La grasa suele contener aditivos varios como antioxidantes, inhibidores de la corrosión y aditivos para presiones extremas que le dotan de sus propiedades especiales. Es aconsejable que se usen aditivos para altas presiones en aplicaciones de grandes cargas. Para un uso prolongado sin rellenado debe usarse un antioxidante.

Nota (1) El punto de goteo de la grasa es la temperatura en la que la grasa calentada en un pequeño contenedor pasa a ser suficientemente fluida como para gotear.

Nota (1) Los valores listados son los porcentajes de las velocidades límite indicadas en las tablas de los rodamientos

(4) Consistencia

La consistencia indica la "suavidad" de la grasa. La Tabla 12.3 muestra la relación entre la consistencia y las condiciones de trabajo.

(5) Mezclar Distintos Tipos de Grasa

En general, no se deben mezclar distintos tipos de grasa. Mezclar grasas con distintos tipos de espesantes puede destruir su composición y sus propiedades físicas. Incluso si los espesantes son del mismo tipo, las posibles diferencias en los aditivos pueden tener efectos negativos.

Propiedades de la Grasa

Grasa de Sodio (Grasa de Fibra)	Grasa de Calcio (Grasa de Copa)	Grasa de Base Mixta	Grasa de Base Compleja (Grasa Compleja)		Base no Jabonosa a no Jabonosa)
Jabón Na	Jabón Ca	Jabón Na + Ca, Jabón Li + Ca, etc.	Jabón Complejo de Ca, Jabón Complejo de Al, Jabón Complejo de Li, etc.	Compuestos o	ta, Carbón Negro, de Flúor, Compuestos sistentes al Calor, etc.
Aceite Mineral	Aceite Mineral	Aceite Mineral	Aceite Mineral	Aceite Mineral	Aceite sintético (Aceite de éster, Aceite de Ester Poliatómico, Aceite Sintético de Hidrocarburo, Aceite de Silicona, Aceite con Base de Flúor)
170~210	70~90	160~190	180~300	230~	230~
-20~+130 -20~+60		-20~+80	- 20∼+130	-10~+130	~+220
70	40	70	70	70	40~100
Buena	Pobre	Buena	Buena	Buena	Buena
Aceptable	Pobre	Aceptable a Buena	Aceptable a Buena	Aceptable	Aceptable
Pobre	Buena	Pobre para el Jabón de Na	Buena	Buena	Buena
Pobre a Buena	Buena	Aceptable a Buena	Aceptable a Buena	Aceptable a Buena	Aceptable a Buena
Hay tipos de fibras cortas y largas. La grasa con fibras largas es adecuada para altas velocidades. Prestar atención a las altas temperaturas y al aguia.	Las grasas para resistir altas presiones que contienen aceite mineral de alta viscosidad y aditivos para presiones extremas (Jabón de Pb, etc.) ofrecen una alta presiones.	A menudo se usa para rodamientos de rodillos y para rodamientos de grandes bolas.	Adecuada para elevadas presiones mecânicament estable	un lubricante par altas. La grasa c adecuada para te Algunas grasas o	se de aceite mineral es ra temperaturas medias y on aceite base sintético es emperaturas bajas o altas, con aceite base de flúor o una pobre protección el ruido.

Observaciones Las propiedades de las grasas aquí indicadas puede variar de una marca a otra.

Tabla 12.3 Consistencia y Condiciones de Trabajo

Número de Consistencia	0	0 1		3	4	
Consistencia(1) 1/10 mm	355~385	310~340	265~295	220~250	175~205	
Condiciones de Trabajo (Aplicación)	-Para engrase centralizado -Cuando es probable la corrosión por arrastre	-Para engrase centralizado -Cuando es probable la corrosión por arrastre -Para bajas temperaturas	Para Uso General Para los rodamientos de bolas sellados	-Para Uso General -Para los rodamientos de bolas sellados -Para altas temperaturas	·Para altas temperaturas ·Para sellados de grasa	

Nota (1) Consistencia: La profundidad a la que un cono entra en la grasa cuado se le aplica un peso determinado se indica en unidades de 1/10 mm. Cuanto mayor sea el valor, más suave será la grasa.

12.3.2 Aceite Lubricante

Los aceites lubricantes utilizados para los rodamientos son normalmente aceites minerales o sintéticos altamente refinados con una alta resistencia de película de aceite v una extrema resistencia a la oxidación v corrosión. Cuando seleccione un aceite lubricante, es importante tener en cuenta la viscosidad en las condiciones de funcionamiento. Si la viscosidad es demasiado baja, no se formará la película de aceite adecuada y pueden producirse desgastes y deformaciones anormales. Por otra parte, si la viscosidad es demasiado alta la excesiva resistencia viscosa puede provocar calentamientos o importantes pérdidas de potencia. En general, para altas velocidades deberían utilizarse aceites de baja viscosidad; sin embargo, la viscosidad debe aumentar si también aumenta la carga y el tamaño del rodamiento.

La Tabla 12.4 muestra las viscosidades recomendadas en general para los rodamientos en condiciones normales de funcionamiento.

Como referencia para seleccionar el aceite lubricante adecuado, la Fig. 12.11 muestra la relación entre la temperatura del aceite y la viscosidad, mientras que la Tabla 12.5 muestra ejemplos de selección.

Tabla 12. 4 Tipos de Rodamientos y Viscosidad Adecuada de los Aceites Lubricantes

Tipo de rodamiento	Viscosidad Adecuada a Temperatura de Funcionamiento
Rodamientos de Bolas y Rodamientos de Rodillos Cilíndricos	Superior a 13 mm ² /s
Rodamientos de Rodillos Cónicos y Rodamientos de Rodillos Esféricos	Superior a 20 mm ² /s
Rodamientos de Rodillos Esféricos de Empuje	Superior a 32 mm ² /s

Observaciones 1mm²/s=1cSt (centistokes)

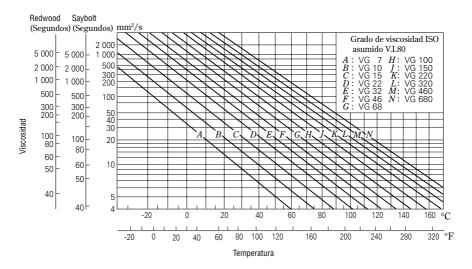


Fig. 12.11 Diagrama Temperatura-Viscosidad

Intervalos de Sustitución del Aceite

Los intervalos de sustitución del aceite dependen de las condiciones de funcionamiento y de la cantidad de aceite.

En los casos en que la temperatura de funcionamiento es inferior a 50°C y las condiciones ambientales son buenas y con poco polvo, el aceite debería sustituirse aproximadamente una vez al año. Sin embargo, en los casos en que la temperatura del aceite es de unos 100°C, debe cambiarse como mínimo una vez cada tres meses.

Si existe la posibilidad de que pueda mezclarse humedad o cuerpos extraños con el aceite, debe reducirse el intervalo de sustitución.

No deben mezclarse distintas marcas de aceite, por los mismos motivos expuestos anteriormente para la grasa.

Tabla 12. 5 Ejemplos de Selección de Aceites Lubricantes

Temperatura Operativa	Velocidad	Carga ligera o normal	Carga alta o de choque		
−30 a 0°C	Menor que la velocidad límite	ISO VG 15, 22, 32 (aceite de refrigeración para máquinas)	-		
0∼50°C	Menor que el 50% de la velocidad límite Del 50 al 100% de la velocidad límite Mayor que la velocidad límite	ISO VG 32, 46, 68 (aceite para rodamientos, aceite para turbinas) ISO VG 15, 22, 32 (aceite para rodamientos, aceite para turbinas) ISO VG 10, 15, 22 (aceite para rodamientos)	ISO VG 46, 68, 100 (aceite para rodamientos, aceite para turbinas) ISO VG 22, 32, 46 (aceite para rodamientos, aceite para turbinas) —		
50∼80°C	Menor que el 50% de la velocidad límite Del 50 al 100% de la velocidad límite Mayor que la velocidad límite	ISO VG 100, 150, 220 (aceite para rodamientos) ISO VG 46, 68, 100 (aceite para rodamientos, aceite para turbinas) ISO VG 32, 46, 68 (aceite para rodamientos, aceite para turbinas)	ISO VG 150, 220, 320 (aceite para rodamientos) ISO VG 68, 100, 150 (aceite para rodamientos, aceite para turbinas)		
80∼110°C	Menor que el 50% de la velocidad límite Del 50 al 100% de la velocidad límite Mayor que la velocidad límite	ISO VG 320, 460 (aceite para rodamientos) ISO VG 150, 220 (aceite para rodamientos) ISO VG 68, 100 (aceite para rodamientos, aceite para turbinas)	ISO VG 460, 680 (aceite para rodamientos, aceite para engranajes) ISO VG 220, 320 (aceite para rodamientos) —		

Observaciones

- 1. Utilice los valores mostrados en las tablas de rodamientos como velocidades límite.
- Consulte Aceites de Refrigeración para Máquinas (JIS K 2211), Aceites para Rodamientos (JIS K 2239), Aceites para Turbinas (JIS K 2213), Aceites para Engranajes (JIS K 2219).
- Si la temperatura de funcionàmiento se acerca al valor superior del intervalo de temperaturas mostrado en la columna izquierda, seleccione un aceite de viscosidad alta.
- Si la temperatura de funcionamiento es inferior a -30°C o superior a 110°C, es recomendable consultar a NSK.

13. MATERIALES DE LOS RODAMIENTOS

Los anillos de los rodamientos y los elementos rodantes de los rodamientos están sujetos a altas presiones repetitivas con un grado de deslizamiento. Las jaulas están sujetas a tensiones y compresiones y contacto con deslizamiento con los elementos rodantes y con alguno o ambos de los anillos del rodamiento.

Por lo tanto, los materiales usados para los anillos, elementos rodantes y jaulas exigen las siguientes características:

Otras características necesarias, como la facilidad de producción, resistencia al calor y a los impactos así como la resistencia a la corrosión pueden ser necesarias dependiendo de las aplicaciones individuales.

13.1 Materiales para los Anillos y los Elementos Rodantes de los Rodamientos

En los anillos y elementos rodantes, principalmente se utiliza acero para rodamientos con alto contenido en cromo y carbón (Tabla 13.1). La mayor parte de los rodamientos de NSK están fabricados en SUJ2 junto con los tipos de acero JIS listados en la Tabla 13.1, mientras que los rodamientos mayores suelen usar SUJ3. La composición química de SUJ2 es aproximadamente la misma que AISI 52100 usada en USA, DIN 100 Cr6 en Alemania. y BS 535A99 en Inglaterra.

En rodamientos sujetos a elevadas cargas de impacto a menudo suelen usarse aleaciones de acero con bajo contenido en carbono, como acero al cromo, acero al cromo molibdeno, acero al níquel cromo molibdeno, etc.. Estos tipos de acero, cuando son carburizados en la profundidad adecuada y cuentan con una dureza de superficie suficiente, son más resistentes a los impactos que los aceros endurecidos para rodamientos como consecuencia de su núcleo más blando que permite absorber la energía. En la Tabla 13.2 se lista la composición química de los aceros carburizados para rodamientos

Tabla 13. 1 Composición Química del Acero al Cromo con Alto Contenido en Carbón (Elementos Principales)

Norma	Címphalas	Composición Química (%)									
INUITIIA	Símbolos	С	Si	Mn	P	S	Cr	Mo			
JIS G 4805	SUJ 2	0.95~1.10	0.15~0.35	Menos de 0.50	Menos de 0.025	Menos de 0.025	1.30~1.60	Menos de 0.08			
	SUJ 3	0.95~1.10	0.40~0.70	0.90~1.15	Menos de 0.025	Menos de 0.025	0.90~1.20	Menos de 0.08			
	SUJ 4	0.95~1.10	0.15~0.35	Menos de 0.50	Menos de 0.025	Menos de 0.025	1.30~1.60	0.10~0.25			
ASTM A 295	52100	0.98~1.10	0.15~0.35	0.25~0.45	Menos de 0.025	Menos de 0.025	1.30~1.60	Menos de 0.10			

Tabla 13. 2 Composición Química de los Aceros Carburizados para Rodamientos (Elementos Principales)

Norma	Símbolos	Composición Química (%)								
INOTITIA	3111100105	С	Si	Mn	P	S	Ni	Cr	Mo	
JIS G 4052	SCr 420 H	0.17~0.23	0.15~0.35	0.55~0.95	Menos de 0.030	Menos de 0.030	Menos de 0.25	0.85~1.25	_	
	SCM 420 H	420 H 0.17~0.23 0.15~0.35 0.55~0.95		Menos de 0.030	Menos de 0.030			0.15~0.35		
	SNCM 220 H	0.17~0.23	0.15~0.35	0.60~0.95	Menos de 0.030	Menos de 0.030	0.35~0.75	0.35~0.65	0.15~0.30	
	SNCM 420 H	0.17~0.23	0.15~0.35	0.40~0.70	Menos de 0.030	Menos de 0.030	1.55~2.00	0.35~0.65	0.15~0.30	
G 4053	SNCM 815	0.12~0.18	0.15~0.35	0.30~0.60	Menos de 0.030	Menos de 0.030	4.00~4.50	0.70~1.00	0.15~0.30	
ASTM A 534	8620	0.18~0.23	0.15~0.35	0.70~0.90	Menos de 0.035	Menos de 0.040	0.40~0.70	0.40~0.60	0.15~0.25	
	4320	0.17~0.22	0.15~0.35	0.45~0.65	Menos de 0.035	Menos de 0.040	1.65~2.00	0.40~0.60	0.20~0.30	
	9310	0.08~0.13	0.15~0.35	0.45~0.65	Menos de 0.035	Menos de 0.040	3.00~3.50	1.00~1.40	0.08~0.15	

Tabla 13, 3 Composición Química del Acero de Alta Velocidad para Rodamientos utilizados en Altas Temperaturas

Norma	Símbolos					Co	mposición	Química (%)	ı				
	5111100108	С	Si	Mn	P	S	Cr	Mo	V	Ni	Cu	Co	W
AISI	M50	0.77~0.85	Menos de 0.25	Menos de 0.35	Menos de 0.015	Menos de 0.015	3.75~4.25	4.00~4.50	0.90~1.10	Menos de 0.10	Menos de 0.10	Menos de 0.25	Menos de 0.25

NSK usa acero de rodamientos desgaseado al vacío, de alta pureza con un contenido mínimo en impurezas de oxígeno, nitrógeno e hidrógeno. La vida de fatiga de los rodamientos se ha prolongado de forma considerable gracias al uso de estos materiales combinado con el apropiado tratamiento por calor.

En rodamientos de uso general, puede utilizarse acero para rodamientos de alta temperatura que tiene una superior resistencia al calor, y acero inoxidable con una buena resistencia a la corrosión. La composición química de estos materiales especiales se indica en las Tablas 13.3 y 13.4.

13.2 Materiales de las jaulas

Los aceros con bajo contenido en carbono se indican en la Tabla 13.5 son los principales para las jaulas de acero prensado de los rodamientos. Dependiendo de su uso, pueden usarse jaulas de latón o de acero. Para jaulas mecanizadas, se usa latón de alta resistencia (Tabla 13.6) o acero al carbono (Tabla 13.5). A veces se usa resina sintética

Tabla 13. 4 Composición Química del Acero Inoxidable para Rodamientos (Elementos Principales)

Norma	Símbolos		Composición Química (%)													
	SIIIIDUIUS	С	Si	Mn	P	S	Cr	Mo								
JIS G 4303	SUS 440 C	0.95~1.20	Menos de 1.00	Menos de 1.00	Menos de 0.040	Menos de 0.030	16.00~18.00	Menos de 0.75								
SAE J 405	51440 C	0.95~1.20 Menos de 1.00		Menos de 1.00	Menos de 0.040	Menos de 0.030	16.00~18.00	Menos de 0.75								

Tabla 13. 5 Composición Química de las Láminas de Acero y Acero al Carbono para Jaulas (Elementos Principales)

Clasificación	Estándar	Símbolos		Comp	osición Química	(%)	
Giasilicacion	EStatiual	3111100105	С	Si	Mn	P	S
Láminas y Tiras de	JIS G 3141	SPCC	Menos de 0.12	_	Menos de 0.05	Menos de 0.04	Menos de 0.045
Acero para Jaulas	BAS 361	SPB 2	0.13~0.20	Menos de 0.04	0.25~0.60	Menos de 0.03	Menos de 0.030
Prensadas	JIS G 3311	S 50 CM	0.47~0.53	0.15~0.35	0.60~0.90	Menos de 0.03	Menos de 0.035
Acero al carbono para jaulas mecanizadas	JIS G 4051	S 25 C	0.22~0.28	0.15~0.35	0.30~0.60	Menos de 0.03	Menos de 0.035

Observaciones BAS son las siglas de la Bearing Association Standard.

Tabla 13. 6 Composición Química de Latón de Alta Resistencia para Jaulas Mecanizadas

			Composición Química (%)													
Norma	Símbolos	Cu	Zn	Mn	Fe	Al	Sn	Ni	Impurezas							
		Cu	ZII	IVIII	ге	Al	SII	INI	Pb	Si						
JIS H 5120	HBsC 1	Más de 55.0~60.0	33.0~42.0	Menos de 0.1~1.5	0.5~1.5	0.5~1.5	Menos de 1.0	Menos de 1.0	Menos de 0.4	Menos de 0.1						
JIS H 3250	C 6782	56.0~60.5	Residual	0.5~2.5	0.1~1.0	0.2~2.0	_	_	Menos de 0.5	_						

Observaciones Tambien se usa HBsC 1 mejorado.

14. MANIPULACIÓN DE LOS RODAMIENTOS

14.1 Precauciones para la manipulación adecuada de los rodamientos

Puesto que los rodamientos son componentes para máquinas de alta precisión, deben ser manejados como tales. Incluso cuando se utilizan rodamientos de alta calidad, no se alcanzarán sus prestaciones óptimas si no son manejados correctamente.

Las principales precauciones a adoptar son:

(1) Mantener el Rodamiento y su Entorno Limpios

El polvo y la suciedad, incluso cuando no pueden apreciarse a simple vista, producen efectos adversos sobre los rodamientos. Es necesario evitar la entrada de polvo y suciedad manteniendo el rodamiento y su entorno lo más limpio posible.

(2) Manipulación Cuidadosa

Golpes fuertes durante su manipulación pueden provocar que los rodamientos se rayen o que se dañen lo que puede originar fallos. Los impactos excesivamente fuertes pueden causar roturas, resquebrajamientos o grietas.

(3) Use las Herramientas Adecuadas

Utilice siempre el equipo adecuado al manejar rodamientos y evite usar herramientas de uso general.

(4) Evite la corrosión

Puesto que la simple transpiración de las manos así como otros diversos contaminantes pueden provocar la corrosión, tenga siempre las manos limpias al manipular los rodamientos. Use guantes si es posible. Preste atención al óxido en el rodamiento provocado por gases corrosivos.

14.2 Montaje

El método de ensamblaje de los rodamientos afecta en gran medida a su precisión, duración y prestaciones, por lo que es importante que preste especial atención y cuidado a su montaje. Primero deben estudiarse sus características atentamente y luego montarse de la forma adecuada. Se recomienda que los ingenieros y diseñadores analicen con detalle los procesos de ensamblaje de los rodamientos y que se apliquen los estándares en relación con los siguientes puntos:

- (1) Limpieza de los rodamientos y de los componentes auxiliares.
- (2) Comprobación de las dimensiones y del acabado de los componentes auxiliares.
- (3) Procedimientos de montaje.
- (4) Inspección posterior al ensamblaje.
- (5) Suministro de lubricantes.

Los rodamientos no deben desempaquetarse hasta el momento justo de su ensamblaje. Cuando use lubricación normal por grasa, la grasa debe aplicarse en los rodamientos sin antes limpiarlos. Incluso en el caso de lubricación normal por aceite, no es necesario limpiar los rodamientos. No obstante, los rodamientos para instrumentos o para aplicaciones de alta velocidad deben limpiarse con aceite limpio filtrado, con el fin de eliminar los agentes anticorrosivos.

Una vez se han limpiado los rodamientos con aceite filtrado, se deben proteger para evitar la corrosión.

Los rodamientos pre-lubricados se deben utilizar sin limpiarlos. Los métodos para el montaje de rodamientos dependen del tipo de rodamiento y de su ajuste. Puesto que los rodamientos son utilizados normalmente en ejes giratorios, los anillos interiores requieren un ajuste apretado.

Los rodamientos con diámetros interiores cilíndricos generalmente se ensamblan con ayuda de una prensa (ajuste por presión), o bien calentándolos para dilatar el anillo interior (ajuste por contracción). Algunos rodamientos tienen agujeros interiores cónicos y pueden montarse en ejes cónicos o sobre ejes cilíndricos si se utilizan adaptadores o manguitos.

Los rodamientos suelen montarse en alojamientos con ajustes holgados. En los casos en los que el anillo exterior tiene un ajuste de interferencia, se puede utilizar una prensa. Los rodamientos pueden prepararse para un ajuste con interferencia enfriándolos con hielo seco antes de ensamblarlos. En este caso, se debe aplicar al rodamiento un tratamiento antióxido ya que la humedad del aire se condensa sobre su superficie.

14.2.1 Ensamblaje de rodamientos con anillos interiores cilíndricos

(1) Ajustes con Prensa

Este tipo de ajuste es ampliamente utilizado para rodamientos de pequeñas dimensiones. Se coloca una herramienta de montaje contra el anillo interior tal como se indica en la Fig. 14.1 y el rodamiento se presiona lentamente deslizándolo sobre el eje con ayuda de una prensa hasta que la cara del anillo interior toca con el chaflán del eje. La herramienta de montaje no debe apoyarse en el anillo exterior en un ensamblado con prensa va que se podría dañar al rodamiento. Antes del montaje, se recomienda aplicar aceite en la superficie de contacto del eje para lograr una inserción suave. El método de montaje con ayuda de un martillo sólo debe usarse en rodamientos pequeños con ajustes holgados y cuando no se disponga de una prensa. Este método no debe usarse al ensamblar rodamientos de tamaño medio o grande o con interferencias aiustadas. Cuando se use un martillo. siempre debe colocarse una herramienta de montaie sobre el anillo interior.

Cuando los anillos interior y exterior de rodamientos no separables, como los rodamientos de bolas de ranura profunda, requieren un ajuste muy apretado, se coloca una herramienta de montaje sobre ambos anillos tal como se indica en la Fig. 14.2, y ambos anillos se encajan al mismo tiempo con ayuda de un destornillador o de una prensa hidráulica. Puesto que el anillo exterior de los rodamientos de bolas autoalineantes pueden deflectar siempre debe usarse para ensamblarlos una herramienta de montaje tal

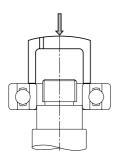


Fig. 14.1 Ajuste del Aro Interior por Presión

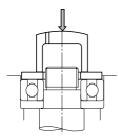


Fig. 14.2 Ajuste Simultáneo de los Aros Interior y Exterior por Presión

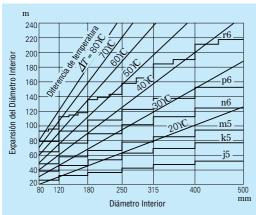


Fig. 14.3 Temperatura y Expansión Térmica del Aro Interior

como se indica en laFig. 14.2.

En el caso de rodamientos separados, como los rodamientos de rodillos cilíndricos o los rodamientos de rodillos cónicos, los anillos interior y exterior se pueden montar por separado. El ensamblaje de los anillos interior y exterior, que previamente estaban montados, debe realizarse con cuidado para alinear correctamente los anillos interior y exterior. Un ensamblaje forzado o poco cuidadoso puede rayar las superficies de contacto de los elementos rodantes.

(2) Ajustes por Contracción

Puesto que para ajustar los rodamientos grandes a presión se necesitaría una gran fuerza, suele usarse el ajuste por contracción. Primero se calientan los rodamientos en aceite para dilatarlos antes de su ensamblaie.

Este método evita que se aplique una fuerza excesiva sobre los rodamientos y permite su ensamblaje en poco tiempo.

La expansión del anillo interior para varios tamaños de rodamiento y distintas temperaturas se indica en la Fig. 14.3

Las precauciones a seguir al realizar ajustes por contracción son:

- (a) No caliente los rodamientos por encima de 120ºC.
- (b) Cuelgue los rodamientos de un cable o suspéndalos en un tanque de aceite para impedir que toquen directamente el fondo del tanque.
- (c) Caliente los rodamientos a temperaturas entre 20°C y 30°C por encima de la temperatura mínima requerida para el ensamblaje sin interferencia, puesto que el anillo interior se enfriará ligeramente durante su ensamblaje.
- (d) Después del ensamblaje, durante el enfriamiento, los rodamientos se contraerán en las direcciones axial y radial. Consecuentemente, presione el rodamiento firmemente contra el tope del eje utilizando los métodos de colocación para eliminar tolerancias entre el rodamiento y el chaflán.

Calentadores de Inducción para Rodamientos NSK

Además del calentamiento en aceite, también se usan ampliamente para calentar los rodamientos, los Calentadores para Rodamientos NSK, que utilizan inducción electromagnética. (Consulte la Página C5.)

En los Calentadores para Rodamientos NSK, la electricidad (CA) que circula por una bobina produce un campo magnético que induce en el rodamiento una corriente que genera calor. Consecuentemente, resulta posible calentar uniformemente sin llamas ni aceite, permitiendo un ensamblaje por contracción rápido y eficiente.

En el caso de montaje y desmontaje relativamente frecuente como en los rodamientos de rodillos cilíndricos para cuellos de cilindro en trenes de laminación, deberá usarse el calentamiento por inducción para el montaje y desmontaje de los anillos interiores.

14.2.2 Montaje de Rodamientos con Diámetros Interiores Cónicos

Los rodamientos con diámetros interiores cónicos se montan directamente en ejes cónicos o en ejes cilíndricos con adaptadores o manguitos de desmontaje (Figs. 14.4 y 14.5). Los rodamientos de rodillos esféricos de gran tamaño se montan a menudo utilizando presión hidráulica. La Fig. 14.6 muestra el montaje de un rodamiento utilizando un manguito y una tuerca hidráulica. La Fig. 14.7 muestra otro método de montaje. Se taladran unos agujeros en el manguito, y se utilizan para suministrar aceite a presión al asiento del rodamiento. A medida que el rodamiento se expande radialmente, el manguito se inserta axialmente con tornillos de ajuste.

Los rodamientos de rodillos esféricos deberían montarse comprobando su reducción de juego radial y consultando las cantidades de empuje mostradas en la Tabla 14.1. El juego radial debe medirse utilizando un juego de galgas.

En esta medición, como muestra la Fig. 14.8, el juego para ambas hileras de rodillos debe medirse simultáneamente, y estos dos valores deberían mantenerse aproximadamente iguales ajustando la posición relativa de los anillos exteriores e interiores.

Si se monta un rodamiento de gran tamaño sobre un eje, el anillo exterior puede deformarse ovalmente por su propio peso. Si el juego se mide en la parte inferior del rodamiento deformado, el valor medido puede ser superior al valor real. Si de esta manera se obtiene un juego interno radial incorrecto y se utilizan los valores de la Tabla 14.1, el ajuste de interferencia podría resultar demasiado apretado y el juego residual real demasiado reducido. En este caso, tal como muestra la Fig. 14.9, la mitad del juego total en los puntos a y b (que se encuentran en una línea horizontal que pasa a través del centro del rodamiento) y c (que se encuentra en la posición más baja del rodamiento) puede utilizarse como juego residual.

Si se monta un rodamiento de bolas autoalineantes sobre un eje con un adaptador, compruebe que el juego residual no sea demasiado pequeño. Debe permitirse un juego suficiente para alinear fácilmente el anillo exterior.

14.3 Inspección de Funcionamiento

Una vez completado el montaje, debería realizarse una prueba de funcionamiento para determinar si el rodamiento se ha montado correctamente. Las máquinas pequeñas deben operarse manualmente para comprobar que giran suavemente.

Entre los puntos que debe comprobar se incluyen las marcas debidas a cuerpos extraños, fallos visibles, par desigual debido a un montaje incorrecto o a una superficie de montaje incorrecta, y par excesivo causado por un juego incorrecto, error de montaje o fricción del sellado. Si no se observan anormalidades, puede poner en marcha la máquina.

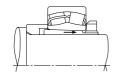


Fig. 14.4 Ensamblaje con Adaptador

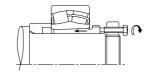


Fig. 14.5 Ensamblaje con Manguito de Desmontaje

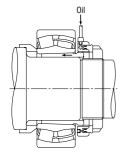


Fig. 14.6 Ensamblaje con Tuerca Hidráulica

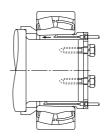


Fig. 14.7 Ensamblaje con un Manguito Especial y Presión Hidráulica

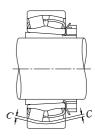


Fig. 14.8 Medición del Juego de los Rodamientos de Rodillos Esféricos

Tabla 14.1 Montaje de Rodamientos de Rodillos Esféricos con Diámetros Interiores Cónicos

Unidades: mm

								UIII	iaues . IIIIII	
Diámetro II Rodan			ón en el Radial		Movim	iento Axial		Juego Residual Mínimo Permisible		
d	!	-		Conicid	ad 1:12	Conicida	ad 1:30			
más de	hasta	mín.	máx.	mín.	máx.	mín.	máx.	CN	СЗ	
30 40 50 65	40 50 65 80	0.025 0.030 0.030 0.040	0.030 0.035 0.035 0.045	0.40 0.45 0.45 0.60	0.45 0.55 0.55 0.70	- - -	_ _ _ _	0.010 0.015 0.025 0.030	0.025 0.030 0.035 0.040	
80	100	0.045	0.055	0.70	0.85	1.75	2.15	0.035	0.050	
100	120	0.050	0.060	0.75	0.90	1.9	2.25	0.045	0.065	
120	140	0.060	0.070	0.90	1.1	2.25	2.75	0.055	0.080	
140	160	0.065	0.080	1.0	1.3	2.5	3.25	0.060	0.100	
160	180	0.070	0.090	1.1	1.4	2.75	3.5	0.070	0.110	
180	200	0.080	0.100	1.3	1.6	3.25	4.0	0.070	0.110	
200	225	0.090	0.110	1.4	1.7	3.5	4.25	0.080	0.130	
225	250	0.100	0.120	1.6	1.9	4.0	4.75	0.090	0.140	
250	280	0.110	0.140	1.7	2.2	4.25	5.5	0.100	0.150	
280	315	0.120	0.150	1.9	2.4	4.75	6.0	0.110	0.160	
315	355	0.140	0.170	2.2	2.7	5.5	6.75	0.120	0.180	
355	400	0.150	0.190	2.4	3.0	6.0	7.5	0.130	0.200	
400	450	0.170	0.210	2.7	3.3	6.75	8.25	0.140	0.220	
450	500	0.190	0.240	3.0	3.7	7.5	9.25	0.160	0.240	
500	560	0.210	0.270	3.4	4.3	8.5	11.0	0.170	0.270	
560	630	0.230	0.300	3.7	4.8	9.25	12.0	0.200	0.310	
630	710	0.260	0.330	4.2	5.3	10.5	13.0	0.220	0.330	
710	800	0.280	0.370	4.5	5.9	11.5	15.0	0.240	0.390	
800 900 1 000	900 1 000 1 120	0.310 0.340 0.370	0.410 0.460 0.500	5.0 5.5 5.9	6.6 7.4 8.0	12.5 14.0 15.0	14.0 18.5			

Observaciones Los valores de reducción del juego radial interno se refieren a rodamientos con juego CN. Para rodamientos con juego C3, deberían utilizarse los valores máximos mostrados para la reducción del juego radial interno.

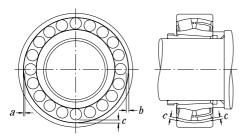


Fig. 14.9 Juego de Medición en un Rodamiento de Rodillos Esféricos de Gran Tamaño

Las máquinas de gran tamaño, que no pueden accionarse manualmente, pueden ponerse en marcha después de realizar una comprobación sin carga, desactivándola inmediatamente y dejando que se pare. Confirme que no se produce ninguna irregularidad como por ejemplo vibraciones, ruido, contacto de partes giratorias, etc.

La máquina debe ponerse en marcha lentamente y sin carga, observando atentamente el funcionamiento hasta comprobar que no existen irregularidades, y aumentando gradualmente la velocidad, carga, etc. hasta sus niveles normales. Entre los puntos que debe comprobar durante el funcionamiento de prueba se incluyen la existencia de ruido anormal, el aumento excesivo de la temperatura del rodamiento, pérdidas y contaminación de los lubricantes, etc. Si se observa cualquier irregularidad durante el funcionamiento de prueba, debe detenerse inmediatamente la máquina e inspeccionarla. Si es necesario, se debería desmontar el rodamiento para examinarlo.

Aunque la temperatura del rodamiento generalmente puede determinarse por medio de la temperatura de la superficie exterior del alojamiento, es mejor medir directamente la temperatura del anillo exterior a través de los anillos para lubricación por aceite.

La temperatura del rodamiento debería aumentar gradualmente hasta un nivel estable una o dos horas después de iniciar el funcionamiento. Si el rodamiento tiene problemas, o si se ha producido un error en el ensamblaje, la temperatura del rodamiento puede aumentar rápidamente y pasar a ser anormalmente alta. La causa de esta temperatura anormal puede ser una cantidad excesiva de lubricante, un insuficiente juego del rodamiento, un ensamblaje incorrecto o una fricción excesiva de los retenes.

En el caso de funcionamiento a alta velocidad, una selección incorrecta del método de lubricación o del tipo de rodamiento también puede ser la causa de un aumento anormal de temperatura.

El sonido de un rodamiento también puede comprobarse por medio de un localizador de ruido u otros instrumentos. Unas condiciones anormales suelen detectarse por sonidos metálicos sordos u otro tipo de ruidos anormales, y las posibles causas incluyen una lubricación incorrecta, una mala alineación del eje y el alojamiento, o la entrada de cuerpos extraños en el rodamiento. Las posibles causas y las contramedidas para las irregularidades se listan en la Tabla 14.2.

Tabla 14, 2 Causas y Contramedidas para Irregularidades de Funcionamiento

Irre	gularidades	Causas Posibles	Contramedidas
		Carga anormal	Mejorar el ajuste, el juego interno, la precarga, la posición del alojamiento, etc.
	Sonido Grave Metálico (1)	Ensamblaje incorrecto	Mejorar la precisión de mecanizado y el alineamiento del eje y alojamiento, precisión del método de ensamblaje.
		Lubricante insuficiente o inadecuado	Rellenar con lubricante o seleccione otro tipo de lubricante.
		Contacto de las partes giratorias	Modifique el sellado del laberinto, etc.
Ruidos	Sonido Grave	Marcas, corrosión o rayaduras en las pistas	Sustituir o limpiar el rodamiento, mejorar los sellados y utilizar lubricante limpio.
	Regular	Corrosión	Sustituir el rodamiento y tener cuidado al manipularlo.
		Descamación en las pistas de rodadura	Sustituir el rodamiento.
		Juego excesivo	Mejorar el ajuste, el juego y la precarga.
S	Sonido Irregular	Penetración de partículas extrañas	Sustituir o limpiar el rodamiento, mejorar los sellados y utilizar lubricante limpio.
		Marcas o descamación en las bolas	Sustituir el rodamiento.
		Cantidad excesiva de lubricante	Reducir la cantidad de lubricante, seleccionar grasa de mayor consistencia.
		Lubricante insuficiente o inadecuado	Rellenar con lubricante o seleccionar uno mejor.
	o Anormal de la	Carga anormal	Mejorar el ajuste, el juego interno, la precarga, la posición del chaflán del alojamiento.
Te	mperatura	Ensamblaje incorrecto	Mejorar la precisión de mecanizado y el alineamiento de eje y alojamiento, la precisión del método de ensamblaje, o el método de ensamblaje en sí.
		Arrastres sobre la superficie de ajuste, fricción excesiva del retén	Corregir los sellados, sustituir el rodamiento, o corregir el ajuste o el ensamblaje.
		Corrosión	Sustituir el rodamiento y tener cuidado al manipularlo.
101 11	<i>(</i> 5	Descamación	Sustituir el rodamiento y tener cuidado al mampulano.
vibracio	n (Excentricidad Axial)	Ensamblaje incorrecto	Corregir la ortogonalidad entre el eje y el chaflán del alojamiento o bien entre los laterales del separador.
		Penetración de partículas extrañas	Sustituir o limpiar el rodamiento, mejorar los sellados.
	Decoloración del ubricante	Demasiado lubricante, penetración de partículas extrañas o virutas abrasivas	Reducir la cantidad de lubricante, seleccionar grasa de mayor consistencia. Substituir el rodamiento o el lubricante. Limpiar el alojamiento y los elementos adyacentes

Nota (¹) En rodamientos de rodillos cilíndricos de tamaño medio a grande o en rodamientos de bolas funcionando con lubricación por grasa en entornos de baja temperatura es posible escuchar chirridos o sonidos de alta frecuencia. Bajo estas condiciones de funcionamiento de baja temperatura, la temperatura del rodamiento no se elevará y la vida del rodamiento ni las prestaciones de la grasa se verán afectadas. Aunque bajo estas condiciones se puedan oír chirridos o sonidos de alta frecuencia, el rodamiento es plenamente funcional y puede seguirse usando. En el caso de que se necesite una mayor reducción del ruido o un funcionamiento más silencioso, contacte con la delegación NSK más cercana.

14.4 Desmontaje

Un rodamiento puede ser desmontado para su inspección periódica o por otras razones. Tanto si el rodamiento desmontado tiene que ser usado de nuevo o si sólo se desmonta para su inspección, deberá ser desmontado con el mismo cuidado con que fue montado. Si el rodamiento se ha montado de forma muy ajustada, su desmontaje puede ser difícil. Los medios para su desmontaje deben ser tenidos en cuenta en el diseño original de los elementos adyacentes de la máquina. Al proceder al desmontaje, el procedimiento y la secuencia de desmontaje deben ser estudiados previamente sobre los planos de la máquina y teniendo en cuenta el tipo de ajuste de montaje para poder realizar la operación de forma correcta.

14.4.1 Desmontaje de los anillos exteriores

Para poder desmontar un anillo exterior con un encaje muy ajustado, coloque primero los pernos en los orificios de extracción sobre el alojamiento situados en distintos puntos de su perímetro tal como se indica en la Fig. 14.10, y saque el anillo exterior apretando uniformemente los pernos. Estos agujeros para los pernos deben protegerse siempre con tapones cuando no se usen. En el caso de rodamientos separables, como en los rodamientos con rodillos cónicos, se deben realizar algunas muescas en varias posiciones del chaflán del alojamiento, tal como se indica en la figura Fig. 14.11, de manera que el anillo exterior se pueda presionar por medio de de una herramienta de desmontaje o golpeándola con suavidad.

14.4.2 Desmontaje de rodamientos con anillos interiores cilíndricos

Si el diseño de montaje permite espacio para presionar el anillo interior, éste es el método más sencillo y rápido. En este caso, la fuerza de extracción sólo debe aplicarse en el anillo interior (Fig. 14.12). A menudo se usan herramientas de extracción como los mostrados en las Figs. 14.13 y 14.14.

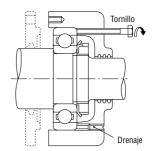


Fig. 14.10 Extracción del Anillo Exterior con Tornillos de Desmontaje

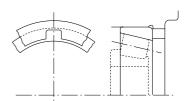


Fig. 14.11 Muescas de Desmontaje

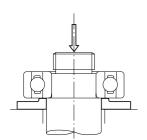


Fig. 14.12 Extracción del Anillo Interior Utilizando una Prensa

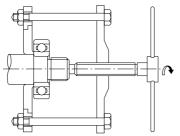


Fig. 14.13 Extracción del Anillo Interior Utilizando una Herramienta de Desmontaie (1)

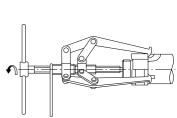


Fig. 14.14 Extracción del Anillo Interior Utilizando una Herramienta de Desmontaje (2)

En ambos casos, las garras de las herramientas deben sujetar suficientemente la cara del anillo interior; por lo tanto, es recomendable considerar el tamaño del chaflán del eje o mecanizar ranuras en el mismo para contener las herramientas de desmontaje (Fig. 14.14).

El método de inyección de aceite se utiliza normalmente para el desmontaje de rodamientos de gran tamaño. El desmontaje se consigue fácilmente por medio de aceite a presión aplicado a través de los orificios del eje. En el caso de rodamientos extra anchos, se utiliza el método de inyección de aceite junto con una herramienta de desmontaje.

Para retirar los anillos interiores de los tipos NU y NJ de rodamientos de rodillos cilíndricos debe utilizarse el calentamiento por inducción. Los anillos interiores se expanden mediante un breve calentamiento local, y luego se desmontan (Fig. 14.15). El calentamiento por inducción también se utiliza para montar varios rodamientos de estos tipos sobre un eje.

14.4.3 Desmontaje de Rodamientos con Diámetros Interiores Cónicos

Cuando se desmontan rodamientos relativamente pequeños con manguitos, el anillo interior está sujeto por un tope fijado al eje y la tuerca se afloja varias vueltas. Seguidamente se martillea sobre el manguito utilizando una herramienta adecuada, como se muestra en la Fig. 14.18. La Fig. 14.16 muestra un procedimiento para desmontar un manguito de desmontaje apretando la tuerca de retirada. Si este procedimiento resulta difícil, quizás sea posible taladrar la tuerca, colocar tornillos en la misma y retirar el manguito apretando los tornillos, tal como se muestra en la Fig. 14.17.

Los rodamientos de gran tamaño pueden desmontarse fácilmente utilizando aceite a presión. La Fig. 14.19 ilustra el desmontaje de un rodamiento forzando aceite a presión a través de un orificio y ranura en un eje cónico para expandir el anillo interior. El rodamiento podría moverse axialmente de repente al reducirse la interferencia durante este procedimiento, por lo que es recomendable utilizar una tuerca de tope como protección. La Fig. 14.20 muestra el desmontaje utilizando una tuerca hidráulica.

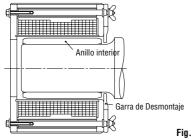


Fig. 14.15 Extracción del Anillo Interior Utilizando un Calentador de Inducción

Fig. 14.16 Extracción del Manguito de Desmontaje Utilizando una Tuerca de Desmontaje (1)

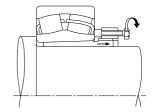


Fig. 14.17 Extracción del Manguito de Desmontaje Utilizando una Tuerca de Desmontaje (2)

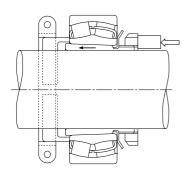


Fig. 14.18 Extracción del Adaptador con Detención y Presión Axial

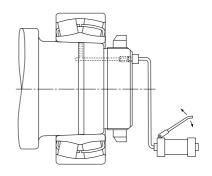


Fig. 14.19 Extracción Utilizando una Bomba Hidráulica de Inyección de Aceite

14.5 Inspección de los Rodamientos

14.5.1 Limpieza de los Rodamientos

Al inspeccionar los rodamientos, debería anotar primero el aspecto de los mismos y comprobar la cantidad y estado del lubricante residual.

Una vez se han tomado muestras del lubricante para examinarlo, debería limpiar los rodamientos. En general, puede utilizar aceite ligero o queroseno como solución limpiadora.

Los rodamientos desmontados deberían someterse a una limpieza preliminar, seguida de un enjuague final. Los baños deben realizarse utilizando una red metálica para que el rodamiento no toque las paredes ni el fondo del depósito de aceite. Si los rodamientos giran durante la limpieza preliminar y todavía contienen cuerpos extraños, los caminos de rodadura podrían resultar dañados. Debería retirar el lubricante y otros sedimentos durante la limpieza inicial en aceite, utilizando un cepillo o similar. Una vez el rodamiento está relativamente limpio, se le da el enjuague final. El enjuague final debería realizarse con cuidado, girando el rodamiento mientras se encuentra

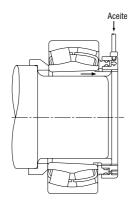


Fig. 14.20 Desmontaje utilizando una Tuerca Hidráulica

sumergido en el aceite de enjuague. Es necesario que el aceite de enjuague se mantenga siempre limpio

14.5.2 Inspección y Evaluación de los Rodamientos

Una vez los rodamientos estén totalmente limpios, debería examinarlos para comprobar el estado de sus caminos de rodadura y superficies externas, el grado de desgaste de la jaula, el aumento del juego interno y la degradación de las tolerancias. Se deben examinar cuidadosamente todos estos puntos, además de los posibles daños u otras irregularidades, para determinar la posibilidad de reutilizarlos.

En el caso de rodamientos pequeños de bolas no separables, sujete el rodamiento horizontalmente con una mano y gire el anillo exterior para comprobar que gira suavemente.

Los rodamientos separables, como los de rodillos cónicos, pueden comprobarse individualmente examinando sus elementos rodantes y el camino de rodadura del anillo exterior.

Los rodamientos de gran tamaño no pueden girarse manualmente; sin embargo, deberían examinarse visualmente con atención los elementos rodantes, las superficies del camino de rodadura, las jaulas y las superficies de contacto de los rebordes. Cuanto más importante sea un rodamiento, con más atención debería inspeccionarse.

La decisión de reutilizar un rodamiento debe tomarse sólo después de considerar el grado de desgaste del mismo, la función de la máquina, la importancia de los rodamientos en la misma, las condiciones de funcionamiento y el tiempo que falta hasta la siguiente inspección. Sin embargo, si observa cualquiera de los siguientes defectos el rodamiento no puede reutilizarse y deberá sustituirlo:

- (a) Si se observan grietas en los anillos interiores o exteriores, los elementos rodantes o la jaula.
- (b) Si se observa descamación del camino de rodadura o de los elementos rodantes.
- (c) Si se observan manchas significativas en las superficies de los caminos de rodadura, los rebordes o los elementos rodantes.
- (d) Si la jaula está considerablemente gastada o los remaches están sueltos.
- (e) Si se observa óxido o arañazos en las superficies de los caminos de rodadura o de los elementos rodantes.
- (f) Si se observan impactos significativos o restos de "brinell" en las superficies del camino de rodadura o en los elementos rodantes.
- (g) Si se observan signos evidentes de que se ha producido arrastre del anillo interior sobre el eje, o del exterior contra el aloiamiento.
- (h) Si se observa una decoloración evidente debida al calor.
- (i) Si los retenes o blindajes de los rodamientos sellados con grasa están considerablemente dañados.

14.6 Mantenimiento e Inspección

14.6.1 Detectar y Corregir Irregularidades

Con el fin de mantener las prestaciones originales de un rodamiento el máximo de tiempo posible, se deben llevar a cabo un mantenimiento e inspección adecuados. Si se siguen los procedimientos adecuados. se pueden evitar muchos problemas en los rodamientos v se pueden mejorar la fiabilidad, productividad v costes operativos de los equipos que contienen los rodamientos. Se recomienda realizar un mantenimiento periódico siguiendo los procedimientos especificados. Este mantenimiento periódico comprende la supervisión de las condiciones de funcionamiento, el suministro o sustitución de los lubricantes y la inspección periódica regular. Los puntos que se deben comprobar regularmente durante el funcionamiento incluven el ruido, la vibración, la temperatura y la lubricación del rodamiento.

Si se detecta alguna irregularidad durante el funcionamiento, se debe determinar la causa y aplicar las acciones correctivas adecuadas, indicadas en la Tabla 14 2

Si es necesario, se debe desmontar el rodamiento y examinarlo con detalle. Consulte el procedimiento de desmontaje e inspección en la Sección 14.5, Inspección de los Rodamientos

MONITOR DE RODAMIENTOS NSK (Detector de Irregularidades en Rodamientos)

Es importante detectar los signos de irregularidades durante el funcionamiento con la suficiente antelación para evitar que los daños sean graves.

El Monitor de Rodamientos NSK (consulte la Página C5) es un instrumento que comprueba el estado de los rodamientos y avisa de cualquier irregularidad, o detiene la máquina automáticamente para evitar problemas graves. Además, ayuda a mejorar el mantenimiento y reduce su costo.

14.6.2 Fallos de los Rodamientos y Contramedidas

En general, si los rodamientos se utilizan correctamente superarán su vida de fatiga prevista. No obstante, a menudo fallan antes de tiempo debido a errores evitables.

En contraste con la vida de fatiga, estos fallos prematuros se deben a montajes, manejos o lubricaciones incorrectos, a la entrada de cuerpos extraños o a la generación anormal de calor.

Por ejemplo, las causas de arañazos en los rebordes, como ejemplo de fallo prematuro, pueden ser una lubricación insuficiente, la utilización de un lubricante incorrecto, un sistema de lubricación defectuoso, la entrada de cuerpos extraños, un error de montaje del rodamiento, la desviación excesiva del eje, o una combinación de varias de estas causas. En consecuencia, es difícil determinar la causa real de algunos fallos prematuros.

Si se conocen todas las condiciones existentes en el momento del fallo y anteriores al mismo, incluyendo la aplicación, las condiciones de funcionamiento y el entorno, entonces puede reducirse la posibilidad de futuros fallos similares estudiando la naturaleza del fallo y sus posibles causas. Los fallos más habituales en los rodamientos, así como sus causas y acciones correctoras, se indican en la Tabla 14.3.

Tabla 14.3 Causas y Contramedidas para los Fallos de los Rodamientos

Tipo de Fallo	Posibles Causas	Contramedida
Descamación Descamación de un lado del camino de rodadura del rodamiento radial.	Carga axial anormal.	Debería utilizar un ajuste holgado al montar el anillo exterior de los rodamientos de extremo libre para permitir la expansión axial del eje.
Descamación simétrica del camino de rodadura	Error de redondez de la superfície interior del alojamiento.	Corrija el alojamiento defectuoso.
Patrón de descamación inclinado respecto al camino de rodadura en rodamientos de bolas radiales. Descamación cerca del borde del camino de rodadura y de las superficies rodantes de los rodamientos de rodillos.	Montaje incorrecto, desviación del eje, tolerancias inadecuadas para el eje y el alojamiento.	Ponga atención en el montaje y centrado, se- leccione un rodamiento con un mayor juego, y corrija el chaflán del eje y el del alojamiento.
Descamación del camino de rodadura con el mismo espaciado que el de los elementos rodantes.	Gran carga de choque durante el montaje, oxidación mientras el rodamiento está parado durante un período prolongado.	Ponga atención en el montaje y aplique un antioxidante cuando no vaya a utilizar la máquina durante largos períodos.
Descamación prematura del camino de rodadura y de los elementos rodantes.	Juego insuficiente, carga excesiva, lubricación incorrecta, óxido, etc.	Seleccione el ajuste, el juego y el lubricante adecuados.
Descamación prematura de los rodamientos duplex.	Precarga excesiva.	Ajuste la precarga.

Tipo de Fallo	Posibles Causas	Contramedida
Rayadura Arañazos o marcas entre el camino de rodadura y las superficies rodantes.	Lubricación inicial inadecuada, grasa excesiva- mente dura y alta aceleración en la puesta en marcha.	Utilice una grasa más blanda y evite las aceleraciones rápidas.
Marcas o arañazos en espiral de la superficie del camino de rodadura en rodamientos de bolas de empuje.	Los anillos del camino de rodadura no son paralelos y velocidad excesiva.	Corrija el montaje, aplique una precarga o seleccione otro tipo de rodamiento.
Marcas o arañazos entre la cara final de los rodillos y el anillo guía.	Lubricación inadecuada, montaje incorrecto y gran carga axial.	Seleccione el lubricante adecuado y modifiqu el montaje.
Roturas Grieta en el anillo exterior o interior.	Excesiva carga de choque, excesiva interferencia en el ajuste, poca cilindricidad de las superficies, conicidad incorrecta del manguito, radio excesivo del chaflán, desarrollo de grietas térmicas y avance de descamación.	Examine las condiciones de carga, modifique el ajuste del rodamiento y el manguito. El ra- dio del chaflán debe ser menor que el chaflán del rodamiento.
Grieta en el elemento rodante. Anillo guía roto.	Avance de descamación, impactos en el anillo guía durante el montaje o caídas al manipular. Avance de descamación, impactos en el anillo guía durante el montaje o caídas al manipular.	Tenga cuidado con la manipulación y el montaje.
Jaula fracturada.	Carga anormal de la jaula debido a un montaje incorrecto y a una lubricación inadecuada.	Reduzca el error de montaje y revise el lubricante y el método de lubricación.
Indentaciones Indentaciones en el camino de rodadura con la misma forma que los elementos rodantes.	Carga de choque durante el montaje o carga excesiva con el rodamiento parado.	Tenga cuidado en la manipulación.
Hendiduras en el camino de rodadura y en los elementos rodantes.	Cuerpos extraños como virutas metálicas o arena.	Limpie el alojamiento, mejore los retenes y utilice un lubricante limpio.
Desgaste Anormal Falsa corrosión (fenómeno parecido a la corrosión)	Vibración del rodamiento sin rotación durante el transporte o balanceo de pequeña amplitud.	Asegure el eje y el alojamiento, utilice aceite como lubricante y reduzca la vibración aplicando una precarga.
Corrosión por arrastre	Ligero desgaste de la superficie de ajuste.	Aumente la interferencia y aplique aceite.
Desgaste del camino de rodadura, los elementos rodantes, el anillo guía y la jaula.	Penetración de cuerpos extraños, lubricación incorrecta y óxido.	Mejore los retenes, limpie el alojamiento y utilice un lubricante limpio.
Arrastre	Interferencia insuficiente o apriete insuficiente del manguito.	Modifique el ajuste o apriete el manguito.
Agarrotamiento Decoloración y fusión del camino de rodadura, los elementos rodantes y los anillos guía.	Juego insuficiente, lubricación incorrecta o montaje inadecuado.	Revise el juego interno y el ajuste del rodamiento, aplique la cantidad correcta del lubricante adecuado y mejore el método de montaje y piezas relacionadas.
Quemadura Eléctrica Acanalamiento u ondulaciones.	Fusión debida a la formación de un arco eléctrico.	Instale un cable de masa para detener el flujo de electricidad, o bien aísle el rodamiento.
Corrosión y Oxidación Óxido y corrosión de las superficies de ajuste y del interior del rodamiento.	Condensación de humedad del aire, o corrosión por arrastre. Penetración de sustancias corrosivas (especial- mente barniz-gas, etc.).	Tenga cuidado al almacenar y evite altas tem peraturas y altos índices de humedad; se re- quiere un tratamiento anti-oxidación cuando rodamiento esté parado por un largo período de tiempo. Selección de barniz y grasa.

15. DATOS TÉCNICOS

15. 1	DESPLAZAMIENTO AXIAL DE LOS RODAMIENTOS	Página A 128~A 129
13. 1		
	Ángulo de Contacto y Desplazamiento Axial de Rodamientos de Bolas de Ranura Profunda y Rodamientos de Bolas de Contacto Angular	A 128~A 129
	(2) Carga y Desplazamiento Axial de Rodamientos de Rodillos Cilíndricos	
15. 2	AJUSTES	. A 130~A 133
	(1) Presión de Superficie, Estrés Máximo en las Superficies Ajustadas	A 400 A 404
	y Expansión o Contracción del Diámetro de los Caminos de Rodadura (2) Interferencias o Juego para Ejes y Anillos Interiores	
	(3) Interferencias o Juegos para Aquieros de Alojamientos y Anillos Interiores	
	(b) Interferencias o duegos para Agujoros de Alojamientos y Alimos Interferes	A 100'-A 100
15. 3	TOLERANCIAS INTERNAS AXIALES Y RADIALES	A 132~A 133
	(1) Juegos Internos Radiales y Axiales en Rodamientos de Bolas de Ranura Profunda de Una Sola Hilera	A 132~A 133
	(2) Juegos Internos Radiales y Axiales en Rodamientos de Bolas de Contacto Angular de Doble Hilera	A 132~A 133
15. 4	PRECARGA Y PAR INICIAL	A 134~A 135
	(1) Carga Axial y Par Inicial de Rodamientos de Rodillos Cilíndricos	A 134
	(2) Precarga y Par Inicial de Rodamientos de Bolas de Contacto Angular y Rodamientos de Bolas de Empuje de Contacto Angular de Doble Dirección	A 134~A 135
15. 5	COEFICIENTES DE FRICCIÓN Y OTROS DATOS DE RODAMIENTOS	A 136~A 137
	(1) Tipos de Rodamientos y sus Coeficientes de Fricción	A 136
	(2) Velocidad Perimetral de los Elementos Rodantes sobre sus centros y sobre el Centro del Rodamiento	۸ ۵۰۰
	y sobre el Centro del Rodamiento (3) Juego Interno Radial y Vida de Fatiga	
	(b) buogo interno riadiai y vida de ratiga	A 100~A 101
15. 6	MARCAS Y PROPIEDADES DE GRASAS LUBRICANTES	A 138~A 141

DEFINICIONES DE SÍMBOLOS Y SUS UNIDADES

Símbolos	Nomenclatura	Unidades	Símbolos	Nomenclatura	Unidades
$a \\ b$	Eje principal de la elipse de contacto	(mm)	$n_{\rm a}$	Velocidad de giro de los elementos rodantes Velocidad de revolución de los elementos	(rpm)
C _r	Eje principal de la elipse de contacto Índice de carga dinámica básica de los	(mm)	$n_{ m c}$ rodantes		
Cr	rodamientos radiales	$(N)\{kgf\}$		(Velocidad de la jaula)	(rpm)
C_{0r}	Índice de carga estática básica de los	(NI) (1f)	$n_{\rm e}$	Velocidad del anillo exterior	(rpm)
Ca	rodamientos radiales Índice de carga dinámica básica de los	(N){kgf}	n_i	Velocidad del anillo interior	(rpm)
Ca	rodamientos de empuje	$(N)\{kgf\}$	$p_{ m m}$	Presión de superficie en la superficie de ajuste (MPa){kgf/mm²}
C_{0a}	Índice de carga estática básica de los	00.0	P	Carga del rodamiento	$(N)\{kgf\}$
	rodamientos de empuje	$(N)\{kgf\}$	Q	Carga del elemento rodante	$(N)\{kgf\}$
d	Diámetro del eje, Diámetro interior nominal		$r_{ m e}$	Radio de la ranura del anillo exterior	(mm)
	del rodamiento	(mm)	r_i	Radio de la ranura del anillo interior	(mm)
D	Diámetro interior del alojamiento, Diámetro exterior nominal del rodamiento	(mm)	$v_{ m a}$	Velocidad perimetral de los elementos	
D_{e}	Diámetro del camino de rodadura del anillo	` '		rodantes sobre su centro	(m/s)
D_i	Diámetro del camino de rodadura del anillo	nterior(mm)	$v_{ m c}$	Velocidad perimetral del elemento rodante sobre el centro del rodamiento	(m/s)
D_0	Diámetro exterior del elejemiente	(mm)			· · -/
D_0 $D_{ m pw}$	Diámetro exterior del alojamiento Diámetro de paso del elemento rodante	(mm) (mm)	Z	Número de elementos rodantes por fila	
$D_{ m W}$	Diámetro nominal del elemento rodante	(mm)	α	Ángulo de contacto (cuando se aplica una caro axial sobre el rodamiento de bolas radial	ga (°)
		,			
e	Posición de contacto del extremo del rodillo cónico con el reborde	(mm)	α_0	Ángulo de contacto inicial (Geométrico) (cuando los anillos interior y exterior de los rodamientos	
E	Modulo de elasticidad longitudinal (Acero pa			de bolas de contacto angular se empujan axialme	nte) (°)
	rodamientos) 208 000 MP _a {21 200kgf/mm ² }		α_{R}	Ángulo de contacto inicial (Geométrico) (cuando los anillos interior y exterior de los rodamientos	
	200 000 WII at 21 200kgi/IIIIII }			de bolas de contacto angular se empujan radialme	ente) (°)
E(k)	Integral elíptica completa del 2º tipo para la	que	β	1/2 del ángula cánico del redillo	(0)
	el parámetro de población es		$\delta_{ m a}$	1/2 del ángulo cónico del rodillo Desplazamiento axial relativo de los anillos	(°)
	$h = \begin{pmatrix} 1 & (b)^2 \end{pmatrix}$		O _a	interior y exterior	(mm)
	$k = \sqrt{1 - \left(\frac{a}{a}\right)}$		Δa	Juego Interno Axial	(mm)
$f_{\scriptscriptstyle 0}$	Factor que depende de la geometría		Δd	Interferencia efectiva del anillo interior y el eje	(mm)
70	de los elementos del rodamientos y		$\Delta_{\rm r}$	Juego interno radial	(mm)
	del nivel de estrés aplicable			-	
$f(\varepsilon)$	Función de ϵ		ΔD	Interferencia efectiva del anillo exterior y el alojamiento	(mm)
$F_{\rm a}$	Carga Axial, Precarga	$(N)\{kgf\}$	$\Delta D_{ m e}$	Contracción del diámetro de la pista de rodado	ıra
$F_{\rm r}$	Carga radial	$(N)\{kgf\}$	4.5	del anillo exterior a causa del ajuste	(mm)
h	$D_{ m e}/D$		ΔD_i	Expansión del diámetro de la pista de rodadura del anillo interior a causa del ajuste	a (mm)
h_0	D/D_0				
k	d/D_i		3	Factor de carga	
K	Constante determinada por el diseño interno		μ	Coeficientes de fricción dinámica de rodamien Coeficiente de fricción entre el lado del extrem	
Λ	del rodamiento		$\mu_{ m e}$	del rodillo y el reborde	iu
L	Vida de fatiga cuando el juego efectivo es 0		$\mu_{ m s}$	Coeficiente de fricción por deslizamiento	
$L_{ m we}$	Longitud efectiva del rodillo	(mm)	σ_{tmax}	Estrés máximo en las superficies de ajuste (1	MP_a){kgf/mm ² }
L_{ε}	Vida de fatiga cuando el juego efectivo es Δ				
	-				
$m_{\scriptscriptstyle 0}$	Distancia entre los centros de curvatura de los anillos interior y exterior				
	$r_i + r_e - D_w$	(mm)			
M	Par de fricción	(N·mm){kgf·mm}			
M_{s}	Par de giro	(N·mm){kgf·mm}			
					

15. 1 Desplazamiento axial de los rodamientos

(1) Ángulo de contacto α y Desplazamiento axial $\delta_{\mathbf{a}}$ de los Rodamientos de bolas de ranura profunda v Rodamientos de bolas de contacto angular

Carga axial $F_{\rm a}$ y Desplazamiento axial $\delta^{\rm a}$ de los Rodamientos de Rodillos Cónicos (2)

El desplazamiento axial real puede variar en función del espesor del eje/alojamiento, del material y de la interferencia de aiuste con el rodamiento. Contacte con NSK en relación con tales factores de desplazamiento axial que no se describen en detalle en este catálogo.

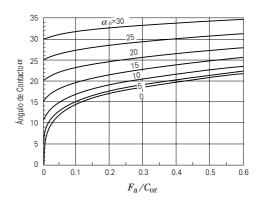


Fig. 15.1 $F_a/C_{
m or}$ y Ángulo de Contacto de los Rodamientos de Bolas de Ranura Profunda y de Contacto Angular

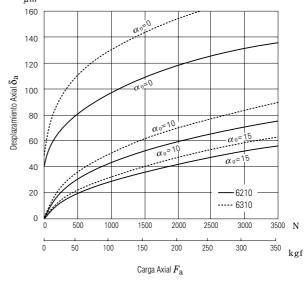


Fig. 15.2 Carga Axial y Desplazamiento Axial de Rodamientos de Bolas de Ranura Profunda

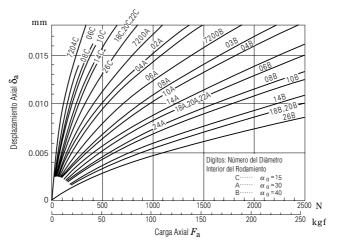


Fig. 15.3 Carga Axial y Desplazamiento Axial de Rodamientos de Bolas de Contacto Angular

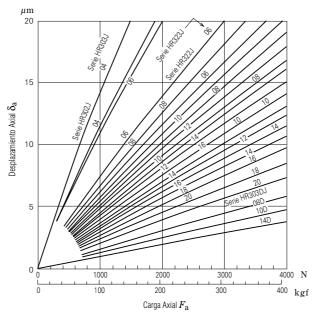


Fig. 15.4 Carga Axial y Desplazamiento Axial de Rodamientos de Rodillos Cónicos

15.2 Ajustes

- (1) Presión en superficie $p_{\rm m}$, Estrés Máximo $\sigma_{\rm tmax}$ en Superficies Ájustadas y Expansión del Diámetro de la Pista de Rodadura del Anillo Interior $\varDelta D_i$ o Contracción del Diámetro de la Pista de Rodadura del Anillo Exterior $\varDelta D_{\rm e}$ (Tabla 15.1. Figs. 15.5 v 15.6)
- (2) Interferencias o Juego de Ejes y Anillos Interiores (Tabla 15.2)
- (3) Interferencias o Juegos para Agujeros de Alojamientos y Anillos Exteriores (Tabla 15.3)

Tabla. 15. 1 Presión de Superficie, Estrés Máximo en las Superficies Ajustadas y Expansión o Contracción

Elementos	Eje & Anillo Interior	Alojamiento & Diám. Int. & Anillo Ext.
Presión en superficie $p_{\rm m}$ (MPa) $\{{ m kgf/mm^2}\}$	(En eje sólido) $p_{\rm m} = \frac{E}{2} \; \frac{\varDelta d}{2} \; (1 - \emph{\textbf{k}}^2)$	En alojamientos diámetro ext $D_0 \neq \infty$ $p_{\rm m} = \frac{E}{2} \frac{\Delta D}{D} \frac{(1-h^2)(1-h_0^2)}{1-h^2 h_0^2}$ En caso $D_0 = \infty$ $p_{\rm m} = \frac{E}{2} \frac{\Delta D}{D} (1-h^2)$
Estrés Máximo σ_{tmax} (MPa) {kgf/mm²}	El estrés perimetral máximo en la superficie ajustada del diámetro del anillo interior es $\sigma_{\rm tmax} = p_{\rm m} \frac{1+k^2}{1-k^2}$	El estrés perimetral máximo en la superficie del diámetro del anillo exterior es $\sigma_{\rm tmax} = p_{\rm m} \frac{2}{1-h^2}$
Expansión del camino de rodadura del anillo int. dia. ΔD_i (mm) Contracción del diámetro del camino de rodadura del anillo exterior ΔD_e (mm)	En eje sólido $\Delta D_i = \Delta d \cdot k$	En caso $D_0 \neq \infty$ $ \Delta D_{\rm e} = \Delta D \cdot h \; \frac{1 - h_0^2}{1 - h^2 \; h_0^2} $ En caso $D_0 = \infty$ $ \Delta D_{\rm e} = \Delta D \cdot h $

Observaciones

Los módulos de elasticidad longitudinal y relación de Poisson para el eje y el material del alojamiento es el

Referencia

mismo que los de los anillos interior y exterior $1MP_a=1N/mm^2=0.102kgf/mm^2$

Tabla 15. 2 Interferencias o Juegos

ı	Clasifica	oián do		ción del lel diám.											Int	terferenci	as o Jue	gos para
	tam	año	int. me	dio en	f	6	g	g5	٤	g6	ŀ	15	ŀ	16	j	s5	j	5
	(m	m)	un solo (Norma	o piano al) $\varDelta d$ mp	Jue	ego	Juego	Inter- ferencia	Juego	Inter- ferencia	Juego	Inter- ferencia	Juego	Inter- ferencia	Juego	Inter- ferencia	Juego	Inter- ferencia
r	nás de	hasta	alta	más de	máx.	mín.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.
	3 6 10	6 10 18	0 0 0	- 8 - 8 - 8	18 22 27	2 5 8	9 11 14	4 3 2	12 14 17	4 3 2	5 6 8	8 8 8	8 9 11	8 8 8	3 4	— 11 12	 2 3	— 12 13
	18	30	0	-10	33	10	16	3	20	3	9	10	13	10	4.5	14.5	4	15
	30	50	0	-12	41	13	20	3	25	3	11	12	16	12	5.5	17.5	5	18
	50	65	0	-15	49	15	23	5	29	5	13	15	19	15	6.5	21.5	7	21
	65	80	0	-15	49	15	23	5	29	5	13	15	19	15	6.5	21.5	7	21
	80	100	0	-20	58	16	27	8	34	8	15	20	22	20	7.5	27.5	9	26
	100	120	0	-20	58	16	27	8	34	8	15	20	22	20	7.5	27.5	9	26
	120	140	0	-25	68	18	32	11	39	11	18	25	25	25	9	34	11	32
	140	160	0	-25	68	18	32	11	39	11	18	25	25	25	9	34	11	32
	160	180	0	-25	68	18	32	11	39	11	18	25	25	25	9	34	11	32
	180	200	0	-30	79	20	35	15	44	15	20	30	29	30	10	40	13	37
	200	225	0	-30	79	20	35	15	44	15	20	30	29	30	10	40	13	37
	225	250	0	-30	79	20	35	15	44	15	20	30	29	30	10	40	13	37
	250	280	0	-35	88	21	40	18	49	18	23	35	32	35	11.5	46.5	16	42
	280	315	0	-35	88	21	40	18	49	18	23	35	32	35	11.5	46.5	16	42
	315	355	0	-40	98	22	43	22	54	22	25	40	36	40	12.5	52.5	18	47
	355	400	0	-40	98	22	43	22	54	22	25	40	36	40	12.5	52.5	18	47
	400	450	0	-45	108	23	47	25	60	25	27	45	40	45	13.5	58.5	20	52
	450	500	0	-45	108	23	47	25	60	25	27	45	40	45	13.5	58.5	20	52

Observaciones

- Los valores de las clases de tolerancia en que el estrés causado por el ajuste del eje y del anillo exterior son excesivos, se han omitido.
 - 2. Actualmente se recomienda la tolerancia js en lugar de j.

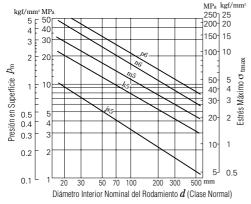


Fig. 15.5 Presión en Superficie $p_{\rm m}$ y Estrés Máximo $\sigma_{\rm tmax}$ para Interferencia de Ajuste Intermedia

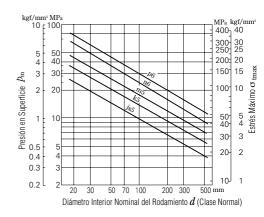


Fig. 15.6 Presión en Superficie $p_{\rm m}$ y Estrés Máximo $\sigma_{\rm tmax}$ para Interferencia de Ajuste Máxima

de Ejes y Anillos Interiores

Unidades: µm

cada Cl	ase de A	juste																-Clasifica	ción da
js	s6	j	6	ŀ	x 5	k	6	n	15	n	n6	n6		р6		r	6	tam	año
Juego	Inter- ferencia	Juego	Inter- ferencia	Interf	erencia	Interfe	Interferencia I		Interferencia		Interferencia		Interferencia		erencia	Interferencia		(m	m)
máx.	máx.	máx.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	más de	hasta
4.5 5.5	— 12.5 13.5		15 16	=	=	=	_ _ _		_ _ _	=	=		=		=	=	=	3 6 10	6 10 18
6.5 8 9.5	16.5 20 24.5	4 5 7	19 23 27	2 2 2	21 25 30	2 2 2	25 30 36	9 11	32 39	9 11	— 37 45	=	_ _ _		_ _ _	<u>-</u>	_	18 30 50	30 50 65
9.5 11 11	24.5 31 31	7 9 9	27 33 33	2 3 3	30 38 38	2 3 3	36 45 45	11 13 13	39 48 48	11 13 13	45 55 55	20 23 23	54 65 65	37 37	— 79 79	_ _ _	_ _	65 80 100	80 100 120
12.5 12.5 12.5		11 11 11	39 39 39	3 3 3	46 46 46	3 3 3	53 53 53	15 15 15	58 58 58	15 15 15	65 65 65	27 27 27	77 77 77	43 43 43	93 93 93	63 65 68	113 115 118	120 140 160	140 160 180
14.5 14.5 14.5	44.5 44.5 44.5	13 13 13	46 46 46	4 4 4	54 54 54	4 4 4	63 63 63	17 17 17	67 67 67	17 17 17	76 76 76	31 31 31	90 90 90	50 50 50	109 109 109	77 80 84	136 139 143	180 200 225	200 225 250
16 16 18	51 51 58	16 16 18	51 51 58	4 4 4	62 62 69	4 4 4	71 71 80	20 20 21	78 78 86	20 20 21	87 87 97	34 34 37	101 101 113	56 56 62	123 123 138	94 98 108	161 165 184	250 280 315	280 315 355
18 20 20	58 65 65	18 20 20	58 65 65	4 5 5	69 77 77	4 5 5	80 90 90	21 23 23	86 95 95	21 23 23	97 108 108	37 40 40	113 125 125	62 68 68	138 153 153	114 126 132	190 211 217	355 400 450	400 450 500

Tabla 15. 3 Interferencias o

Clasifi	oooión		viación del Diám.											In	terferenci	as o Ju	egos para
de tai	maño	naño Ext. en un Solo		G	7	Н	16	F	I 7	Н	18		J6	J	IS6		J7
(mm)			D_{mp}	Jue	go	Juego		Juego	Juego	Juego		Juego	Inter- ferencia	Juego	Inter- ferencia		Inter- ferencia
más de	hasta	alta	baja	máx.	mín.	máx.	mín.	máx.	mín.	máx.	mín.	máx.	máx.	máx.	máx.	máx.	máx.
6 10 18	10 18 30	0 0 0	- 8 - 8 - 9	28 32 37	5 6 7	17 19 22	0 0 0	23 26 30	0 0 0	30 35 42	0 0 0	13 14 17	4 5 5	12.5 13.5 15.5	4.5 5.5 6.5	16 18 21	7 8 9
30 50 80	50 80 120	0 0 0	- 11 - 13 - 15	45 53 62	9 10 12	27 32 37	0 0 0	36 43 50	0 0 0	50 59 69	0 0 0	21 26 31	6 6 6	19 22.5 26	8 9.5 11	25 31 37	11 12 13
120 150 180	150 180 250	0 0 0	- 18 - 25 - 30	72 79 91	14 14 15	43 50 59	0 0 0	58 65 76	0 0 0	81 88 102	0 0 0	36 43 52	7 7 7	30.5 37.5 44.5	12.5 12.5 14.5	44 51 60	14 14 16
250 315 400	315 400 500	0 0 0	- 35 - 40 - 45	104 115 128	17 18 20	67 76 85	0 0 0	87 97 108	0 0 0	116 129 142	0 0 0	60 69 78	7 7 7	51 58 65	16 18 20	71 79 88	16 18 20
500 630 800	630 800 1 000	0 0 0	- 50 - 75 -100	142 179 216	22 24 26	94 125 156	0 0 0	120 155 190	0 0 0	160 200 240	0 0 0	_ _ _	_ _ _	72 100 128	22 25 28	_ _ _	=

Nota (*) Observaciones Indica la interferencia mínima

Actualmente se recomienda el intervalo de tolerancia JS en lugar de J.

15.3 Juegos Internos Radiales y Axiales

(1) Juego Interno Radial Δ_r y Juego Interno Axial Δ_a en Rodamientos de Bolas de Ranura Profunda de Una Sola Hillera

Fig. 15.7)
$$\frac{1}{2}$$

$$\Delta_a = K \Delta_r \qquad \text{(mm)}$$

donde

$$K=2 (r_e + r_i - D_w)$$

(2) Juego Interno Radial $\varDelta_{\rm r}$ y Juego Interno Axial $\varDelta_{\rm a}$ en Rodamientos de Bolas de Contacto Angular de Hilera Doble

$$\begin{split} \Delta_{\rm a} &= 2\sqrt{{m_0}^2 - \left(m_0 \cos \alpha_R - \frac{\Delta_r}{2}\right)^2} \\ &- 2m_0 \sin \alpha_R \end{split}$$

Tabla 15. 4 Constante K

Código de		Valore	s de <i>K</i>	
Diámetro Interior	160XX	60XX	62XX	63XX
00			0.93	1.14
01	0.80	0.80	0.93	1.06
02	0.80	0.93	0.93	1.06
03	0.80	0.93	0.99	1.11
04	0.90	0.96	1.06	1.07
05	0.90	0.96	1.06	1.20
06	0.96	1.01	1.07	1.19
07	0.96	1.06	1.25	1.37
08	0.96	1.06	1.29	1.45
09	1.01	1.11	1.29	1.57
10	1.01	1.11	1.33	1.64
11	1.06	1.20	1.40	1.70
12	1.06	1.20	1.50	2.09
13	1.06	1.20	1.54	1.82
14	1.16	1.29	1.57	1.88
15	1.16	1.29	1.57	1.95
16	1.20	1.37	1.64	2.01
17	1.20	1.37	1.70	2.06
18	1.29	1.44	1.76	2.11
19	1.29	1.44	1.82	2.16
20	1.29	1.44	1.88	2.25
21	1.37	1.54	1.95	2.32
22	1.40	1.64	2.01	2.40
24	1.40	1.64	2.06	2.40
26	1.54	1.70	2.11	2.49
28	1.54	1.70	2.11	2.59
30	1.57	1.76	2.11	2.59

Juegos para Agujeros de Alojamientos y Anillos Exteriores

		μm

cada Cl	ase de A	juste																-Clasifica	oión do
J	S7	I	K6	ŀ	ζ7	N	M 6	N	M 7	N	16	1	N 7	I	P6	F	7	tam	año
Juego	Inter- ferencia	Juego	Inter- ferencia	Juego	Inter- ferencia	Juego	Inter- ferencia	Juego	Inter- ferencia	Juego	Inter- ferencia	Juego	Inter- ferencia	Interf	erencia	Interfe	erencia	(m	m)
máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	máx.	mín.	máx.	más de	hasta
15	7	10	7	13	10	5	12	8	15	1	16	4	19	4	21	1	24	6	10
17	9	10	9	14	12	4	15	8	18	1*	20	3	23	7	26	3	29	10	18
19	10	11	11	15	15	5	17	9	21	2*	24	2	28	9	31	5	35	18	30
23	12	14	13	18	18	7	20	11	25	1*	28	3	33	10	37	6	42	30	50
28	15	17	15	22	21	8	24	13	30	1*	33	4	39	13	45	8	51	50	80
32	17	19	18	25	25	9	28	15	35	1*	38	5	45	15	52	9	59	80	120
38	20	22	21	30	28	10	33	18	40	2*	45	6	52	18	61	10	68	120	150
45	20	29	21	37	28	17	33	25	40	5	45	13	52	11	61	3	68	150	180
53	23	35	24	43	33	22	37	30	46	8	51	16	60	11	70	3	79	180	250
61	26	40	27	51	36	26	41	35	52	10	57	21	66	12	79	1	88	250	315
68	28	47	29	57	40	30	46	40	57	14	62	24	73	11	87	1	98	315	400
76	31	53	32	63	45	35	50	45	63	18	67	28	80	10	95	0	108	400	500
85	35	50	44	50	70	24	70	24	96	6	88	6	114	28	122	28	148	500	630
115	40	75	50	75	80	45	80	45	110	25	100	25	130	13	138	13	168	630	800
145	45	100	56	100	90	66	90	66	124	44	112	44	146	0	156	0	190	800	1 000

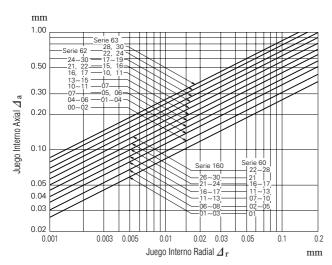


Fig. 15.7 \varDelta_r y \varDelta_a en Rodamientos de Bolas de Ranura Profunda de Una Sola Hilera

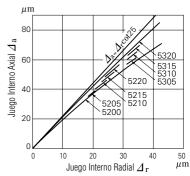


Fig. 15.8 Δ_r y Δ_a en Rodamientos de Bolas de Contacto Angular de Hilera Doble (Series 52, 53)

15. 4 Precarga y Par Inicial

(1) Carga axial $F_{\rm a}$ y Par Inicial M de los Rodamientos de Rodillos Cónicos (Figs. 15.9 y 15.10)

 $M = e \mu_e F_a \cos \beta$ (N·mm), {kgf·mm}

donde μ_e : 0.20

Cuando los rodamientos con la misma referencia se usan en oposición, el par ${\cal M}$ provocado por la precarga es igual a $2{\cal M}$.

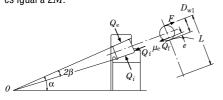


Fig. 15.9 Relación entre e y β

(2) La Precarga $F_{\rm a}$ y el par inicial M de Rodamientos de Bolas de Contacto Angular y Rodamientos de Bolas de Empuje de Contacto Angular de Doble Dirección (Figs. 15.11 y 15.12)

M = $M_{\rm s} \, Z \, {\rm sin} \alpha$ (N·mm), {kgf·mm} donde $M_{\rm S}$ es la fricción de giro

$$M_{\rm S} = \frac{3}{8} \,\mu_{\rm s} \,Q \,a \,E(k)$$
 (N·mm), {kgf·mm}

donde

$$\mu_{\rm s} = 0.15$$

Cuando los rodamientos con la misma referencia se usan en oposición, el par M provocado por la precarga es igual a 2M.

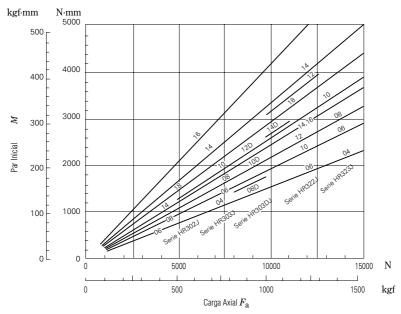


Fig. 15.10 Relación entre Carga Axial y Par Inicial de Rodamientos de Rodillos Cónicos

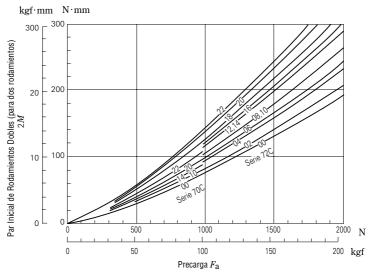


Fig. 15.11 Precarga y Par Inicial para Disposiciones Cara a Cara o Espalda contra Espalda de Rodamientos de Bolas de Contacto Angular (α =15°)

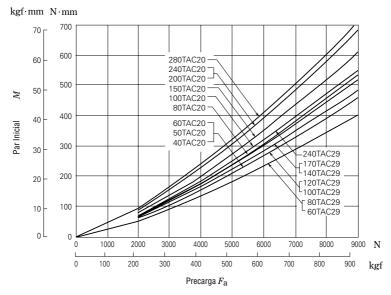


Fig. 15.12 Precarga y Par Inicial de Rodamientos de Bolas de Empuje de Contacto Angular de Doble Dirección

15.5 Coeficientes de Fricción Dinámica y Otros Datos Relativos a los Rodamientos

(1) Tipos de Rodamientos y sus Coeficientes de Fricción Dinámica μ

$$\mu = \frac{M}{P \cdot \frac{d}{2}}$$

Tabla 15.5 Coeficientes de Fricción Dinámica

Tipos de Rodamiento	Valores aproximados de $\boldsymbol{\mu}$
Rodamientos de Bolas de Banura Profunda	0.0013
Rodamientos de Bolas	
de Contacto Angular	0.0015
Rodamientos de Bolas Autoalineantes	0.0010
Rodamientos de Bolas de Empuje	0.0011
Rodamientos de Rodillos Cilíndricos	0.0010
Rodamientos de Rodillos Cónicos	0.0022
Rodamientos de Rodillos Esféricos	0.0028
Rodamientos de Agujas con Jaulas	0.0015
Rodamientos de Agujas de Complemento Total	0.0025
Rodamientos de Rodillos Esféricos de Empuje	0.0028

(2) Velocidades Perimetrales de los Elementos Rodantes sobre sus Centros y sobre el Centro del Rodamiento

(3) Juego Interno Radial $\Delta_{\rm r}$ y Vida de Fatiga L (Fig. 15.13)

Para el juego interno radial $\Delta_{\rm r}$ y la función $f(\epsilon)$ del factor de carga, las siguientes ecuaciones son válidas:

Para Rodamientos de Bolas de Ranura Profunda

$$f(\varepsilon) = \frac{\Delta_r \cdot D_w^{\frac{1}{3}}}{0.00044 \left(\frac{F_r}{Z}\right)^{\frac{2}{3}}} \qquad (N)$$

$$f(\varepsilon) = \frac{\Delta_r \cdot D_w^{\frac{1}{3}}}{0.002 \left(\frac{F_r}{Z}\right)^{\frac{2}{3}}} \dots \{\text{kgf}\}$$

Para Rodamientos de Rodillos Cilíndricos

La relación entre el factor de carga ϵ y $f(\epsilon)$ y L_ϵ/L , cuando el juego interno radial es \varDelta_r , es la mostrada en la Tabla 15.7.

De las anteriores ecuaciones, obtenga primero $f(\varepsilon)$ y luego puede obtener ε y L_{ε}/L .

Tabla 15.6 Velocidades Perimetrales de los Elementos Rodantes sobre sus Centros y sobre el Centro del Rodamiento

Elementos	Anillo interior giratorio, anillo exterior fijo	Anillo exterior giratorio, anillo interior fijo
Velocidad de rotación	$(D_{rec} \cos^2 \alpha) n$	$\left(D_{nw} - \cos^2 \alpha\right) n_{\alpha}$
de las bolas	$-\left(\frac{D_{pw}}{D_{w}} - \frac{\cos^{2}\alpha}{D_{pw}/D_{w}}\right)\frac{n_{i}}{2}$	$+\left(\frac{D_{pw}}{D_{w}}-\frac{\cos^{2}\alpha}{D_{pw}/D_{w}}\right)\frac{n_{e}}{2}$
n_a (rpm)	$\left(-w - pw/-w\right)$	(w pw w)
$\begin{array}{c} \text{Velocidad perimetral} \\ \text{alrededor del centro de} \\ \text{la bola del rodamiento} \\ \upsilon_a\left(m/\text{sec}\right) \end{array}$	$-\frac{\pi \cdot D_{w}}{60 \times 10^{3}} \left(\frac{D_{pw}}{D_{w}} - \frac{\cos^{2} \alpha}{D_{pw}/D_{w}} \right) \frac{n_{i}}{2}$	$+\frac{\pi \cdot D_{\scriptscriptstyle W}}{60 \times 10^3} \left(\frac{D_{\scriptscriptstyle pw}}{D_{\scriptscriptstyle w}} - \frac{\cos^2 \alpha}{D_{\scriptscriptstyle pw}/D_{\scriptscriptstyle w}} \right) \frac{n_e}{2}$
Velocidad de revolución alrededor del centro del rodamiento $n_{\rm c}$ (rpm)	$+ \left(1 - \frac{\cos \alpha}{D_{pw}/D_w}\right) \frac{n_i}{2}$	$+ \left(1 - \frac{\cos \alpha}{D_{pw}/D_w}\right) \frac{n_e}{2}$
$\begin{array}{c} \text{Velocidad perimetral} \\ \text{alrededor del centro} \\ \text{del rodamiento} \\ \upsilon_c\left(m/\text{sec}\right) \end{array}$	$-\frac{\pi \cdot D_{pw}}{60 \times 10^3} \left(1 - \frac{\cos \alpha}{D_{pw}/D_w}\right) \frac{n_i}{2}$	$+\frac{\pi \cdot D_{pw}}{60 \times 10^3} \left(1 - \frac{\cos \alpha}{D_{pw}/D_w}\right) \frac{n_e}{2}$

Observaciones

- 1. El signo + indica rotación a la derecha, y el signo rotación a la izquierda
- La velocidad de revolución y la velocidad perimetral de los elementos rodantes son las mismas que las de la jaula.

Tabla 15. 7 ϵ y $f(\epsilon)$, L_{ϵ}/L

	Rodamientos de Bola	s de Ranura Profunda	Rodamientos de F	Rodillos Cilíndricos
ε	$f(\varepsilon)$	$rac{L_{arepsilon}}{L}$	$f(\varepsilon)$	$\frac{L_{arepsilon}}{L}$
0.1	33.713	0.294	51.315	0.220
0.2	10.221	0.546	14.500	0.469
0.3	4.045	0.737	5.539	0.691
0.4	1.408	0.889	1.887	0.870
0.5	0	1.0	0	1.0
0.6	- 0.859	1.069	- 1.133	1.075
0.7	- 1.438	1.098	- 1.897	1.096
0.8	- 1.862	1.094	- 2.455	1.065
0.9	- 2.195	1.041	- 2.929	0.968
1.0	- 2.489	0.948	- 3.453	0.805
1.25	- 3.207	0.605	- 4.934	0.378
1.5	- 3.877	0.371	- 6.387	0.196
1.67	- 4.283	0.276	- 7.335	0.133
1.8	- 4.596	0.221	- 8.082	0.100
2.0	- 5.052	0.159	- 9.187	0.067
2.5	- 6.114	0.078	-11.904	0.029
3	- 7.092	0.043	-14.570	0.015
4	- 8.874	0.017	-19.721	0.005
5	-10.489	0.008	-24.903	0.002
10	-17.148	0.001	-48.395	0.0002

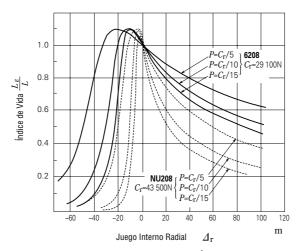


Fig. 15.13 Juego Interno Radial e Índice de Vida

15. 6 MARCAS Y PROPIEDADES DE GRASAS LUBRICANTES

Tabla 15. 8 Marcas de Grasas Lubricantes

		Tubia 10. 0 marodo do arabao Eubricani
Marcas	Espesantes	Aceites Base
ADREX	Litio	Aceite mineral
APPOLOIL AUTOREX A	Litio	Aceite mineral
Arapen RB 300	Litio/Calcio	Aceite mineral
EA2 Grease	Urea	Aceite Poli-α-olefino
EA3 Grease	Urea	Aceite Poli-α-olefino
EA5 Grease	Urea	Aceite Poli-α-olefino
EA7 Grease	Urea	Aceite Poli-α-olefino
ENC Grease	Urea	Aceite éster poliol + Aceite mineral
ENS Grease	Urea	Aceite éster poliol
ECZ	Litio + Carbón Negro	Aceite Poli-α-olefino
ISOFLEX NBU 15	Complejo de Bario	Aceite Diéster + Aceite mineral
ISOFLEX SUPER LDS 18	Litio	Aceite Diéster
ISOFLEX TOPAS NB52	Complejo de Bario	Aceite Poli-α-olefino
Aero Shell Grease 7	Micro Gel	Aceite Diéster
SH 33 L Grease	Litio	Aceite de Silicona
SH 44 M Grease	Litio	Aceite de Silicona
NS Hi-LUBE	Litio	Aceite éster poliol + Aceite Diéster
NSA	Litio	Aceite Poli-α-olefino + Ester oil
NSC Grease	Litio	Alkyldiphenyl ether oil + Aceite éster poliol
NSK Clean Grease LG2	Litio	Aceite Poli-α-olefino + Aceite mineral
EMALUBE 8030	Urea	Aceite mineral
MA8 Grease	Urea	Alkyldiphenyl ether oil + Aceite Poli-α-olefino
KRYTOX GPL-524	PTFE	Perfluoropolyether oil
KP1	PTFE	Perfluoropolyether oil
Cosmo Wide Grease WR No.3	Teraftalmalato de Sodio	Aceite éster poliol + Aceite mineral
G-40M	Litio	Aceite de Silicona
Shell Alvania EP Grease 2	Litio	Aceite mineral
Shell Alvania Grease S1	Litio	Aceite mineral
Shell Alvania Grease S2	Litio	Aceite mineral
Shell Alvania Grease S3	Litio	Aceite mineral
Shell Cassida Grease RLS 2	Complejo de Aluminio	Aceite Poli-α-olefino
SHELL SUNLIGHT Grease 2	Litio	Aceite mineral
WPH Grease	Urea	Aceite Poli-α-olefino
DEMNUM Grease L-200	PTFE	Aceite de Perfluoropoliéter

Notas (1) Si la grasa se va a usar en los límites superior o inferior del rango de temperatura o en un entorno especial como en el vacío, es aconsejable que consulte con NSK.

⁽²⁾ En funcionamiento a corto plazo o en refrigeración, la grasa puede ser usada a velocidades que sobrepasen los límites anteriores siempre que el suministro de grasa sea el adecuado.

y Comparación de Propiedades

Punto de Goteo (°C)	Consistencia	Rango de Temperatura de Trabajo(¹)(∞C)	Resistencia a la Presión	Límite Utilizable Comparado con la Velocidad Límite Indicada (²)(%)
198	300	0 ~ +110	Buena	70
198	280	-10 ∼ +110	Aceptable	60
177	294	-10 ∼ + 80	Aceptable	70
≧260	243	-40 ∼ +150	Aceptable	100
≧260	230	-40 ∼ +150	Aceptable	100
≧260	251	-40 ∼ +160	Buena	60
≧260	243	-40 ∼ +160	Aceptable	100
≧260	262	-40 ∼ +160	Aceptable	70
≧260	264	-40 ∼ +160	Aceptable	100
≧260	243	-10 ∼ +120	Aceptable	100
≧260	280	-30 ∼ +120	Pobre	100
195	280	-50 ∼ +110	Pobre	100
≧260	280	-40 ∼ +130	Pobre	90
≧260	288	-55 ∼ +100	Pobre	100
210	310	-60 ∼ +120	Pobre	60
210	260	-30 ∼ +130	Pobre	60
192	250	-40 ∼ +130	Aceptable	100
201	311	-40 ∼ +130	Aceptable	70
192	235	-30 ∼ +140	Aceptable	70
201	199	-40 ∼ +130	Pobre	100
≧260	280	0 ~ +130	Buena	60
≧260	283	-30 ∼ +160	Aceptable	70
≧260	265	0 ~ +200	Aceptable	70
≧260	280	−30 ~ +200	Aceptable	60
≧230	227	-40 ∼ +130	Pobre	100
223	252	-30 ∼ +130	Pobre	60
187	276	0~+80	Buena	60
182	323	-10 ∼ +110	Aceptable	70
185	275	-10 ∼ +110	Aceptable	70
185	242	-10 ∼ +110	Aceptable	70
≧260	280	0 ∼ +120	Aceptable	70
200	274	-10 ∼ +110	Aceptable	70
259	240	-40 ∼ +150	Aceptable	70
≧260	280	−30 ~ +200	Aceptable	60

(continúa en la página siguiente)

Marcas	Espesantes	Aceites Base
NIGACE WR-S	Urea	Mezcla de Aceites
NIGLUB RSH	Complejo de Sodio	Aceite de Glicol de Polialkyleno
PYRONOC UNIVERSAL N6B	Urea	Aceite mineral
PALMAX RBG	Complejo de Litio	Aceite mineral
Beacon 325	Litio	Aceite Diéster
MULTEMP PS No.2	Litio	Aceite mineral + Aceite Diéster
MOLYKOTE FS-3451 Grease	PTFE	Aceite de Fluorosilicona
UME Grease	Urea	Aceite mineral
UMM Grease 2	Urea	Aceite mineral
RAREMAX AF-1	Urea	Aceite mineral

- Notas (1) Si la grasa se va a usar en los límites superior o inferior del rango de temperatura o en un entorno especial como en
 - el vació, es aconsejable que consulte con NSK.

 (2) En funcionamiento a corto plazo o en refrigeración, la grasa puede ser usada a velocidades que sobrepasen los límites anteriores siempre que el suministro de grasa sea el adecuado.

Punto de Goteo (°C)	Consistencia	Rango de Temperatura de Trabajo (¹)(∞C)	Resistencia a la Presión	Límite Utilizable Comparado con la Velocidad Límite Indicada (²)(%)
≧260	230	−30 ~ +150	Pobre	70
≧260	270	−20 ~ +120	Aceptable	60
238	290	0~+130	Aceptable	70
216	300	-10 ∼ +130	Buena	70
190	274	-50 ∼ +110	Pobre	100
190	275	−50 ~ +110	Pobre	100
≧260	285	0 ~ +180	Aceptable	70
≧260	268	−10 ~ +130	Aceptable	70
≧260	267	−10 ~ +130	Aceptable	70
≧260	300	-10 ∼ +130	Aceptable	70

RODAMIENTOS DE BOLAS DE RANURA PROFUNDA

RODAMIENTOS DE BOLAS DE RANURA PROFUNDA DE UNA SOLA HILERA

Tipo Abierto, Tipo Blindado, Tipo Sellado Diámetro Interior 10~240mmPáginas B8~B19
Tipo Abierto Interior 260~800mmPáginas B20~B25

RODAMIENTOS DE BOLAS DE TIPO MÁXIMO Diámetro Interior 25~110mm Páginas B26~B27

Los Rodamientos de Bolas Extra Pequeños y Miniaturas se describen en las Páginas B30 a B45.

DISEÑO, TIPOS Y CARACTERÍSTICAS

RODAMIENTOS DE BOLAS DE RANURA PROFUNDA DE UNA SOLA HILERA

Los Rodamientos de Bolas de Ranura Profunda de Una Sola Hilera se clasifican en los tipos mostrados a continuación.

Los rodamientos de bolas blindados y sellados contienen la cantidad adecuada de grasa de buena calidad. En la Tabla 1 se muestra una comparación de las características de cada tipo.

Tabla 1 Características de los Rodamientos de Bolas Sellados

Tipo Abierto

Con Anillo de Fijación

Tipo Blindado (Tipo ZZ)

Tipo Sellado de Goma Sin Contacto (Tipo VV)

Tipo Sellado con Goma de Contacto (Tipo DDU)

Tipo	Tipo Blindado (Tipo ZZ)	Tipo Sellado sin Contacto (Tipo VV)	Tipo Sellado con Contacto (Tipo DDU)	
Par Bajo		Вајо	Superior a ZZ y VV debidos al sellado de contacto	
Capacidad de velocidad	Buena	Buena	Limitado por el Sellado de Contacto	
Efectividad del retén de grasa	Buena	Mejor que el tipo ZZ	Un poco mejor que el tipo VV	
Resistencia al polvo	Buena	Mejor que el tipo ZZ (utilizable en ambientes moderadamente polvorientos)	El Mejor (utilizable incluso en ambientes muy polvorientos)	
Resistencia al agua	No aconsejable	No aconsejable	Buena (utilizable incluso si un fluido salpica el rodamiento)	
Temperatura de funcionamiento (¹)	De -10 a +110°C	De -10 a +110°C	De -10 a +100°C	

Nota (1

) El intervalo de temperatura anterior se aplica a los rodamientos estándar. Si utiliza grasa resistente al frío o al calor y cambia el tipo de goma, puede aumentar el intervalo de temperatura de funcionamiento. Para estas aplicaciones, consulte con NSK.

Para los rodamientos de bolas de ranura profunda, normalmente se utilizan jaulas prensadas. Para rodamientos de gran tamaño, se utilizan jaulas de bronce mecanizado. (Consulte la Tabla 2)

Las jaulas mecanizadas también se utilizan para aplicaciones de alta velocidad.

Tabla 2 Jaulas Estándar para Rodamientos de Bolas de Ranura Profunda

Series	Jaulas de Acero Prensado	Jaulas de Bronce Mecanizado					
68	6800 ~ 6838	6840 ~ 68/800					
69	6900 ~ 6936	6938 ~ 69/800					
160	16001 ~ 16026	16028 ~ 16064					
60	6000 ~ 6040	6044 ~ 60/670					
62	6200 ~ 6240	6244 ~ 6272					
63	6300 ~ 6332	6334 ~ 6356					

RODAMIENTOS DE BOLAS DE TIPO MÁXIMO

Los Rodamientos de Bolas del Tipo Máximo contienen un mayor número de bolas que los rodamientos de bolas de ranura profunda, siendo esto posible por el diseño específico de las ranuras de llenado de los anillos interiores y exteriores. Debido a las ranuras de llenado, no resultan adecuados para aplicaciones con cargas axiales elevadas.

Los tipos de rodamientos BL2 y BL3 tienen unas dimensiones globales iguales a las de los rodamientos de bolas de ranura profunda de una sola hilera de las Series 62 y 63, respectivamente. Además de los rodamientos de tipo abierto, también están disponibles los de tipo ZZ.

Cuando utilice estos rodamientos, es importante que la ranura de relleno del anillo exterior quede lo más alejada posible de la zona cargada.

Sus jaulas son de acero prensado.

RODAMIENTOS PARA MAGNETOS

La ranura del anillo interior es ligeramente menos profunda que la de los rodamientos de bolas de ranura profunda, y una cara del anillo exterior está rebajada. En consecuencia el anillo exterior es separable, lo cual resulta muy útil para el montaje.

Las jaulas prensadas son estándar, pero para aplicaciones de alta velocidad se utilizan jaulas de resina sintética mecanizada.

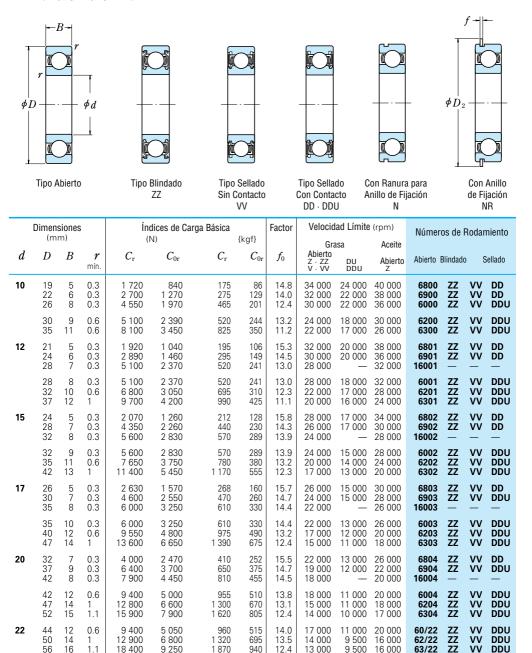
PRECAUCIONES PARA EL USO DE RODAMIENTOS DE BOLAS DE RANURA PROFUNDA

Para rodamientos de bolas de ranura profunda, si la carga del rodamiento es demasiado pequeña durante el funcionamiento se produce un deslizamiento entre las bolas y los caminos de rodadura, lo cual puede provocar daños. Cuanto mayor sea el peso de las bolas y la jaula mayor será esta tendencia, especialmente en los rodamientos de gran tamaño. Si se presupone que las cargas de los rodamientos serán muy pequeñas, consulte con NSK para seleccionar un rodamiento adecuado.

TOLERANCIAS Y PRECISIÓN DE FUNCIONAMIENTO RODAMIENTOS DE BOLAS DE RANURA PROFUNDA

DE UNA SOLA HILERA	Tabla 8.2 (Páginas A60~A63)
RODAMIENTOS DE BOLAS DEL TIPO MÁXIMO	Tabla 8.2 (Páginas A60~A63)
RODAMIENTOS PARA MAGNETOS	Tabla 8.5 (Páginas A70~A71)
AJUSTES RECOMENDADOS	
RODAMIENTOS DE BOLAS DE RANURA PROFUNDA	
DE UNA SOLA HILERA	Tabla 9.2 (Página A84)
	Tabla 9.4 (Página A85)
RODAMIENTOS DE BOLAS DEL TIPO MÁXIMO	Tabla 9.2 (Página A84)
	Tabla 9.4 (Página A85)
RODAMIENTOS PARA MAGNETOS	Tabla 9.2 (Página A84)
	Tabla 9.4 (Página A85)
	` -

JUEGOS INTERNOS


RODAMIENTOS DE BOLAS DE RANURA PROFUNDA	
DE UNA SOLA HILERA	Tabla 9.9 (Página A89)
RODAMIENTOS DE BOLAS DEL TIPO MÁXIMO	Tabla 9.9 (Página A89)
RODAMIENTOS PARA MAGNETOS	Tabla 9.11 (Página A89)

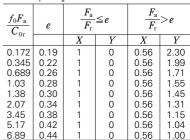
VELOCIDADES LÍMITE

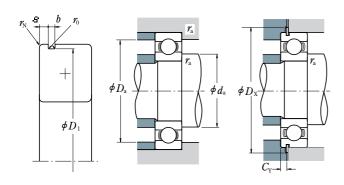
Las velocidades límite mostradas en las tablas de rodamientos deberán ajustarse según las condiciones de carga de los rodamientos. También se puede incrementar la velocidad realizando cambios en el método de lubricación, diseño de la jaula, etc. Consulte la Página A37 para información más detallada.

RODAMIENTOS DE BOLAS DE RANURA PROFUNDA DE UNA SOLA HILERA

Diámetro interior 10~22 mm

Notas (1) Para tolerancias dimensionales de las ranuras y de los anillos de fijación, consulte las Páginas A50 a A53.


⁽²⁾ Cuando se aplican cargas axiales pesadas, aumente d_a y disminuya D_a respecto a los valores indicados.


⁽³⁾ Los tipos de anillo N y NR sólo son aplicables a los rodamientos de tipo abierto.

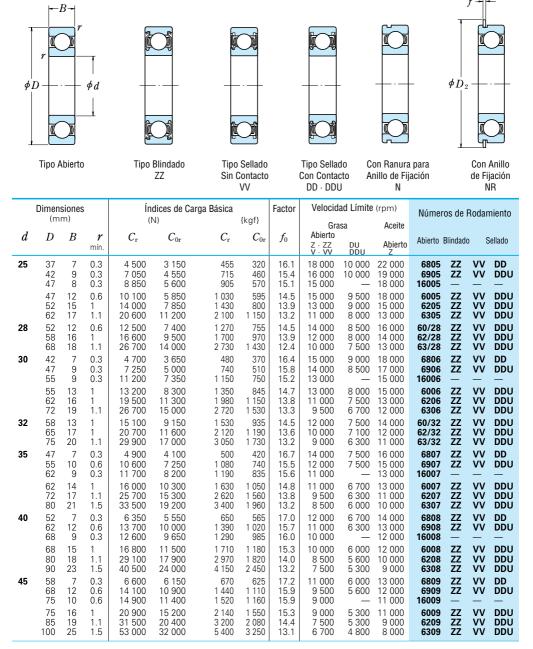
Carga Dinámica Equivalente

 $P = XF_r + YF_a$

Carga Estática Equivalente

$$\frac{F_{\rm a}}{F_r}$$
 > 0.8, $P_0 = 0.6F_r + 0.5F_{\rm a}$

$$\frac{F_{\rm a}}{F} \leq 0.8, P_0 = F_r$$

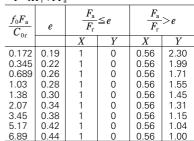

	Con Anillo	Dimensiones de la Ranura del Anillo (¹) (mm)					Dimensio	nillo	Dimensiones de Tope y Chafán (mm)						Masa (Kg.)
para de Anillo Fijación		<i>a</i> máx.	b mín.	$D_{\scriptscriptstyle 1}$ máx.	$oldsymbol{\gamma}_0$ máx.	$\emph{r}_{ m N}$ mín.	$D_2^{(m mr}$ máx.	n) f máx.	a mín.	$m{d}_{\mathrm{a}^{(2)}}$ máx.	$D_{ m a}^{(2)}$ máx.	$m{r}_{ m a}$ máx.	$D_{ m x}$ mín.	$C_{\scriptscriptstyle m Y}$ máx.	aprox.
	— NR(3) NR(4)		— 0.8 0.87	— 20.8 24.5	0.2 0.2	0.2 0.3	24.8 28.7	 0.7 0.84	12 12 12	12 12.5 13	17 20 24	0.3 0.3 0.3	— 25.5 29.4	— 1.5 1.9	0.005 0.008 0.018
N N	NR NR	2.06 2.06	1.35 1.35	28.17 33.17	0.4 0.4	0.5 0.5	34.7 39.7	1.12 1.12	14 14	16 16.5	26 31	0.6 0.6	35.5 40.5	2.9 2.9	0.03 0.05
_ N _	NR —	1.05 —	0.8	22.8 —	0.2 —	0.2 —	26.8 —	0.7 —	14 14 14	14 14.5 —	19 22 26	0.3 0.3 0.3	 27.5 _	 1.5 	0.000 0.010 0.010
N(4) N N	NR(4) NR NR	1.35 2.06 2.06	0.87 1.35 1.35	26.5 30.15 34.77	0.2 0.4 0.4	0.3 0.5 0.5	30.7 36.7 41.3	0.84 1.12 1.12	14 16 17	15.5 17 18	26 28 32	0.3 0.6 1	31.4 37.5 42	1.9 2.9 2.9	0.022 0.03 0.06
_ N _	NR —	1.3	0.95 —	26.7 —	0.25 —	0.3 —	30.8 —	0.85 —	17 17 17	17 17 —	22 26 30	0.3 0.3 0.3	 31.5 	_ 1.8 _	0.00 0.01 0.02
N N N	NR NR NR	2.06 2.06 2.06	1.35 1.35 1.35	30.15 33.17 39.75	0.4 0.4 0.4	0.3 0.5 0.5	36.7 39.7 46.3	1.12 1.12 1.12	17 19 20	19 20.5 22.5	30 31 37	0.3 0.6 1	37.5 40.5 47	2.9 2.9 2.9	0.03 0.04 0.08
_ N _	NR —	1.3	0.95 —	28.7 —	0.25 —	0.3 —	32.8 —	0.85 —	19 19 19	19 19.5 —	24 28 33	0.3 0.3 0.3	 33.5 	_ 1.8 _	0.00 0.01 0.03
N N N	NR NR NR	2.06 2.06 2.46	1.35 1.35 1.35	33.17 38.1 44.6	0.4 0.4 0.4	0.3 0.5 0.5	39.7 44.6 52.7	1.12 1.12 1.12	19 21 22	21.5 23.5 25.5	33 36 42	0.3 0.6 1	40.5 45.5 53.5	2.9 2.9 3.3	0.04 0.06 0.11
N N	NR NR —	1.3 1.7 —	0.95 0.95 —	30.7 35.7 —	0.25 0.25 —	0.3 0.3 —	34.8 39.8 —	0.85 0.85 —	22 22 22	22 24 —	30 35 40	0.3 0.3 0.3	35.5 40.5 —	1.8 2.3 —	0.01 0.03 0.04
N N N	NR NR NR	2.06 2.46 2.46	1.35 1.35 1.35	39.75 44.6 49.73	0.4 0.4 0.4	0.5 0.5 0.5	46.3 52.7 57.9	1.12 1.12 1.12	24 25 26.5	25.5 26.5 28	38 42 45.5	0.6 1 1	47 53.5 58.5	2.9 3.3 3.3	0.06 0.10 0.14
N N N	NR NR NR	2.06 2.46 2.46	1.35 1.35 1.35	41.75 47.6 53.6	0.4 0.4 0.4	0.5 0.5 0.5	48.3 55.7 61.7	1.12 1.12 1.12	26 27 28.5	26.5 29.5 30.5	40 45 49.5	0.6 1 1	49 56.5 62.5	2.9 3.3 3.3	0.07- 0.11 0.17

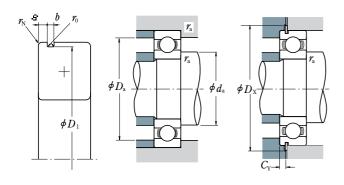
Notas (4) Observaciones Las dimensiones de las ranuras y los anillos de fijación no cumplen la normativa ISO15.

- 1. La serie dimensional 7 (rodamientos de sección extra fina) también están disponibles, contacte a NSK.
- 2. Cuando use rodamientos con anillos exteriores rotatorios, contacte a NSK si son sellados, blindados, o si tiene anillos de fijación.

RODAMIENTOS DE BOLAS DE RANURA PROFUNDA DE UNA SOLA HILERA

Diámetro Interior 25~45 mm


Notas (1) Para tolerancias dimensionales de las ranuras y de los anillos de fijación, consulte las Páginas A50 a A53...


⁽²⁾ Cuando se aplican cargas axiales pesadas, aumente d_a y disminuya D_a respecto a los valores indicados.

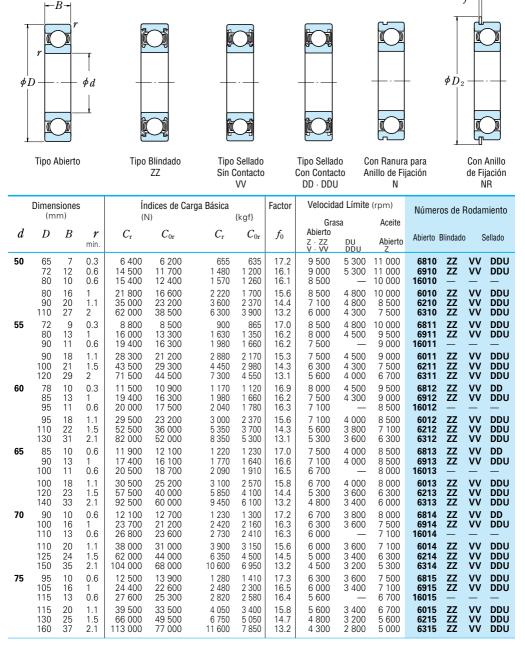
Carga Dinámica Equivalente

 $P = XF_r + YF_a$

Carga Estática Equivalente

$$\frac{F_a}{F_r}$$
 > 0.8, $P_0 = 0.6F_r + 0.5F_a$

$$\frac{F_{\rm a}}{F_{\rm r}} \leq 0.8, P_0 = F_{\rm r}$$

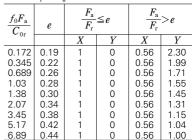

Con Ranur	Con a Anillo	Dimensiones de la Ranura del Anillo (¹)					Dimensio anillo) (¹)	Dimensiones de Tope y Chaflán (mm)						Masa (Kg.)
para Anillo	de Fijación	<i>a</i> máx.	$m{b}$ mín.	$D_{ m 1}$ máx.	$oldsymbol{\gamma}_0$ máx.	$\emph{r}_{ m N}$ mín.	$D_2^{(m mr}$ máx.	máx.	d mín.	$I_{ m a}^{(2)}$ máx.	$D_{ m a}^{(2)}$ máx.	$m{\gamma}_{\mathrm{a}}$ máx.	D_{x} mín.	$C_{\scriptscriptstyle \mathrm{Y}}$ máx.	aprox.
N N	NR NR	1.3 1.7	0.95 0.95 —	35.7 40.7 —	0.25 0.25 —	0.3 0.3 —	39.8 44.8 —	0.85 0.85 —	27 27 27	27 28.5 —	35 40 45	0.3 0.3 0.3	40.5 45.5 —	1.8 2.3 —	0.021 0.042 0.059
N	NR	2.06	1.35	44.6	0.4	0.5	52.7	1.12	29	30	43	0.6	53.5	2.9	0.079
N	NR	2.46	1.35	49.73	0.4	0.5	57.9	1.12	30	32	47	1	58.5	3.3	0.129
N	NR	3.28	1.9	59.61	0.6	0.5	67.7	1.7	31.5	36	55.5	1	68.5	4.6	0.235
N	NR	2.06	1.35	49.73	0.4	0.5	57.9	1.12	32	34	48	0.6	58.5	2.9	0.096
N	NR	2.46	1.35	55.6	0.4	0.5	63.7	1.12	33	35.5	53	1	64.5	3.3	0.175
N	NR	3.28	1.9	64.82	0.6	0.5	74.6	1.7	34.5	38	61.5	1	76	4.6	0.287
N N	NR NR —	1.3 1.7 —	0.95 0.95 —	40.7 45.7 —	0.25 0.25 —	0.3 0.3 —	44.8 49.8 —	0.85 0.85 —	32 32 32	32 34 —	40 45 53	0.3 0.3 0.3	45.5 50.5 —	1.8 2.3 —	0.024 0.052 0.087
N	NR	2.08	1.35	52.6	0.4	0.5	60.7	1.12	35	36.5	50	1	61.5	2.9	0.116
N	NR	3.28	1.9	59.61	0.6	0.5	67.7	1.7	35	38.5	57	1	68.5	4.6	0.199
N	NR	3.28	1.9	68.81	0.6	0.5	78.6	1.7	36.5	42.5	65.5	1	80	4.6	0.345
N	NR	2.08	1.35	55.6	0.4	0.5	63.7	1.12	37	38.5	53	1	64.5	2.9	0.122
N	NR	3.28	1.9	62.6	0.6	0.5	70.7	1.7	37	40	60	1	71.5	4.6	0.225
N	NR	3.28	1.9	71.83	0.6	0.5	81.6	1.7	38.5	44.5	68.5	1	83	4.6	0.389
N N	NR NR	1.3 1.7 —	0.95 0.95 —	45.7 53.7 —	0.25 0.25 —	0.3 0.5 —	49.8 57.8 —	0.85 0.85 —	37 39 37	37 39 —	45 51 60	0.3 0.6 0.3	50.5 58.5 —	1.8 2.3 —	0.027 0.075 0.107
N	NR	2.08	1.9	59.61	0.6	0.5	67.7	1.7	40	41.5	57	1	68.5	3.4	0.151
N	NR	3.28	1.9	68.81	0.6	0.5	78.6	1.7	41.5	44.5	65.5	1	80	4.6	0.284
N	NR	3.28	1.9	76.81	0.6	0.5	86.6	1.7	43	47	72	1.5	88	4.6	0.464
N N	NR NR	1.3 1.7 —	0.95 0.95 —	50.7 60.7 —	0.25 0.25 —	0.3 0.5 —	54.8 64.8 —	0.85 0.85 —	42 44 42	42 46 —	50 58 66	0.3 0.6 0.3	55.5 65.5 —	1.8 2.3 —	0.031 0.112 0.13
N	NR	2.49	1.9	64.82	0.6	0.5	74.6	1.7	45	47.5	63	1	76	3.8	0.19
N	NR	3.28	1.9	76.81	0.6	0.5	86.6	1.7	46.5	50.5	73.5	1	88	4.6	0.366
N	NR	3.28	2.7	86.79	0.6	0.5	96.5	2.46	48	53	82	1.5	98	5.4	0.636
N N	NR NR	1.3 1.7 —	0.95 0.95 —	56.7 66.7 —	0.25 0.25 —	0.3 0.5 —	60.8 70.8 —	0.85 0.85 —	47 49 49	47.5 50 —	56 64 71	0.3 0.6 0.6	61.5 72 —	1.8 2.3 —	0.038 0.126 0.167
N	NR	2.49	1.9	71.83	0.6	0.5	81.6	1.7	50	53.5	70	1	83	3.8	0.241
N	NR	3.28	1.9	81.81	0.6	0.5	91.6	1.7	51.5	55.5	78.5	1	93	4.6	0.42
N	NR	3.28	2.7	96.8	0.6	0.5	106.5	2.46	53	61.5	92	1.5	108	5.4	0.829

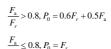
Observaciones

- 1. La serie dimensional 7 (rodamientos de sección extra fina) también están disponibles, contacte a NSK.
- 2. Cuando use rodamientos con anillos exteriores rotatorios, contacte con NSK si son sellados, blindados, o si tiene anillos de fijación.

RODAMIENTOS DE BOLAS DE RANURA PROFUNDA DE UNA SOLA HILERA

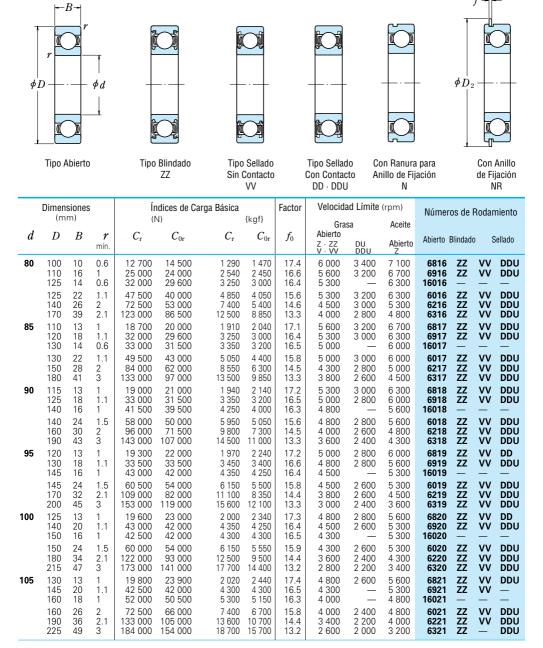
Diámetro Interior 50~75 mm




Notas (1) Para tolerancias dimensionales de las ranuras y de los anillos de fijación, consulte las Páginas A50 a A53.

⁽²⁾ Cuando se aplican cargas axiales pesadas, aumente d_a y disminuya D_a respecto a los valores indicados.

 $P = XF_r + YF_a$

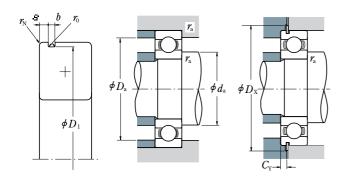

r _N 8 b r ₀ + + φD ₁	ϕD_{a}	$\phi D_{\rm X}$
---	-----------------------	------------------

Carga Estática Equivalente

			vaionio				$\frac{-a}{F_r} \le 0.8, P_0 = F_r$								
	ra Anillo	Dimen	siones d	e la Ranur (mm)	a del Ani	llo (¹)	Dimensio anillo	(1)		Dimensio	nes de 1 (mm		Chaflán		Masa (Kg.)
para Anill	de o Fijación	a máx.	$m{b}$ mín.	$D_{ m 1}$ máx.	$oldsymbol{\gamma}_0$ máx.	${m r}_{ m N}$ mín.	$D_2^{(m mn}$ máx.	n) f máx.	mín.	$l_{ m a^{(2)}}$ máx.	$D_{ m a}^{(2)}$ máx.	r a máx.	D_{x} mín.	$C_{\scriptscriptstyle \mathrm{Y}}$ máx.	aprox.
N N	NR NR —	1.3 1.7 —	0.95 0.95 —	63.7 70.7 —	0.25 0.25 —	0.3 0.5 —	67.8 74.8 —	0.85 0.85 —	52 54 54	52.5 55 —	63 68 76	0.3 0.6 0.6	68.5 76 —	1.8 2.3 —	0.050 0.135 0.175
N N N	NR NR NR	2.49 3.28 3.28	1.9 2.7 2.7	76.81 86.79 106.81	0.6 0.6 0.6	0.5 0.5 0.5	86.6 96.5 116.6	1.7 2.46 2.46	55 56.5 59	58.5 60 68	75 83.5 101	1 1 2	88 98 118	3.8 5.4 5.4	0.261 0.459 1.06
N N	NR NR —	1.7 2.1 —	0.95 1.3 —	70.7 77.9 —	0.25 0.4 —	0.3 0.5 —	74.8 84.4 —	0.85 1.12 —	57 60 59	59 61.5 —	70 75 86	0.3 1 0.6	76 86 —	2.3 2.9 —	0.081 0.189 0.257
N N N	NR NR NR	2.87 3.28 4.06	2.7 2.7 3.1	86.79 96.8 115.21	0.6 0.6 0.6	0.5 0.5 0.5	96.5 106.5 129.7	2.46 2.46 2.82	61.5 63 64	64 66.5 72.5	83.5 92 111	1 1.5 2	98 108 131.5	5 5.4 6.5	0.381 0.619 1.37
N N —	NR NR —	1.7 2.1 —	1.3 1.3 —	76.2 82.9 —	0.4 0.4 —	0.3 0.5 —	82.7 89.4 —	1.12 1.12 —	62 65 64	64 66 —	76 80 91	0.3 1 0.6	84 91 —	2.5 2.9 —	0.103 0.192 0.281
N N N	NR NR NR	2.87 3.28 4.06	2.7 2.7 3.1	91.82 106.81 125.22	0.6 0.6 0.6	0.5 0.5 0.5	101.6 116.6 139.7	2.46 2.46 2.82	66.5 68 71	69 74.5 79	88.5 102 119	1 1.5 2	103 118 141.5	5 5.4 6.5	0.412 0.783 1.72
N N	NR NR —	1.7 2.1 —	1.3 1.3 —	82.9 87.9 —	0.4 0.4 —	0.5 0.5 —	89.4 94.4 —	1.12 1.12 —	69 70 69	69 71.5 —	81 85 96	0.6 1 0.6	91 96 —	2.5 2.9 —	0.128 0.218 0.30
N N N	NR NR NR	2.87 4.06 4.9	2.7 3.1 3.1	96.8 115.21 135.23	0.6 0.6 0.6	0.5 0.5 0.5	106.5 129.7 149.7	2.46 2.82 2.82	71.5 73 76	73 80 85.5	93.5 112 129	1 1.5 2	108 131.5 152	5 6.5 7.3	0.439 1.0 2.11
N N	NR NR —	1.7 2.5 —	1.3 1.3 —	87.9 97.9 —	0.4 0.4 —	0.5 0.5 —	94.4 104.4 —	1.12 1.12 —	74 75 74	74.5 77.5 —	86 95 106	0.6 1 0.6	96 106 —	2.5 3.3 —	0.134 0.349 0.441
N N N	NR NR NR	2.87 4.06 4.9	2.7 3.1 3.1	106.81 120.22 145.24	0.6 0.6 0.6	0.5 0.5 0.5	116.6 134.7 159.7	2.46 2.82 2.82	76.5 78 81	80.5 84 92	103.5 117 139	1 1.5 2	118 136.5 162	5 6.5 7.3	0.608 1.09 2.57
N N	NR NR —	1.7 2.5 —	1.3 1.3 —	92.9 102.6 —	0.4 0.4 —	0.5 0.5 —	99.4 110.7 —	1.12 1.12 —	79 80 79	79.5 82 —	91 100 111	0.6 1 0.6	101 112 —	2.5 3.3 —	0.149 0.364 0.463
N N N	NR NR NR	2.87 4.06 4.9	2.7 3.1 3.1	111.81 125.22 155.22	0.6 0.6 0.6	0.5 0.5 0.5	121.6 139.7 169.7	2.46 2.82 2.82	81.5 83 86	85.5 90 98.5	108.5 122 149	1 1.5 2	123 141.5 172	5 6.5 7.3	0.649 1.19 3.08

- 1. La serie dimensional 7 (rodamientos de sección extra fina) también están disponibles, contacte a NSK.
- 2. Cuando use rodamientos con anillos exteriores rotatorios, contacte con NSK si son sellados, blindados, o si tiene anillos de fijación.

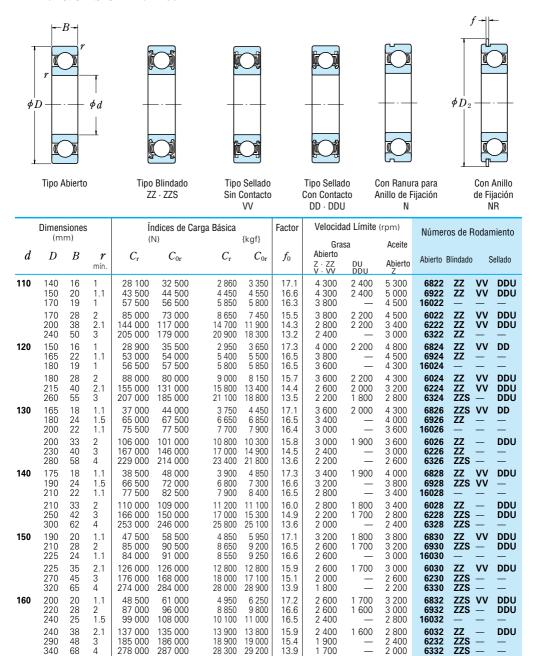
Diámetro Interior 80~105 mm


Notas (1) Para tolerancias dimensionales de las ranuras y de los anillos de fijación, consulte las Páginas A50 a A53.

⁽²⁾ Cuando se aplican cargas axiales pesadas, aumente d_a y disminuya D_a respecto a los valores indicados.

 $P = XF_r + YF_a$

Carga Estática Equivalente

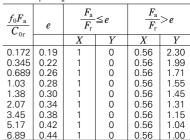

$$\frac{F_a}{F_r}$$
 > 0.8, $P_0 = 0.6F_r + 0.5F_a$

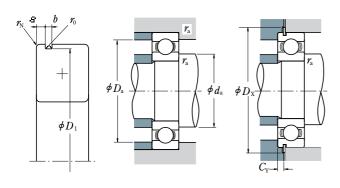
$$\frac{F_{\rm a}}{F_{\rm r}} \leq 0.8, P_0 = F_{\rm r}$$

Con Ranura para	Con a Anillo de	Dimens	siones d	e la Ranur (mm)	a del An	illo (¹)	Dimensio anillo (mr	(1)		Dimensi	ones de T (mm		Chaflán		Masa (Kg.)
	Fijación	a máx.	$m{b}$ mín.	$D_{ m 1}$ máx.	$m{\gamma}_0$ máx.	${m r}_{ m N}$ mín.	$D_2^{(11)1}$ máx.	f máx.	dmín.	max.	$D_{ m a}^{(2)}$ máx.	γ _a máx.	D_{x} mín.	$C_{ m Y}$ máx.	aprox.
N N	NR NR —	1.7 2.5 —	1.3 1.3 —	97.9 107.6 —	0.4 0.4 —	0.5 0.5 —	104.4 115.7 —	1.12 1.12 —	84 85 84	84.5 87.5 —	96 105 121	0.6 1 0.6	106 117 —	2.5 3.3 —	0.15° 0.39° 0.62°
N N N	NR NR NR	2.87 4.9 5.69	3.1 3.1 3.5	120.22 135.23 163.65	0.6 0.6 0.6	0.5 0.5 0.5	134.7 149.7 182.9	2.82 2.82 3.1	86.5 89 91	91 95.5 104.5	118.5 131 159	1 2 2	136.5 152 185	5.3 7.3 8.4	0.87 1.42 3.67
N N	NR NR —	2.1 3.3 —	1.3 1.3 —	107.6 117.6 —	0.4 0.4 —	0.5 0.5 —	115.7 125.7 —	1.12 1.12 —	90 91.5 89	90.5 94.5 —	105 113.5 126	1 1 0.6	117 127 —	2.9 4.1 —	0.26 0.55 0.65
N N N	NR NR NR	2.87 4.9 5.69	3.1 3.1 3.5	125.22 145.24 173.66	0.6 0.6 0.6	0.5 0.5 0.5	139.7 159.7 192.9	2.82 2.82 3.1	91.5 94 98	96 102 110.5	123.5 141 167	1 2 2.5	141.5 162 195	5.3 7.3 8.4	0.918 1.76 4.28
N N	NR NR —	2.1 3.3 —	1.3 1.3 —	112.6 122.6 —	0.4 0.4 —	0.5 0.5 —	120.7 130.7 —	1.12 1.12 —	95 96.5 95	95.5 98.5 —	110 118.5 135	1 1 1	122 132 —	2.9 4.1 —	0.27 0.58 0.87
N N N	NR NR NR	3.71 4.9 5.69	3.1 3.1 3.5	135.23 155.22 183.64	0.6 0.6 0.6	0.5 0.5 0.5	149.7 169.7 202.9	2.82 2.82 3.1	98 99 103	103 107.5 117	132 151 177	1.5 2 2.5	152 172 205	6.1 7.3 8.4	1.19 2.18 4.98
N N	NR NR —	2.1 3.3 —	1.3 1.3 —	117.6 127.6 —	0.4 0.4 —	0.5 0.5 —	125.7 135.7 —	1.12 1.12 —	100 101.5 100	101.5 103.5 —	115 123.5 140	1 1 1	127 137 —	2.9 4.1 —	0.29 0.60 0.90
N N N	NR NR NR	3.71 5.69 5.69	3.1 3.5 3.5	140.23 163.65 193.65	0.6 0.6 0.6	0.5 0.5 0.5	154.7 182.9 212.9	2.82 3.1 3.1	103 106 108	108.5 114 123.5	137 159 187	1.5 2 2.5	157 185 215	6.1 8.4 8.4	1.23 2.64 5.76
N N	NR NR	2.1 3.3 —	1.3 1.9 —	122.6 137.6 —	0.4 0.6 —	0.5 0.5 —	130.7 145.7 —	1.12 1.7 —	105 106.5 105	105.5 111 —	120 133.5 145	1 1 1	132 147 —	2.9 4.7 —	0.31 0.82 0.94
N N	NR NR	3.71 5.69 —	3.1 3.5 —	145.24 173.66 —	0.6 0.6 —	0.5 0.5 —	159.7 192.9 —	2.82 3.1 —	108 111 113	112.5 121.5 133	142 169 202	1.5 2 2.5	162 195 —	6.1 8.4 —	1.29 3.17 7.04
N N	NR NR —	2.1 3.3 —	1.3 1.9 —	127.6 142.6 —	0.4 0.6 —	0.5 0.5 —	135.7 150.7 —	1.12 1.7 —	110 111.5 110	110.5 116 —	125 138.5 155	1 1 1	137 152 —	2.9 4.7 —	0.32 0.85 1.24
N N	NR NR	3.71 5.69 —	3.1 3.5 —	155.22 183.64 —	0.6 0.6 —	0.5 0.5 —	169.7 202.9	2.82 3.1 —	114 116 118	120 127.5 138	151 179 212	2 2 2.5	172 205 —	6.1 8.4 —	1.58 3.79 8.09

- 1. La serie dimensional 7 (rodamientos de sección extra fina) también están disponibles, contacte a NSK.
- 2. Cuando use rodamientos con anillos exteriores rotatorios, contacte con NSK si son sellados, blindados, o si tiene de fijación.

Diámetro Interior 110~160 mm



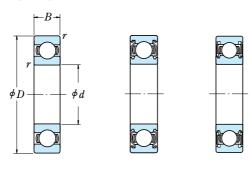

Notas (1) Para tolerancias dimensionales de las ranuras y de los anillos de fijación, consulte las Páginas A50 a A53.

⁽²⁾ Cuando se aplican cargas axiales pesadas, aumente d_a y disminuya D_a respecto a los valores indicados.

 $P = XF_r + YF_a$

Carga Estática Equivalente

$$\frac{F_{\rm a}}{F_{\rm r}} > 0.8, P_0 = 0.6F_{\rm r} + 0.5F_{\rm a}$$

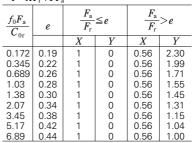

$$\frac{F_{\rm a}}{F} \le 0.8, P_0 = F_r$$

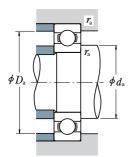
Con Ranur para	Con a Anillo de	Dimens	siones d	e la Ranur (mm)	a del An	illo (¹)	Dimensio anillo	(1)		Dimensi	ones de T (mm		Chaflán		Masa (Kg.)
Para Anillo	Fijación	а máx.	b mín.	$D_{ m 1}$ máx.	$oldsymbol{\gamma}_0$ máx.	${m r}_{ m N}$ mín.	$D_2^{(m mm}$ máx.	f máx.	d mín.	$f_{ m a}^{(2)}$ máx.	$D_{ m a}^{(2)}$ máx.	∤ a máx.	$D_{ m x}$ mín.	$C_{ m Y}$ máx.	aprox.
N N	NR NR	2.5 3.3 —	1.9 1.9 —	137.6 147.6 —	0.6 0.6 —	0.5 0.5 —	145.7 155.7 —	1.7 1.7 —	115 116.5 115	117 121 —	135 143.5 165	1 1 1	147 157 —	3.9 4.7 —	0.49 0.893 1.51
N N	NR NR —	3.71 5.69 —	3.5 3.5 —	163.65 193.65 —	0.6 0.6 —	0.5 0.5 —	182.9 212.9 —	3.1 3.1 —	119 121 123	124.5 134 147	161 189 227	2 2 2.5	185 215 —	6.4 8.4 —	1.94 4.45 9.51
N N	NR NR —	2.5 3.7 —	1.9 1.9 —	147.6 161.8 —	0.6 0.6 —	0.5 0.5 —	155.7 171.5 —	1.7 1.7 —	125 126.5 125	127 132 —	145 158.5 175	1 1 1	157 173 —	3.9 5.1 —	0.53 1.21 1.6
N —	NR — —	3.71 — —	3.5 — —	173.66 — —	0.6 — —	0.5 —	192.9 — —	3.1 — —	129 131 133	134.5 146 161	171 204 247	2 2 2.5	195 — —	6.4 — —	2.08 5.29 12.5
N N	NR NR —	3.3 3.7 —	1.9 1.9 —	161.8 176.8 —	0.6 0.6 —	0.5 0.5 —	171.5 186.5 —	1.7 1.7 —	136.5 138 136.5	138 144 —	158.5 172 193.5	1 1.5 1	173 188 —	4.7 5.1 —	0.75 1.57 2.4
N —	NR — —	5.69 — —	3.5 — —	193.65 — —	0.6 — —	0.5 — —	212.9 — —	3.1 — —	139 143 146	148.5 157 175	191 217 264	2 2.5 3	215 — —	8.4 — —	3.26 5.96 15.2
N N	NR NR —	3.3 3.7 —	1.9 1.9 —	171.8 186.8 —	0.6 0.6 —	0.5 0.5 —	181.5 196.5 —	1.7 1.7 —	146.5 148 146.5	148.5 153.5 —	168.5 182 203.5	1 1.5 1	183 198 —	4.7 5.1 —	0.83 1.67 2.84
_	_	_	_		_	_	_ _ _	_	149 153 156	158.5 171.5 187	201 237 284	2 2.5 3	_	_	3.48 7.68 18.5
N —	NR — —	3.3	1.9 — —	186.8 — —	0.6 —	0.5 —	196.5 — —	1.7 — —	156.5 159 156.5	160 166 —	183.5 201 218.5	1 2 1	198 — —	4.7 — —	1.15 3.01 3.62
_	_	_	_		_	_	_ _ _	_	161 163 166	170 186 203	214 257 304	2 2.5 3	_	_ _ _	4.24 10 22.7
N 	NR — —	3.3	1.9 —	196.8 — —	0.6 —	0.5 —	206.5 —	1.7 — —	166.5 169 168	170.5 176 —	193.5 211 232	1 2 1.5	208 — —	4.7 — —	1.23 2.71 4.2
=	_	_	_	_ _ _	_	=	_ _ _	_	171 173 176	181.5 202 215.5	229 277 324	2 2.5 3	_	_	5.15 12.8 26.2

Observaciones

Cuando use rodamientos con anillos exteriores rotatorios, contacte con NSK si son sellados, blindados, o si tiene anillos de fijación.

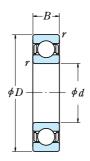
Diámetro Interior 170~240 mm


Tipo Abierto Tipo Blindado Tipo Sellado ZZS Sin Contacto VV


	Dimen		;		ndices de Ca	rga Básica		Factor	Velocida	d Límite	(rpm)	Números	de Roda	miento
	(m				N)	_	{kgf}	_	Gras	sa	Aceite			
d	D	В	∤ mín.	$C{ m r}$	C_{0r}	C_{r}	C_{0r}	f_0	Abierto Z · ZZ V · VV	DU DDU	Abierto Z	Abierto Bl	indado	Sellado
170	215 230 260	22 28 28	1.1 2 1.5	60 000 86 000 114 000	75 000 97 000 126 000	6 100 8 750 11 700	7 650 9 850 12 900	17.1 16.7 16.5	2 600 2 400 2 200	1 600 —	3 000 2 800 2 600		ZZS VV ZZS —	DDU —
	260 310 360	42 52 72	2.1 4 4	161 000 212 000 325 000	161 000 224 000 355 000	16 400 21 700 33 500	16 400 22 800 36 000	15.8 15.3 13.6	2 200 1 800 1 600	_	2 600 2 200 2 000		ZZS VV ZZS —	'
180	225 250 280	22 33 31	1.1 2 2	60 500 119 000 145 000	78 500 128 000 157 000	6 200 12 100 14 700	8 000 13 100 16 000	17.2 16.4 16.3	2 400 2 200 2 000	_	2 800 2 600 2 400	6836 6936 16036	_ VV zzs _ 	'
	280 320 380	46 52 75	2.1 4 4	180 000 227 000 355 000	185 000 241 000 405 000	18 400 23 200 36 000	18 800 24 600 41 500	15.6 15.1 13.9	2 000 1 700 1 500	_	2 400 2 000 1 800	6236 6336	ZZS VV ZZS — — —	_ _ _
190	240 260 290	24 33 31	1.5 2 2	73 000 113 000 149 000	93 500 127 000 168 000	7 450 11 500 15 200	9 550 13 000 17 100	17.1 16.6 16.4	2 200 2 200 2 000	_	2 600 2 600 2 400	6838 6938 16038	_ v\ 	' — — —
	290 340 400	46 55 78	2.1 4 5	188 000 255 000 355 000	201 000 282 000 415 000	19 200 26 000 36 000	20 500 28 700 42 500	15.8 15.0 14.1	2 000 1 600 1 400	_	2 400 2 000 1 700		ZZS — ZZS — — —	_
200	250 280 310	24 38 34	1.5 2.1 2	74 000 143 000 161 000	98 000 158 000 180 000	7 550 14 600 16 400	10 000 16 100 18 300	17.2 16.4 16.4	2 200 2 000 1 900	_	2 600 2 400 2 200	6840 6940 16040	 zzs 	_
	310 360 420	51 58 80	2.1 4 5	207 000 269 000 380 000	226 000 310 000 445 000	21 100 27 400 38 500	23 000 31 500 45 500	15.6 15.2 13.8	1 900 1 500 1 300	_	2 200 1 800 1 600		ZZS — ZZS — — —	_
220	270 300 340	24 38 37	1.5 2.1 2.1	76 500 146 000 180 000	107 000 169 000 217 000	7 800 14 900 18 400	10 900 17 300 22 100	17.4 16.6 16.5	1 900 1 800 1 600	_	2 400 2 200 2 000		ZZS — ZZS — — —	_
	340 400 460	56 65 88	3 4 5	235 000 310 000 410 000	271 000 375 000 520 000	24 000 31 500 42 000	27 600 38 500 53 000	15.6 15.1 14.3	1 700 1 300 1 200	_	2 000 1 600 1 500	6044 6244 6344	ZZS — — — —	=
240	300 320 360	28 38 37	2 2.1 2.1	98 500 154 000 196 000	137 000 190 000 243 000	10 000 15 700 19 900	14 000 19 400 24 700	17.3 16.8 16.5	1 700 1 700 1 500	_	2 000 2 000 1 900	6848 6948 16048	 zzs 	=
	360 440 500	56 72 95	3 4 5	244 000 340 000 470 000	296 000 430 000 625 000	24 900 34 500 48 000	30 000 44 000 63 500	15.9 15.2 14.2	1 500 1 200 1 100	_	1 900 1 500 1 300	6048 6248 6348	= =	_

Nota (1) Cuando se aplican cargas axiales pesadas, aumente d_a y disminuya D_a respecto a los valores indicados. **Observaciones** Cuando use rodamientos con anillos exteriores rotatorios, contacte con NSK si son sellados o blindados.

 $P = XF_r + YF_a$

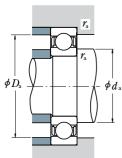

Carga Estática Equivalente

$$\frac{F_{\rm a}}{F_{\rm r}} > 0.8, P_0 = 0.6F_{\rm r} + 0.5F_{\rm a}$$

$$\frac{F_{\rm a}}{F_r} \leq 0.8, P_0 = F_r$$

Dimens	siones de ⁻ (mm		aflán	Masa (Kg.)							
mín.	$d_{ m a}^{(1)}$ máx.	$D_{ m a}^{(1)}$ máx.	${m \gamma}_{ m a}$ máx.	aprox.							
176.5	182	208.5	1	1.86							
179	186	221	2	3.34							
178	—	252	1.5	5.71							
181	194.5	249	2	6.89							
186	215	294	3	15.8							
186	—	344	3	36.6							
186.5	192	218.5	1	1.98							
189	198.5	241	2	4.16							
189	—	271	2	7.5							
191	208	269	2	8.88							
196	223	304	3	15.9							
196	—	364	3	43.1							
198	202.5	232	1.5	2.53							
199	—	251	2	5.18							
199	—	281	2	7.78							
201	218	279	2	9.39							
206	236	324	3	22.3							
210	—	380	4	49.7							
208 211 209	222 —	242 269 301	1.5 2 2	2.67 7.28 10							
211	231.5	299	2	12							
216	252	344	3	26.7							
220	—	400	4	55.3							
228	233.5	262	1.5	2.9							
231	242	289	2	7.88							
231	—	329	2	13.1							
233	254.5	327	2.5	18.6							
236	—	384	3	37.4							
240	—	440	4	73.9							
249 251 251	262 —	291 309 349	2 2 2	4.48 8.49 13.9							
253	=	347	2.5	19.9							
256		424	3	50.5							
260		480	4	94.4							

Diámetro Interior 260~360 mm



Tipo Abierto

		siones m)		(1)	Índices de Ca	rga Básica	{kgf}	Factor		Velocidad Límite (rpm) Grasa Aceite 1 600 1 900 1 500 1 800 1 400 1 700 1 300 1 500 1 600 1 300 1 100 1 300 900 1 100 1 300		
d	D	В	γ mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	C_{0r}	f_0	Grasa	Aceite	Abierto	
260	320 360 400	28 46 44	2 2.1 3	101 000 204 000 237 000	148 000 255 000 310 000	10 300 20 800 24 100	15 100 26 000 31 500	17.4 16.5 16.4	1 500	1 800	6852 6952 16052	
	400 480 540	65 80 102	4 5 6	291 000 400 000 505 000	375 000 540 000 710 000	29 700 41 000 51 500	38 500 55 000 72 500	15.8 15.1 14.6	1 100	1 300	6052 6252 6352	
280	350 380 420	33 46 44	2 2.1 3	133 000 209 000 243 000	191 000 272 000 330 000	13 600 21 300 24 700	19 500 27 700 33 500	17.3 16.6 16.5	1 400	1 700	6856 6956 16056	
	420 500 580	65 80 108	4 5 6	300 000 400 000 570 000	410 000 550 000 840 000	31 000 41 000 58 000	41 500 56 000 86 000	16.0 15.2 14.5	1 000	1 300	6056 6256 6356	
300	380 420 460	38 56 50	2.1 3 4	166 000 269 000 285 000	233 000 370 000 405 000	17 000 27 400 29 000	23 800 38 000 41 000	17.1 16.4 16.4			6860 6960 16060	
	460 540	74 85	4 5	355 000 465 000	500 000 670 000	36 500 47 500	51 000 68 500	15.8 15.1	1 200 950	1 400 1 200	6060 6260	
320	400 440 480	38 56 50	2.1 3 4	168 000 266 000 293 000	244 000 375 000 430 000	17 200 27 100 29 800	24 900 38 000 44 000	17.2 16.5 16.5	1 300 1 200 1 100	1 500 1 400 1 300	6864 6964 16064	
	480 580	74 92	4 5	390 000 530 000	570 000 805 000	40 000 54 500	58 000 82 500	15.7 15.0	1 100 850	1 300 1 100	6064 6264	
340	420 460 520 620	38 56 82 92	2.1 3 5 6	175 000 273 000 440 000 530 000	265 000 400 000 660 000 820 000	17 800 27 800 45 000 54 000	27 100 40 500 67 500 83 500	17.3 16.6 15.6 15.3	1 200 1 100 1 000 800	1 400 1 300 1 200 1 000	6868 6968 6068 6268	
360	440 480 540 650	38 56 82 95	2.1 3 5 6	192 000 280 000 460 000 555 000	290 000 425 000 720 000 905 000	19 600 28 500 47 000 57 000	29 600 43 000 73 500 92 000	17.3 16.7 15.7 15.4	1 100 1 100 950 750	1 300 1 300 1 200 950	6872 6972 6072 6272	

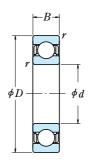
Note (1) Cuando se aplican cargas axiales pesadas, aumente d_a y disminuya D_a respecto a los valores indicados.

$-\phi d_a$

Dimens y Ch	siones de ⁻ aflán (mm	Tope	Masa (Kg.)
$d_{ m a}^{(1)}$ mín.	$D_{ m a}^{(1)}$ máx.	r a máx.	aprox.
269	311	2	4.84
271	349	2	14
273	387	2.5	21.1
276	384	3	29.4
280	460	4	67
286	514	5	118
289	341	2	7.2
291	369	2	15.1
293	407	2.5	22.7
296	404	3	31.2
300	480	4	70.4
306	554	5	144
311	369	2	10.3
313	407	2.5	23.9
316	444	3	31.5
316	444	3	44.2
320	520	4	87.8
331	389	2	10.8
333	427	2.5	25.3
336	464	3	33.2
336	464	3	46.5
340	560	4	111
351	409	2	11.5
353	447	2.5	26.6
360	500	4	62.3
366	594	5	129
371	429	2	11.8
373	467	2.5	27.9
380	520	4	65.3
386	624	5	145

Carga Dinámica Equivalente

 $P = XF_r + YF_a$


$\frac{f_0 F_a}{C_{0r}}$	e	$\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$	$\leq e$	$\frac{F_{\rm a}}{F_{ m r}}$	>e
- 01		X	Y	X	Y
0.172	0.19	1	0	0.56	2.30
0.345	0.22	1	0	0.56	1.99
0.689	0.26	1	0	0.56	1.71
1.03	0.28	1	0	0.56	1.55
1.38	0.30	1	0	0.56	1.45
2.07	0.34	1	0	0.56	1.31
3.45	0.38	1	0	0.56	1.15
5.17	0.42	1	0	0.56	1.04
6.89	0.44	1	0	0.56	1.00

Carga Estática Equivalente

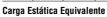
$$\frac{F_{\rm a}}{F_{\rm r}} > 0.8, P_0 = 0.6F_{\rm r} + 0.5F_{\rm a}$$

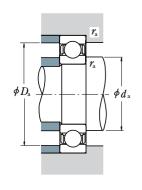
$$\frac{F_{\rm a}}{F_r} \le 0.8, P_0 = F_r$$

Diámetro Interior 380~600 mm

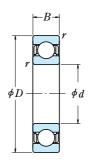
Tipo Abierto

	Dimen (m	siones m)		(1	Índices de C	Carga Básica	{kgf}	Factor	Velocidad (rpr		Números de Rodamiento
d	D	В	γ mín.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	C_{0r}	f_0	Grasa	Aceite	Abierto
380	480	46	2.1	238 000	375 000	24 200	38 000	17.1	1 000	1 200	6876
	520	65	4	325 000	510 000	33 000	52 000	16.6	950	1 200	6976
	560	82	5	455 000	725 000	46 500	74 000	15.9	900	1 100	6076
400	500	46	2.1	241 000	390 000	24 600	40 000	17.2	950	1 200	6880
	540	65	4	335 000	540 000	34 000	55 000	16.7	900	1 100	6980
	600	90	5	510 000	825 000	52 000	84 000	15.7	850	1 000	6080
420	520	46	2.1	245 000	410 000	25 000	41 500	17.3	900	1 100	6884
	560	65	4	340 000	570 000	35 000	58 500	16.8	900	1 100	6984
	620	90	5	530 000	895 000	54 000	91 000	15.8	800	1 000	6084
440	540	46	2.1	248 000	425 000	25 300	43 500	17.4	900	1 100	6888
	600	74	4	395 000	680 000	40 500	69 000	16.6	800	1 000	6988
	650	94	6	550 000	965 000	56 000	98 500	16.0	750	900	6088
460	580	56	3	310 000	550 000	31 500	56 000	17.1	800	1 000	6892
	620	74	4	405 000	720 000	41 500	73 500	16.7	800	950	6992
	680	100	6	605 000	1 080 000	62 000	110 000	15.8	710	850	6092
480	600	56	3	315 000	575 000	32 000	58 500	17.2	800	950	6896
	650	78	5	450 000	815 000	45 500	83 000	16.6	750	900	6996
	700	100	6	605 000	1 090 000	61 500	111 000	15.9	710	850	6096
500	620	56	3	320 000	600 000	33 000	61 000	17.3	750	900	68/500
	670	78	5	460 000	865 000	47 000	88 000	16.7	710	850	69/500
	720	100	6	630 000	1 170 000	64 000	120 000	16.0	670	800	60/500
530	650	56	3	325 000	625 000	33 000	63 500	17.4	710	850	68/530
	710	82	5	455 000	870 000	46 500	88 500	16.8	670	800	69/530
	780	112	6	680 000	1 300 000	69 500	133 000	16.0	600	750	60/530
560	680	56	3	330 000	650 000	33 500	66 500	17.4	670	800	68/560
	750	85	5	525 000	1 040 000	53 500	106 000	16.7	600	750	69/560
	820	115	6	735 000	1 500 000	75 000	153 000	16.2	560	670	60/560
600	730	60	3	355 000	735 000	36 000	75 000	17.5	600	710	68/600
	800	90	5	550 000	1 160 000	56 500	118 000	16.9	560	670	69/600
	870	118	6	790 000	1 640 000	80 500	168 000	16.1	530	630	60/600


Note (1) Cuando se aplican cargas axiales pesadas, aumente d_a y disminuya D_a respecto a los valores indicados.



1 –21	$I - A I_{\uparrow} + I I_{a}$									
$\frac{f_0 F_a}{C_{0r}}$	e	$\frac{F_{\rm a}}{F_{\rm r}}$	$\leq e$	$\frac{F_{\rm a}}{F_{ m r}}$	>e					
- 01		X	Y	X	Y					
0.172	0.19	1	0	0.56	2.30					
0.345	0.22	1	0	0.56	1.99					
0.689	0.26	1	0	0.56	1.71					
1.03	0.28	1	0	0.56	1.55					
1.38	0.30	1	0	0.56	1.45					
2.07	0.34	1	0	0.56	1.31					
3.45	0.38	1	0	0.56	1.15					
5.17	0.42	1	0	0.56	1.04					
6.89	0.44	1	0	0.56	1.00					

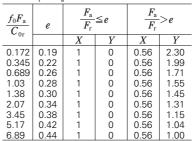

$$\frac{F_{\rm a}}{F_{\rm r}}$$
 > 0.8, P_0 = 0.6 $F_{\rm r}$ + 0.5 $F_{\rm a}$

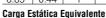
$$\frac{F_{\rm a}}{F_r} \le 0.8, P_0 = F_r$$

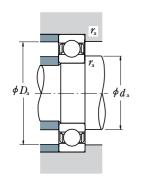
Dimens	siones de ¹	Горе	Masa
y Ch	aflán (mm	1)	(Kg.)
$d_{ m a}$ (1) mín.	$D_{ m a}^{(1)}$ máx.	r a máx.	aprox.
391	469	2	19.5
396	504	3	40
400	540	4	68
411	489	2	20.5
416	524	3	42
420	580	4	88.4
431	509	2	21.4
436	544	3	43.6
440	600	4	92.2
451	529	2	22.3
456	584	3	60.2
466	624	5	106
473	567	2.5	34.3
476	604	3	62.6
486	654	5	123
493	587	2.5	35.4
500	630	4	73.5
506	674	5	127
513	607	2.5	37.2
520	650	4	82
526	694	5	131
543	637	2.5	39.8
550	690	4	89.8
556	754	5	184
573	667	2.5	41.5
580	730	4	105
586	793.5	5	203
613	717	2.5	50.9
620	780	4	120
626	844	5	236

Diámetro Interior 630~800 mm

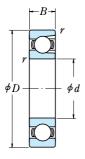
Tipo Abierto


	Dimensiones (mm)				Índices de (N)	Carga Básica	{kgf}	Factor	Velocidad Límite (rpm)		Números de Rodamiento
d	D	В	γ mín.	C_{r}	$C_{0\mathrm{r}}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	f_0	Grasa	Aceite	Abierto
630	780	69	4	420 000	890 000	43 000	90 500	17.3	560	670	68/630
	850	100	6	625 000	1 350 000	64 000	138 000	16.7	530	630	69/630
	920	128	7.5	750 000	1 620 000	76 500	165 000	16.4	480	600	60/630
670	820	69	4	435 000	965 000	44 500	98 000	17.4	500	630	68/670
	900	103	6	675 000	1 460 000	68 500	149 000	16.7	480	560	69/670
	980	136	7.5	765 000	1 730 000	78 000	177 000	16.6	450	530	60/670
710	870	74	4	480 000	1 100 000	49 000	113 000	17.4	480	560	68/710
	950	106	6	715 000	1 640 000	72 500	167 000	16.8	450	530	69/710
750	920	78	5	525 000	1 260 000	53 500	128 000	17.4	430	530	68/750
	1 000	112	6	785 000	1 840 000	80 000	188 000	16.7	400	500	69/750
800	980	82	5	530 000	1 310 000	54 000	133 000	17.5	400	480	68/800
	1 060	115	6	825 000	2 050 000	84 500	209 000	16.8	380	450	69/800


Note (1) Cuando se aplican cargas axiales pesadas, aumente d_a y disminuya D_a respecto a los valores indicados.



$$\frac{F_{\rm a}}{F_{\rm r}} > 0.8, P_0 = 0.6F_{\rm r} + 0.5F_{\rm a}$$


$$\frac{F_{\rm a}}{F_r} \le 0.8, P_0 = F_r$$

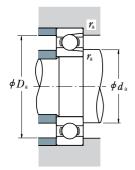
	Masa (Kg.)		
$d_{ m a}$ (1) mín.	$D_{ m a}^{(1)}$ máx.	r a máx.	aprox.
646	764	3	71.3
656	824	5	163
662	888	6	285
686	804	3	75.4
696	874	5	181
702	948	6	351
726	854	3	92.6
736	924	5	208
770	900	4	110
776	974	5	245
820	960	4	132
826	1 034	5	275
	y C d _a (¹) min. 646 656 662 686 696 702 726 736 770 776 820	y Chaflán (mn da(1) Da(1) máx. 646 764 656 824 662 888 686 804 696 874 702 948 726 854 736 924 770 900 776 974 820 960	min. mäx. máx. 646 764 3 656 824 5 662 888 6 686 804 3 696 874 5 702 948 6 726 854 3 736 924 5 770 900 4 776 974 5

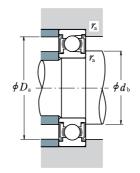
RODAMIENTOS DE BOLAS DE TIPO MÁXIMO

Diámetro Interior 25~110 mm

Tipo Abierto

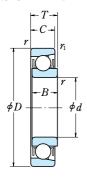
Tipo Blindado (Un blindaje) Z


Tipo Blindado (Dos blindajes) ZZ


	Dimens				Índices de Ca	ırga Básica		Velocida		
d	(mr D	m) B	γ mín.	$C_{ m r}$	N) $C_{0\mathrm{r}}$	$C_{ m r}$	$\{kgf\}$ C_{0r}	(rpi Grasa Abierto Z · ZZ	m) Aceite Abierto Z	Abierto
25	52	15	1	14 400	10 500	1 470	1 070	12 000	15 000	BL 205
	62	17	1.1	21 500	15 500	2 200	1 580	11 000	13 000	BL 305
30	62	16	1	21 000	16 300	2 150	1 660	10 000	12 000	BL 206
	72	19	1.1	27 900	20 700	2 840	2 110	9 000	11 000	BL 306
35	72	17	1.1	27 800	22 100	2 830	2 250	9 000	11 000	BL 207
	80	21	1.5	37 000	29 100	3 800	2 970	8 000	9 500	BL 307
40	80	18	1.1	35 500	28 800	3 600	2 940	8 000	9 500	BL 208
	90	23	1.5	46 500	36 000	4 750	3 650	7 500	9 000	BL 308
45	85	19	1.1	37 000	32 000	3 800	3 250	7 500	9 000	BL 209
	100	25	1.5	55 500	44 000	5 650	4 500	6 300	8 000	BL 309
50	90	20	1.1	39 000	35 000	3 950	3 550	6 700	8 500	BL 210
	110	27	2	65 000	52 500	6 600	5 350	6 000	7 100	BL 310
55	100	21	1.5	48 000	44 000	4 900	4 500	6 300	7 500	BL 211
	120	29	2	75 000	61 500	7 650	6 250	5 600	6 700	BL 311
60	110	22	1.5	58 000	54 000	5 950	5 550	5 600	6 700	BL 212
	130	31	2.1	85 500	71 500	8 700	7 300	5 000	6 000	BL 312
65	120	23	1.5	63 500	60 000	6 450	6 150	5 300	6 300	BL 213
	140	33	2.1	103 000	89 500	10 500	9 150	4 800	5 600	BL 313
70	125	24	1.5	69 000	66 000	7 050	6 750	5 000	6 000	BL 214
	150	35	2.1	115 000	102 000	11 800	10 400	4 300	5 300	BL 314
75	130	25	1.5	72 000	72 000	7 350	7 300	4 500	5 600	BL 215
	160	37	2.1	126 000	116 000	12 800	11 800	4 000	5 000	BL 315
80	140	26	2	84 000	85 000	8 600	8 650	4 300	5 300	BL 216
	170	39	2.1	136 000	130 000	13 900	13 300	3 800	4 500	BL 316
85	150	28	2	93 000	93 000	9 500	9 450	4 000	5 000	BL 217
	180	41	3	147 000	145 000	15 000	14 800	3 600	4 300	BL 317
90	160	30	2	107 000	107 000	10 900	10 900	3 800	4 500	BL 218
	190	43	3	158 000	161 000	16 100	16 400	3 400	4 000	BL 318
95	170	32	2.1	121 000	123 000	12 300	12 500	3 600	4 300	BL 219
	200	45	3	169 000	178 000	17 300	18 100	2 800	3 600	BL 319
100	180	34	2.1	136 000	140 000	13 800	14 200	3 400	4 000	BL 220
105	190	36	2.1	148 000	157 000	15 000	16 000	3 200	3 800	BL 221
110	200	38	2.1	160 000	176 000	16 300	17 900	2 800	3 400	BL 222

Observaciones

Cuando use Rodamientos de Bolas del Tipo Máximo, contacte con NSK.

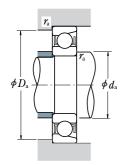


Números de Rodamiento	Din	n ensiones de (mn		án	Masa (Kg.)
Con Con Un Blindaje Dos Blindajes	$d_{ m a}$ mín.	$d_{ m b}$ máx.	$D_{ m a}$ máx.	∤ a máx.	aprox.
BL 205 Z BL 205 ZZ	30	32	47	1	0.133
BL 305 Z BL 305 ZZ	31.5	36	55.5	1	0.246
BL 206 Z BL 206 ZZ	35	38.5	57	1	0.215
BL 306 Z BL 306 ZZ	36.5	42	65.5	1	0.364
BL 207 Z BL 207 ZZ	41.5	44.5	65.5	1	0.307
BL 307 Z BL 307 ZZ	43	44.5	72	1.5	0.486
BL 208 Z BL 208 ZZ	46.5	50	73.5	1	0.394
BL 308 Z BL 308 ZZ	48	52.5	82	1.5	0.685
BL 209 Z BL 309 Z BL 309 Z	51.5 53	55.5 61.5	78.5 92	1 1.5	0.449 0.883
BL 210 Z BL 210 ZZ	56.5	60	83.5	1	0.504
BL 310 Z BL 310 ZZ	59	68	101	2	1.16
BL 211 Z BL 211 ZZ	63	66.5	92	1.5	0.667
BL 311 Z BL 311 ZZ	64	72.5	111	2	1.49
BL 212 Z BL 212 ZZ	68	74.5	102	1.5	0.856
BL 312 Z BL 312 ZZ	71	79	119	2	1.88
BL 213 Z BL 213 ZZ	73	80	112	1.5	1.09
BL 313 Z BL 313 ZZ	76	85.5	129	2	2.36
BL 214 Z BL 214 ZZ	78	84	117	1.5	1.19
BL 314 Z BL 314 ZZ	81	92	139	2	2.87
BL 215 Z BL 215 ZZ	83	90	122	1.5	1.29
BL 315 Z BL 315 ZZ	86	98.5	149	2	3.43
BL 216 Z BL 216 ZZ	89	95.5	131	2 2	1.61
BL 316 Z BL 316 ZZ	91	104.5	159		4.08
BL 217 Z BL 217 ZZ	94	102	141	2	1.97
BL 317 Z BL 317 ZZ	98	110.5	167	2.5	4.77
BL 218 Z BL 218 ZZ	99	107.5	151	2	2.43
BL 318 Z BL 318 ZZ	103	117	177	2.5	5.45
BL 219 Z BL 219 ZZ	106	114	159	2	2.95
BL 319 Z BL 319 ZZ	108	124	187	2.5	6.4
BL 220 Z BL 220 ZZ BL 221 Z BL 221 ZZ	111 116 121	121.5 127.5 —	169 179 189	2 2 2	3.54 4.23 4.84

Diámetro Interior 4~20 mm

Tolerancia del Diámetro Exterior (Clase N)

Unidades : μ m


					,	
Diáme Exter Nomi	ior	Desviación Media del Diámetro Exterior en Plano Simple ΔD_{mp}				
D (m	m)	Seri	es E	Series EN		
Más de	Hasta	Alta	Baja	Alta	Baja	
_	10	+ 8	0	0	- 8	
10	18	+ 8	0	0	- 8	
18	30	+ 9	0	0	- 9	
30	50	+11	0	0	-11	

	Dimensiones						arga Básica		Velocidad Límite		Números de	Rodamiento
d	D	(mm) B,C,T	r	r_1	C _r (1)	C_{0r}	$C_{ m r}$	kgf $_{ m C_{0r}}$	(rpı Grasa	n) Aceite	E Series	EN Series
		2,0,1	mín.	mín.	01	001		001	Grasa	Aceite		
4 5 6	16 16 21	5 5 7	0.15 0.15 0.3	0.1 0.1 0.15	1 650 1 650 2 490	288 288 445	168 168 254	29 29 46	34 000 34 000 30 000	40 000 40 000 36 000	E 4 E 5 E 6	EN 4 EN 5 EN 6
7 8 9	22 24 28	7 7 8	0.3 0.3 0.3	0.15 0.15 0.15	2 490 3 450 4 550	445 650 880	254 350 465	46 66 90	30 000 28 000 24 000	36 000 34 000 30 000	E 7 E 8 E 9	EN 7 EN 8 EN 9
10 11 12	28 32 32	8 7 7	0.3 0.3 0.3	0.15 0.15 0.15	4 550 4 400 4 400	880 845 845	465 450 450	90 86 86	24 000 22 000 22 000	30 000 26 000 26 000	E 10 E 11 E 12	EN 10 EN 11 EN 12
13 14	30 35	7 8	0.3 0.3	0.15 0.15	4 400 5 800	845 1 150	450 590	86 117	22 000 19 000	26 000 22 000	E 13 —	EN 13 EN 14
15 16	35 40 38	8 10 10	0.3 0.6 0.6	0.15 0.3 0.2	5 800 7 400 6 900	1 150 1 500 1 380	590 750 705	117 153 141	19 000 17 000 17 000	22 000 20 000 22 000	E 15 BO 15 —	EN 15 — EN 16
17	40 44 44	10 11 11	0.6 0.6 0.6	0.3 0.3 0.3	7 400 7 350 7 350	1 500 1 500 1 500	750 750 750	153 153 153	17 000 16 000 16 000	20 000 19 000 19 000	L 17 — BO 17	EN 17
18 19	40 40	9 9	0.6 0.6	0.2 0.2	5 050 5 050	1 030 1 030	515 515	105 105	17 000 17 000	20 000 20 000	E 19	EN 18 EN 19
20	47 47	12 14	1	0.6 0.6	11 000 11 000	2 380 2 380	1 120 1 120	243 243	14 000 14 000	17 000 17 000	E 20 L 20	EN 20 —

^{1.} Los diámetros exteriores de los Rodamientos de la Serie E para Magnetos siempre tienen tolerancias positivas.

^{2.} Cuando use Rodamientos para Magnetos distintos del tipo E, contacte con NSK.

 $P = XF_r + YF_s$

$I = X I_r + I I_a$							
$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/I$	e				
X	Y	X	Y				
1	0	0.5	2.5	0.2			

	Dimensiones de Tope y Chaflán (mm)							
$d_{ m a}$ mín.	$D_{ m a}$ máx.	∤ a máx.	aprox.					
5.2	14.8	0.15	0.005					
6.2	14.8	0.15	0.004					
8	19	0.3	0.011					
9	20	0.3	0.013					
10	22	0.3	0.014					
11	26	0.3	0.022					
12	26	0.3	0.021					
13	30	0.3	0.029					
14	30	0.3	0.028					
15	28	0.3	0.021					
16	33	0.3	0.035					
17	33	0.3	0.034					
19	36	0.6	0.055					
20	34	0.6	0.049					
21	36	0.6	0.051					
21	40	0.6	0.080					
21	40	0.6	0.080					
22	36	0.6	0.051					
23	36	0.6	0.049					
25	42	1	0.089					
25	42	1	0.101					

RODAMIENTOS DE BOLAS EXTRA PEQUEÑOS Y EN MINIATURA

RODAMIENTOS DE BOLAS EXTRA PEQUEÑOS - RODAMIENTOS DE BOLAS EN MINIATURA

Diseño Métrico	Diámetro Interior 1~9 mm	Páginas B34 a B37
Con Brida	Diámetro Interior 1~9 mm	Páginas B38 a B41
Diseño en Pulgadas	Diámetro Interior1.016~9.525mm	Páginas B42 a B43
Con Brida	Diámetro Interior 1.191~9.525mm	Páginas B44 a B45

DISEÑO Y TIPOS

Los rangos de tamaño de los rodamientos extra pequeños y en miniatura se indican en la Tabla 1. EL diseño, los tipos y los símbolos de los tipos se indican en la Tabla 2. Estos tipos listados en las tablas de rodamientos se indican con un sombreado En la Tabla 2.

Tabla 1 Gama de Tamaños de los Rodamientos Unidades : ${\bf mm}$

Diseño	Rodamientos de Bolas Extra Pequeños	Rodamientos de Bolas en Miniatura
Métrico	Diámetro Exterior $D \ge 9$	Diámetro Exterior $D<9$
	Diámetro interior $d < 10$	
Pulgadas	Diámetro Exterior $D \ge 9.525$	Diámetro Exterior $D < 9.525$
	Diámetro interior $d < 10$	

Para más detalles, consulte los Rodamientos de Bolas en Miniatura de NSK (CAT. No. E126).

,

77S

DD

VV

Tabla 2 Diseño, tipos y Símbolos de Tipo

			Símbolo	s de Tipo						
С	Diseño · Tipos	Métrico	Pulgadas	Esp	ecial	Observaciones				
		ouros	, uiguau	Métrico	Pulgadas					
		600	R	MR	_	Rodamientos Sellados / Blindados Disponibles				
Rodamientos de Bolas de Ranura Profunda de Una Sola Hilera	Sección estrecha	_	_	SMT	_					
	Con brida	F6 • •	FR	MF	_	Rodamientos Sellados / Blindados Disponibles				
	Anillo interior extensible	_	_	_	RW	Rodamientos Blindados Disponibles.				
Rodamientos de	Con brida y anillo interior extendido	_	_	_	FRW	Rodamientos Blindados Disponibles.				
	Para motores sincronizados	_	_	_	SR00X00	Rodamientos Blindados Disponibles.				
Rodamientos de Rodamientos de Bolas de Empuje Bolas Pivote	Ç, Þ	_	_	BCF	_					
Rodamientos de Bolas de Empuje		_	_	F	_					
Ohear	ruaciones A	damás da la	e arriba inc	licados hav	dienonihlos	rodamientos de holas				

Observaciones

Además de los arriba indicados, hay disponibles rodamientos de bolas de contacto angular de una sola hilera.

TOLERANCIAS Y PRECISIÓN DE FUNCIONAMIENTO

Las tolerancias de la brida para los rodamientos de diseño métrico se listan en la Tabla 3.

Tabla 3 Tolerancias de Brida para Rodamientos con Brida de Diseño Métrico

(I) Iolerand	las dei Dian	netro Exterior de	Unidade	s : μm		
Diámetro	Exterior	Desviación del Diámetro Exterior de la Brida				
Nominal d	e la Brida	$ extstyle \Delta D_{1 ext{S}}$				
$D_1(\mathrm{mm})$		0	D	②		
más de	hasta	alta	baja	alta	baja	
	10	+220	-36	0	-36	
10	18	+270	-4 3	0	-43	
18	30	+330	- 52	0	- 52	

Observaciones ② se aplica cuando el diámetro exterior de la brida se usa para el posicionamiento.

(2) Tolerancias de Anchura de la Brida y Precisión de Funcionamiento Relacionadas con la Brida

Unidades : µm

Nomina Rodam D	Nominal del Rodamiento D (mm)		Desviación de la anchura de la brida $\Delta l C_{18}$		Variación de la Anchura de la Brida $\Delta \!$					e la de la de la rior del n la Cara a Brida	Poste con Pis	to de la C rior de la sta de Ro Seal	Brida dadura
más de	hasta	alta	baja		máx.				máx.			máx.	
2.5(1)	6	Use la tolerancia	a $\Delta B_{\rm S}$ para d	Use la tolerancia	5	2.5	1.5	8	4	1.5	11	7	3
6	18	del mismo roda misma clase	miento de la	△V _{BS} para d del mismo rodamiento	5	2.5	1.5	8	4	1.5	11	7	3
18	30	moma diado		de la misma clase	5	2.5	1.5	8	4	1.5	11	7	3

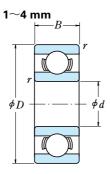
Notas (1) Se incluyen 2.5 mm

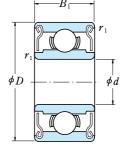
RODAMIENTOS DE DISEÑO EN PULGADAS......Tabla 8.2 (Páginas A60 a A63)

Las tolerancias de la brida para los rodamientos de diseño en pulgadas se listan en la Tabla 8.8.2 (Páginas A76 y A77).

RODAMENTOS DE BOLAS PARA INSTRUMENTOSTabla 8.8 (Páginas A76 a A77)

AJUSTES RECOMENDADOS


Consulte los Rodamientos de Bolas en Miniatura de NSK Miniature (CAT. No. E126)..


VELOCIDADES LÍMITE

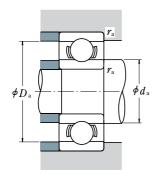
Las velocidades límite mostradas en las tablas de rodamientos deberían ajustarse según las condiciones de carga de los rodamientos. Igualmente, pueden conseguirse velocidades más altas realizando cambios en el método de lubricación, diseño de la jaula, etc. Consulte la Página A37 para información más detallada.

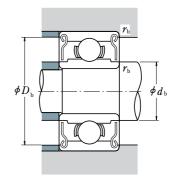
RODAMIENTOS DE BOLAS EXTRA PEQUEÑOS - RODAMIENTOS DE BOLAS EN MINIATURA

Diseño Métrico Diámetro Interior 1∼4 mm

Tipo Abierto

Tipo Blindado ZZ · ZZ1


			ensiones mm)			Índi (N		cos de Carga	a {kgf}		ad límite	
d	D	B	B_1	r (¹) mín.	1 (1) min.	$C_{\rm r}$	C_{0r}	$C_{\rm r}$	C_{0r}	Abierto Z · ZZ	Abierto Z	Abierto
1	3 3 4	1 1.5 1.6	_	0.05 0.05 0.1	_	80 80 138	23 23 35	8 8 14	2.5 2.5 3.5	130 000 130 000 100 000	150 000 150 000 120 000	681 MR 31 691
1.2	4	1.8	2.5	0.1	0.1	138	35	14	3.5	110 000	130 000	MR 41 X
1.5	4	1.2	2	0.05	0.05	112	33	11	3.5	100 000	120 000	681 X
	5	2	2.6	0.15	0.15	237	69	24	7	85 000	100 000	691 X
	6	2.5	3	0.15	0.15	330	98	34	10	75 000	90 000	601 X
2	5	1.5	2.3	0.08	0.08	169	50	17	5	85 000	100 000	682
	5	2	2.5	0.1	0.1	187	58	19	6	85 000	100 000	MR 52 B
	6	2.3	3	0.15	0.15	330	98	34	10	75 000	90 000	692
	6	2.5	2.5	0.15	0.15	330	98	34	10	75 000	90 000	MR 62
	7	2.5	3	0.15	0.15	385	127	39	13	63 000	75 000	MR 72
	7	2.8	3.5	0.15	0.15	385	127	39	13	63 000	75 000	602
2.5	6	1.8	2.6	0.08	0.08	208	74	21	7.5	71 000	80 000	682 X
	7	2.5	3.5	0.15	0.15	385	127	39	13	63 000	75 000	692 X
	8	2.5	—	0.2	—	560	179	57	18	60 000	67 000	MR 82 X
	8	2.8	4	0.15	0.15	550	175	56	18	60 000	71 000	602 X
3	6	2	2.5	0.1	0.1	208	74	21	7.5	71 000	80 000	MR 63
	7	2	3	0.1	0.1	390	130	40	13	63 000	75 000	683 A
	8	2.5	—	0.15	—	560	179	57	18	60 000	67 000	MR 83
	8	3	4	0.15	0.15	560	179	57	18	60 000	67 000	693
	9	2.5	4	0.2	0.15	570	187	58	19	56 000	67 000	MR 93
	9	3	5	0.15	0.15	570	187	58	19	56 000	67 000	603
	10	4	4	0.15	0.15	630	218	64	22	50 000	60 000	623
	13	5	5	0.2	0.2	1 300	485	133	49	40 000	48 000	633
4	7 7 8 9	2 — 2 2.5	 2.5 3 4	0.1 0.15 (0.15)	0.1 0.1 (0.15)	310 255 395 640	115 107 139 225	32 26 40 65	12 11 14 23	60 000 60 000 56 000 53 000	67 000 71 000 67 000 63 000	MR 74 — MR 84 684 A
	10	3	4	0.2	0.15	710	270	73	28	50 000	60 000	MR 104 B
	11	4	4	0.15	0.15	960	345	98	35	48 000	56 000	694
	12	4	4	0.2	0.2	960	345	98	35	48 000	56 000	604
	13	5	5	0.2	0.2	1 300	485	133	49	40 000	48 000	624
	16	5	5	0.3	0.3	1 730	670	177	68	36 000	43 000	634


Nota Observación

⁽¹⁾ Los valores entre paréntesis no se basan en ISO 15.

^{1.} Cuando use rodamientos con anillos exteriores rotatorios, contacte con NSK si son blindados.

Números de Roda	miento		Dime	nsiones d e (m	Tope y C	Chaflán			asa g)
Blindado	Sellado	$d_{ m a}$ min.	$d_{ ext{b}}$ máx.	$D_{ m a}$ máx.	$D_{ m b}$ mín.	γ a máx.	γ ъ máx.	ap Abierto	rox. Blindado
	ΞΞ	1.4 1.4 1.8	_	2.6 2.6 3.2	_	0.05 0.05 0.1	_	0.03 0.04 0.09	_
MR 41 XZZ		2.0	1.9	3.2	3.5	0.1	0.1	0.10	0.14
681 XZZ	= =	1.9	2.1	3.6	3.6	0.05	0.05	0.07	0.11
691 XZZ		2.7	2.5	3.8	4.3	0.15	0.15	0.17	0.20
601 XZZ		2.7	3.0	4.8	5.4	0.15	0.15	0.33	0.38
682 ZZ	= =	2.6	2.7	4.4	4.2	0.08	0.08	0.12	0.17
MR 52 BZZ		2.8	2.7	4.2	4.4	0.1	0.1	0.16	0.23
692 ZZ		3.2	3.0	4.8	5.4	0.15	0.15	0.28	0.38
MR 62 ZZ	= =	3.2	3.0	4.8	5.2	0.15	0.15	0.30	0.29
MR 72 ZZ		3.2	3.8	5.8	6.2	0.15	0.15	0.45	0.49
602 ZZ		3.2	3.8	5.8	6.2	0.15	0.15	0.51	0.58
682 XZZ	= =	3.1	3.7	5.4	5.4	0.08	0.08	0.23	0.29
692 XZZ		3.7	3.8	5.8	6.2	0.15	0.15	0.41	0.55
—		4.1	—	6.4	—	0.2	—	0.56	—
602 XZZ		3.7	4.1	6.8	7.0	0.15	0.15	0.63	0.83
MR 63 ZZ 683 AZZ		3.8 3.8 4.2	3.7 4.0	5.2 6.2 6.8	5.4 6.4 —	0.13 0.1 0.1 0.15	0.1 0.1 0.1	0.20 0.32 0.54	0.27 0.45 —
693 ZZ	= =	4.2	4.3	6.8	7.3	0.15	0.15	0.61	0.83
MR 93 ZZ		4.6	4.3	7.4	7.9	0.2	0.15	0.73	1.18
603 ZZ		4.2	4.3	7.8	7.9	0.15	0.15	0.87	1.45
623 ZZ	= =	4.2	4.3	8.8	8.0	0.15	0.15	1.65	1.66
633 ZZ		4.6	6.0	11.4	11.3	0.2	0.2	3.38	3.33
MR 74 ZZ MR 84 ZZ 684 AZZ		4.8 — 5.2 4.8	 4.8 5.0 5.2	6.2 — 6.8 8.2	— 6.3 7.4 8.1	0.1 0.15 0.1	0.1 0.1 0.1	0.22 — 0.36 0.63	0.29 0.56 1.01
MR 104 BZZ	= =	5.6	5.9	8.4	8.8	0.2	0.15	1.04	1.42
694 ZZ		5.2	5.6	9.8	9.9	0.15	0.15	1.7	1.75
604 ZZ		5.6	5.6	10.4	9.9	0.2	0.2	2.25	2.29
624 ZZ	= =	5.6	6.0	11.4	11.3	0.2	0.2	3.03	3.04
634 ZZ1		6.0	7.5	14.0	13.8	0.3	0.3	5.24	5.21

RODAMIENTOS DE BOLAS EXTRA PEQUEÑOS - RODAMIENTOS DE BOLAS EN MINIATURA

Diseño Métrico

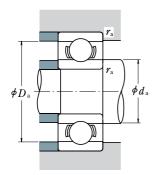
Tipo Abierto

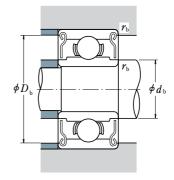
Diámetro Interior 5~9 mm B_1 ϕd ϕD Tipo Blindado Tipo Sellado Tipo Sellado

Sin Contacto

Con Contacto

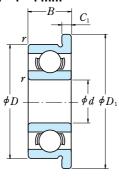
ZZ · ZZ1

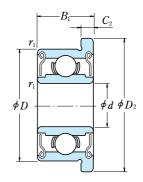

	Dimensiones				22 · 2				3111 60	VV		DD	acio
			nsiones			Índic (N	ces Básico		ja kgf}	Veloc Gras	idad límite (sa	rpm) Aceite	
d	D	B	B_1	r (¹) min.	% 1(1) min.	$C_{\rm r}$	C_{0r}	$C_{\rm r}$	C_{0r}	Abierto Z · ZZ V · VV	D · DD	Abierto Z	Abierto
5	8 9 10 11 11 13	2 	2.5 3 4 4 5 4 5	0.1 0.15 0.15 0.15 0.2 0.2	0.1 0.15 0.15 0.15 0.15 0.2 0.2	310 278 430 430 715 715 1 080 1 330	120 131 168 168 276 281 430 505	31 28 44 44 73 73 110 135	12 13 17 17 28 29 44 52	53 000 53 000 50 000 50 000 48 000 45 000 43 000 40 000	 40 000 38 000	63 000 63 000 60 000 60 000 56 000 53 000 50 000	MR 85 MR 95 MR 105 685 695 605
6	16 19 10	5 6 2.5	5 6 3	0.3 0.3 0.15	0.3 0.3 0.1	1 730 2 340 495	670 885 218	177 238 51	68 90 22	36 000 32 000 45 000	32 000 30 000 —	43 000 40 000 53 000	625 635 MR 106
	12 13 15 17 19 22	3 3.5 5 6 6 7	4 5 5 6 6 7	0.2 0.15 0.2 0.3 0.3 0.3	0.15 0.15 0.2 0.3 0.3 0.3	715 1 080 1 730 2 260 2 340 3 300	292 440 670 835 885 1 370	73 110 177 231 238 335	30 45 68 85 90 140	43 000 40 000 40 000 38 000 32 000 30 000	40 000 38 000 36 000 34 000 30 000 28 000	50 000 50 000 45 000 45 000 40 000 36 000	MR 126 686 A 696 606 626 636
7	11 13 14 17 19 22	2.5 3 3.5 5 6 7	3 4 5 5 6 7	0.15 0.2 0.15 0.3 0.3 0.3	0.1 0.15 0.15 0.3 0.3 0.3	455 540 1 170 1 610 2 340 3 300	201 276 510 710 885 1 370	47 55 120 164 238 335	21 28 52 73 90 140	43 000 40 000 40 000 36 000 36 000 30 000		50 000 48 000 45 000 43 000 43 000 36 000	MR 117 MR 137 687 697 607 627
8	26 12 14 16	9 2.5 3.5 4	9 3.5 4 5	0.3 0.15 0.2 0.2	0.3 0.1 0.15 0.2	4 550 545 820 1 610	1 970 274 385 710	465 56 83 164	201 28 39 73	28 000 40 000 38 000 36 000	22 000 — 32 000 28 000	34 000 48 000 45 000 43 000	637 MR 128 MR 148 688 A
۵	19 22 24 28	6 7 8 9	6 7 8 9 5	0.3 0.3 0.3 0.3	0.3 0.3 0.3 0.3	2 240 3 300 3 350 4 550 1 330	910 1 370 1 430 1 970 665	228 335 340 465 136	93 140 146 201 68	36 000 34 000 28 000 28 000 36 000	28 000 28 000 24 000 22 000 24 000	43 000 40 000 34 000 34 000 43 000	698 608 628 638 689
9	20 24 26 30	6 7 8 10	6 7 8 10	0.2 0.3 0.3 (0.6) 0.6	0.2 0.3 0.3 (0.6) 0.6	1 720 1 720 3 350 4 550 5 100	840 1 430 1 970 2 390	175 340 465 520	86 146 201 244	36 000 34 000 32 000 28 000 24 000	24 000 24 000 24 000 22 000	43 000 40 000 38 000 34 000 30 000	689 699 609 629 639


Nota (1) Observaciones Los valores entre paréntesis no se basan en ISO 15.

1. Cuando use rodamientos con anillos exteriores rotatorios, contacte con NSK si son sellados o blindados.

2. También hay disponibles rodamientos con anillos de fijación, contacte con NSK.

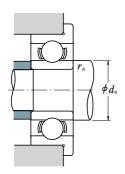


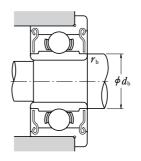

Números de Rodar	miento		Dime	nsiones d e	e Tope y (Chaflán			ısa g)
Blindado	Sellado	$d_{ m a}$ min.	$d_{ m b}$ máx.	$\displaystyle \mathop{D}_{ extsf{max.}}$	$D_{ m b}$ mín.	γ a máx.	γ ъ máx.	apr Abierto	ox. Blindado
MR 85 ZZ MR 95 ZZ1 MR 105 ZZ MR 115 ZZ 685 ZZ 695 ZZ 605 ZZ 625 ZZ1 635 ZZ1 MR 106 ZZ1 MR 126 ZZ 686 AZZ 696 ZZ1	VV DD DD VV DD DD	5.8 	5.8 6.0 6.0 6.3 6.2 6.6 6.9 7.5 8.5 7.0 7.2 7.4 8.2	7.2 7.8 8.8 — 9.88 11.4 12.4 14.0 17.0 8.8 10.4 11.8 13.4 15.0	7.4 8.2 8.4 9.8 9.9 11.2 12.2 13.8 16.5 9.3 10.9 11.7 13.3 14.8	0.1 — 0.15 0.15 — 0.15 0.2 0.3 0.3 0.15 0.2 0.15 0.2	0.1 0.15 0.15 0.15 0.15 0.2 0.2 0.3 0.3 0.1 0.15 0.15	0.26 — 0.50 0.95 — 1.2 2.45 3.54 4.95 8.56 0.56 1.27 1.91 3.88 5.97	
626 ZZ1 636 ZZ MR 117 ZZ MR 137 ZZ 687 ZZ1 697 ZZ1 607 ZZ1 627 ZZ 637 ZZ1	VV DD VV DD	8.0 8.0 8.2 8.6 8.2 9.0 9.0 9.0 9.0	8.5 10.5 8.0 9.0 8.5 10.2 9.1 10.5 12.8 9.0	17.0 20.0 9.8 11.4 12.8 15.0 17.0 20.0 24.0	16.5 19.0 10.5 11.6 12.7 14.8 16.5 19.0 22.8 11.3	0.3 0.3 0.15 0.2 0.15 0.3 0.3 0.3 0.3	0.3 0.3 0.1 0.15 0.15 0.3 0.3 0.3 0.3	8.15 14 0.62 1.58 2.13 5.26 7.67 12.7 24 0.71	7.94 14 0.72 2.02 2.97 5.12 7.51 12.9 25 0.97
MR 128 ZZ1 MR 148 ZZ 688 AZZ1 698 ZZ 608 ZZ 628 ZZ 628 ZZ 638 ZZ1 689 ZZ1 699 ZZ1 609 ZZ 629 ZZ 639 ZZ	VV DD	9.2 9.6 9.6 10.0 10.0 10.0 10.6 11.0 11.0 13.0	9.0 9.2 10.2 10.0 10.5 12.0 12.8 11.5 12.0 12.0 12.8 16.1	10.8 12.4 14.4 17.0 20.0 22.0 26.0 15.4 18.0 22.8 24.0 26.0	11.3 12.8 14.2 16.5 19.0 20.5 22.8 15.2 17.2 20.5 22.8 25.6	0.15 0.2 0.2 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3	0.1 0.15 0.2 0.3 0.3 0.3 0.2 0.3 0.3 0.3	0.71 1.86 3.12 7.23 12.1 17.2 28.3 3.53 8.45 14.5 19.5 36.5	0.97 2.16 4.02 7.18 12.2 17.4 28.6 4.43 8.33 14.7 19.3 36

RODAMIENTOS DE BOLAS EXTRA PEQUEÑOS - RODAMIENTOS DE BOLAS EN MINIATURA -

Diseño Métrico Con Brida Diámetro Interior 1∼4 mm

Tipo Abierto


Tipo Blindado ZZ · ZZ1

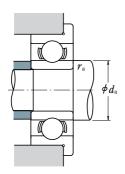

	Dimensiones (mm) d D D_1 D_2 B B_1 C_1 C_2 $r_m^{(1)}$							Índio (N		cos de Carç	ga {kgf}	Velocida (rp			
d	D	D_1	D_2			C_1	C_2	r (1) min.	% 1(1)	$C_{\rm r}$	C_{0r}	$C_{\rm r}$	C_{0r}	Grasa Abierto Z · ZZ	Aceite Abierto Z
1	3 4	3.8 5	_	1 1.6	_	0.3 0.5	_	0.05 0.1	_	80 140	23 36	8 14	2.5 3.5	130 000 100 000	150 000 120 000
1.2	4	4.8	_	1.8	_	0.4	_	0.1	_	138	35	14	3.5	110 000	130 000
1.5	4 5 6	5 6.5 7.5	5 6.5 7.5	1.2 2 2.5	2 2.6 3	0.4 0.6 0.6	0.6 0.8 0.8	0.05 0.15 0.15	0.05 0.15 0.15	112 237 330	33 69 98	11 24 34	3.5 7 10	100 000 85 000 75 000	120 000 100 000 90 000
2	5 5 6	6.1 6.2 7.5	6.1 6.2 7.5	1.5 2 2.3	2.3 2.5 3	0.5 0.6 0.6	0.6 0.6 0.8	0.08 0.1 0.15	0.08 0.1 0.15	169 187 330	50 58 98	17 19 34	5 6 10	85 000 85 000 75 000	100 000 100 000 90 000
	6 7 7	7.2 8.2 8.5	— 8.2 8.5	2.5 2.5 2.8	— 3 3.5	0.6 0.6 0.7	0.6 0.9	0.15 0.15 0.15	— 0.15 0.15	330 385 385	98 127 127	34 39 39	10 13 13	75 000 63 000 63 000	90 000 75 000 75 000
2.5	6 7 8 8	7.1 8.5 9.2 9.5	7.1 8.5 — 9.5	1.8 2.5 2.5 2.8	2.6 3.5 — 4	0.5 0.7 0.6 0.7	0.8 0.9 — 0.9	0.08 0.15 0.2 0.15	0.08 0.15 — 0.15	208 385 560 550	74 127 179 175	21 39 57 56	7.5 13 18 18	71 000 63 000 60 000 60 000	80 000 75 000 67 000 71 000
3	6 7 8	7.2 8.1 9.2	7.2 8.1 —	2 2 2.5	2.5 3 —	0.6 0.5 0.6	0.6 0.8 —	0.1 0.1 0.15	0.1 0.1 —	208 390 560	74 130 179	21 40 57	7.5 13 18	71 000 63 000 60 000	80 000 75 000 67 000
	8 9 9 10 13	9.5 10.2 10.5 11.5 15	9.5 10.6 10.5 11.5 15	3 2.5 3 4 5	4 4 5 4 5	0.7 0.6 0.7 1	0.9 0.8 1 1	0.15 0.2 0.15 0.15 0.2	0.15 0.15 0.15 0.15 0.2	560 570 570 630 1 300	179 187 187 218 485	57 58 58 64 133	18 19 19 22 49	60 000 56 000 56 000 50 000 36 000	67 000 67 000 67 000 60 000 43 000
4	7 7 8 9	8.2 — 9.2 10.3	8.2 9.2 10.3	2 2 2.5		0.6 0.6 0.6	0.6 0.6 1	0.1 0.15 (0.15)	0.1 0.1 (0.15)	310 255 395 640	115 107 139 225	32 26 40 65	12 11 14 23	60 000 60 000 56 000 53 000	67 000 71 000 67 000 63 000
	10 11 12	11.2 12.5 13.5	11.6 12.5 13.5	3 4 4	4 4 4	0.6 1 1	0.8 1 1	0.2 0.15 0.2	0.15 0.15 0.2	710 960 960	270 345 345	73 98 98	28 35 35	50 000 48 000 48 000	60 000 56 000 56 000
	13 16	15 18	15 18	5 5	5 5	1 1	1 1	0.2 0.3	0.2 0.3	1 300 1 730	485 670	133 177	49 68	40 000 36 000	48 000 43 000

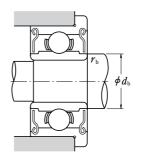
Nota Observación

⁽¹⁾ Los valores entre paréntesis no se basan en ISO 15.

Cuando use rodamientos con anillos exteriores rotatorios, contacte con NSK si son blindados.

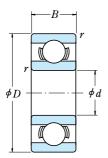
Nú	meros de Rodamie	ento	Dimens		e Tope y	Chaflán		isa g)
Abierto	Blindado	Sellado	$d_{ m a}$ min.	$d_{ ext{b}}$ máx.	γ a máx.	∤ b máx.		ox. Blindado
F 681 F 691	Ξ	= =	1.4 1.8	_	0.05 0.1	_	0.04 0.14	=
MF 41 X	_		2.0	_	0.1	_	0.12	_
F 681 X	F 681 XZZ	= =	1.9	2.1	0.05	0.05	0.09	0.14
F 691 X	F 691 XZZ		2.7	2.5	0.15	0.15	0.23	0.28
F 601 X	F 601 XZZ		2.7	3.0	0.15	0.15	0.42	0.52
F 682	F 682 ZZ	= =	2.6	2.7	0.08	0.08	0.16	0.22
MF 52 B	MF 52 BZZ		2.8	2.7	0.1	0.1	0.21	0.27
F 692	F 692 ZZ		3.2	3.0	0.15	0.15	0.35	0.48
MF 62 MF 72 F 602	MF 72 ZZ F 602 ZZ	= =	3.2 3.2 3.2	3.8 3.1	0.15 0.15 0.15	0.15 0.15	0.36 0.52 0.60	 0.56 0.71
F 682 X	F 682 XZZ	= =	3.1	3.7	0.08	0.08	0.25	0.36
F 692 X	F 692 XZZ		3.7	3.8	0.15	0.15	0.51	0.68
MF 82 X	—		4.1	—	0.2	—	0.62	—
F 602 X	F 602 XZZ		3.7	3.5	0.15	0.15	0.74	0.98
MF 63	MF 63 ZZ	= =	3.8	3.7	0.1	0.1	0.27	0.33
F 683 A	F 683 AZZ		3.8	4.0	0.1	0.1	0.37	0.53
MF 83	—		4.2	—	0.15	—	0.56	—
F 693	F 693 ZZ		4.2	4.3	0.15	0.15	0.70	0.97
MF 93	MF 93 ZZ		4.6	4.3	0.2	0.15	0.81	1.34
F 603	F 603 ZZ		4.2	4.3	0.15	0.15	1.0	1.63
F 623	F 623 ZZ		4.2	4.3	0.15	0.15	1.85	1.86
F 633	F 633 ZZ		4.6	6.0	0.2	0.2	3.73	3.59
MF 74 — MF 84 F 684	MF 74 ZZ MF 84 ZZ F 684 ZZ	= =	 5.2 4.8	4.8 4.8 5.0 5.2	 0.15 0.1	0.1 0.1 0.1 0.1	— 0.44 0.70	0.29— 0.35 0.63 1.14
MF 104 B	MF 104 BZZ	= =	5.6	5.9	0.2	0.15	1.13	1.59
F 694	F 694 ZZ		5.2	5.6	0.15	0.15	1.91	1.96
F 604	F 604 ZZ		5.6	5.6	0.2	0.2	2.53	2.53
F 624	F 624 ZZ	= =	5.6	6.0	0.2	0.2	3.38	3.53
F 634	F 634 ZZ1		6.0	7.5	0.3	0.3	5.73	5.62

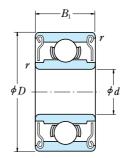

RODAMIENTOS DE BOLAS EXTRA PEQUEÑOS - RODAMIENTOS DE BOLAS EN MINIATURA


Diseño Métrico con Brida

Observación

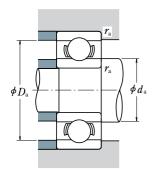
^{1.} Cuando use rodamientos con anillos exteriores rotatorios, contacte con NSK si son blindados.

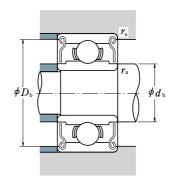



Números de Roda	amiento	Dimens		e Tope	y Chafán		isa g)
Abierto Blindado	Sellado	d _a mín.	$d_{ ext{b}}$ máx.	γ a máx.	∤ b máx.		ox. Blindado
MF 85 — MF 85 ZZ MF 95 MF 95 ZZ MF 105 MF 105 ZZ	1 – –	5.8 — 6.2 6.2	 5.8 6.0 6.0	0.1 — 0.15 0.15	 0.1 0.15 0.15	0.33 — 0.59 1.05	 0.41 0.66 1.46
F 685 F 685 ZZ F 695 F 695 ZZ F 605 F 605 ZZ	VV DE		6.2 6.6 6.9	0.15 0.2 0.2	0.15 0.2 0.2	1.37 2.79 3.9	2.18 2.84 3.85
F 625 F 625 ZZ F 635 F 635 ZZ			7.5 8.5	0.3 0.3	0.3 0.3	5.37 9.49	5.27 9.49
MF 106 MF 106 ZZ MF 126 MF 126 ZZ F 686 A F 686 AZ	— DE		7.0 7.2 7.4	0.15 0.2 0.15	0.1 0.15 0.15	0.65 1.38 2.25	0.77 1.94 3.04
F 696 F 696 ZZ F 606 F 606 ZZ F 626 F 626 ZZ F 636 F 636 ZZ	VV DE	8.0 8.0	7.9 8.2 8.5 10.5	0.2 0.3 0.3 0.3	0.2 0.3 0.3 0.3	4.34 6.58 9.09 14.6	4.26 6.61 9.09 14.7
MF 117 MF 117 ZZ MF 137 MF 137 ZZ F 687 F 687 ZZ		8.2 8.6 8.2	8.0 9.0 8.5	0.15 0.2 0.15	0.1 0.15 0.15	0.72 1.7 2.48	0.82 2.23 3.37
F 697 F 697 ZZ F 607 F 607 ZZ F 627 F 627 ZZ	1 VV DE	9.0	10.2 9.1 10.5	0.3 0.3 0.3	0.3 0.3 0.3	5.65 8.66 14.2	5.65 8.66 14.2
MF 128 MF 128 ZZ MF 148 MF 148 ZZ F 688 A F 688 AZ	VV DE		9.0 9.2 10.2	0.15 0.2 0.2	0.1 0.15 0.2	0.82 2.09 3.54	1.15 2.39 4.47
F 698 F 698 ZZ F 608 F 608 ZZ			10.0 10.5	0.3 0.3	0.3 0.3	8.35 13.4	8.3 13.5
F 689 F 689 ZZ F 699 F 699 ZZ			11.5 12.0	0.2 0.3	0.2 0.3	3.97 9.51	4.91 9.51

RODAMIENTOS DE BOLAS EXTRA PEQUEÑOS - RODAMIENTOS DE BOLAS EN MINIATURA -

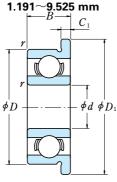
Diseño en Pulgadas Diámetro Interior 1.016∼9.525 mm


Tipo Blindado ZZ · ZZS

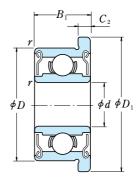

	Di	imensiones (mm)			onÌ 1)		cos de Car	ga {kgf}	Velocida (rp Grasa		Referencias
d	D	В	B_1	γ mín.	$C_{\rm r}$	C_{0r}	$C_{\rm r}$	$C_{0\mathrm{r}}$	Abierto Z · ZZ	Abierto Z	Abierto
1.016	3.175	1.191	_	0.1	80	23	8	2.5	130 000	150 000	R 09
1.191	3.967	1.588	2.380	0.1	138	35	14	3.5	110 000	130 000	R 0
1.397	4.762	1.984	2.779	0.1	231	66	24	6.5	90 000	110 000	R 1
1.984	6.350	2.380	3.571	0.1	310	108	32	11	67 000	80 000	R 1-4
2.380	4.762 4.762 7.938	1.588 — 2.779	 2.380 3.571	0.1 0.1 0.15	188 143 550	60 52 175	19 15 56	6 5.5 18	80 000 80 000 60 000	95 000 95 000 71 000	R 133 — R 1-5
3.175	6.350 7.938 9.525	2.380 2.779 2.779	2.779 3.571 3.571	0.1 0.1 0.15	283 560 640	95 179 225	29 57 65	9.5 18 23	67 000 60 000 53 000	80 000 67 000 63 000	R 144 R 2-5 R 2-6
	9.525 12.700	3.967 4.366	3.967 4.366	0.3 0.3	630 640	218 225	64 65	22 23	56 000 53 000	67 000 63 000	R 2 R 2A
3.967	7.938	2.779	3.175	0.1	360	149	37	15	53 000	63 000	R 155
4.762	7.938 9.525 12.700	2.779 3.175 3.967	3.175 3.175 4.978	0.1 0.1 0.3	360 710 1 300	149 270 485	37 73 133	15 28 49	53 000 50 000 43 000	63 000 60 000 53 000	R 156 R 166 R 3
6.350	9.525 12.700	3.175 3.175	3.175 4.762	0.1 0.15	420 1 080	204 440	43 110	21 45	48 000 40 000	56 000 50 000	R 168B R 188
	15.875 19.050	4.978 5.558	4.978 7.142	0.3 0.4	1 610 2 620	660 1 060	164 267	68 108	38 000 36 000	45 000 43 000	R 4B R 4AA
7.938	12.700	3.967	3.967	0.15	540	276	55	28	40 000	48 000	R 1810
9.525	22.225	5.558	7.142	0.4	3 350	1 410	340	144	32 000	38 000	R 6

^{1.} Cuando use rodamientos con anillos exteriores rotatorios, contacte con NSK si son blindados.

^{2.} Los rodamientos con blindajes dobles (ZZ, ZZS) también están disponibles con blindaje sencillo (Z, ZS).

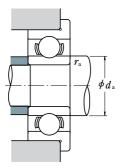


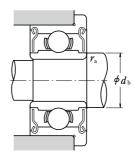
de Rodamientos	C	imension	es de Tope (mm)	y Chaflá	n		asa g)
Blindado	$d_{ m a}$ min.	$d_{ ext{b}}$ máx.	$D_{ m a} \over { m max.}$	$D_{ m b}$ mín.	∤ a máx.	ap Abierto	rox. Blindado
_	1.9	_	2.3	_	0.1	0.04	_
R 0 ZZ	2.0	1.9	3.1	3.5	0.1	0.09	0.11
R 1 ZZ	2.2	2.3	3.9	4.1	0.1	0.15	0.19
R 1-4 ZZ	2.8	3.9	5.5	5.9	0.1	0.35	0.50
R 133 ZZS R 1-5 ZZ	3.2 — 3.6	3.0 4.1	3.9 - 6.7	 4.2 7.0	0.1 0.1 0.15	0.10 — 0.60	— 0.13 0.72
R 144 ZZ R 2-5 ZZ R 2-6 ZZS	4.0 4.0 4.4	3.9 4.3 4.6	5.5 7.1 8.3	5.9 7.3 8.2	0.1 0.1 0.15	0.25 0.55 0.96	0.27 0.72 1.13
R 2 ZZ R 2A ZZ	5.2 5.2	4.8 4.6	7.5 10.7	8.0 8.2	0.3 0.3	1.36 3.3	1.39 3.23
R 155 ZZS	4.8	5.5	7.1	7.3	0.1	0.51	0.56
R 156 ZZS R 166 ZZ R 3 ZZ	5.6 5.6 6.8	5.5 5.9 6.5	7.1 8.7 10.7	7.3 8.8 11.2	0.1 0.1 0.3	0.39 0.81 2.21	0.42 0.85 2.79
R 168 BZZ R 188 ZZ	7.2 7.6	7.0 7.4	8.7 11.5	8.9 11.6	0.1 0.15	0.58 1.53	0.62 2.21
R 4B ZZ R 4AA ZZ	8.4 9.4	8.4 9.0	13.8 16.0	13.8 16.6	0.3 0.4	4.5 7.48	4.43 9.17
R 1810 ZZ	9.2	9.0	11.5	11.6	0.15	1.56	1.48
R 6 ZZ	12.6	11.9	19.2	20.0	0.4	9.02	11


RODAMIENTOS DE BOLAS EXTRA PEQUEÑOS - RODAMIENTOS DE BOLAS EN MINIATURA -

Diseño en Pulgadas con Brida

Diámetro Interior 1.191~9.525 mm


Tipo Blindado ZZ · ZZS


			Dimens (mn						ıdices Bás √)	icos de Carga	{kgf}
d	D	D_1	B	B_1	C_1	C_2	r mín.	$C_{\rm r}$	C_{0r}	$C_{\rm r}$	C_{0r}
1.191	3.967	5.156	1.588	2.380	0.330	0.790	0.1	138	35	14	3.5
1.397	4.762	5.944	1.984	2.779	0.580	0.790	0.1	231	66	24	6.5
1.984	6.350	7.518	2.380	3.571	0.580	0.790	0.1	310	108	32	11
2.380	4.762 4.762 7.938	5.944 5.944 9.119	1.588 — 2.779	 2.380 3.571	0.460 — 0.580	— 0.790 0.790	0.1 0.1 0.15	188 143 550	60 52 175	19 15 56	6 5.5 18
3.175	6.350 7.938 9.525 9.525	7.518 9.119 10.719 11.176	2.380 2.779 2.779 3.967	2.779 3.571 3.571 3.967	0.580 0.580 0.580 0.760	0.790 0.790 0.790 0.760	0.1 0.1 0.15 0.3	283 560 640 630	95 179 225 218	29 57 65 64	9.5 18 23 22
3.967	7.938	9.119	2.779	3.175	0.580	0.910	0.1	360	149	37	15
4.762	7.938 9.525 12.700	9.119 10.719 14.351	2.779 3.175 4.978	3.175 3.175 4.978	0.580 0.580 1.070	0.910 0.790 1.070	0.1 0.1 0.3	360 710 1 300	149 270 485	37 73 133	15 28 49
6.350	9.525 12.700 15.875	10.719 13.894 17.526	3.175 3.175 4.978	3.175 4.762 4.978	0.580 0.580 1.070	0.910 1.140 1.070	0.1 0.15 0.3	420 1 080 1 610	204 440 660	43 110 164	21 45 68
7.938	12.700	13.894	3.967	3.967	0.790	0.790	0.15	540	276	55	28
9.525	22.225	24.613	7.142	7.142	1.570	1.570	0.4	3 350	1 410	340	144

^{1.} Cuando use rodamientos con anillos exteriores rotatorios, contacte con NSK si son blindados.

^{2.} Los rodamientos con blindajes dobles (ZZ, ZZS) también están disponibles con blindaje sencillo (Z, ZS).

Velocida (rp	m)	Números	de Rodamiento		siones de laflán (mn			asa g)
Grasa Abierto Z · ZZ	Aceite Abierto Z	Abierto	Blindado	$d_{ m a}$ min.	$d_{ m b}$ máx.	∤ a máx.	ap Abierto	rox. Blindado
110 000	130 000	FR 0	FR 0 ZZ	2.0	1.9	0.1	0.11	0.16
90 000	110 000	FR 1	FR 1 ZZ	2.2	2.3	0.1	0.20	0.25
67 000	80 000	FR 1-4	FR 1-4 ZZ	2.8	3.9	0.1	0.41	0.58
80 000 80 000 60 000	95 000 95 000 71 000	FR 133 — FR 1-5	 FR 133 ZZS FR 1-5 ZZ	3.2 — 3.6	3.0 4.1	0.1 0.1 0.15	0.13 — 0.68	— 0.19 0.82
67 000 60 000 53 000 56 000	80 000 67 000 63 000 67 000	FR 144 FR 2-5 FR 2-6 FR 2	FR 144 ZZ FR 2-5 ZZ FR 2-6 ZZS FR 2 ZZ	4.0 4.0 4.4 5.2	3.9 4.3 4.6 4.8	0.1 0.1 0.15 0.3	0.31 0.62 1.04 1.51	0.35 0.81 1.25 1.55
53 000	63 000	FR 155	FR 155 ZZS	4.8	5.5	0.1	0.59	0.67
53 000 50 000 43 000	63 000 60 000 53 000	FR 156 FR 166 FR 3	FR 156 ZZS FR 166 ZZ FR 3 ZZ	5.6 5.6 6.8	5.5 5.9 6.5	0.1 0.1 0.3	0.47 0.90 2.97	0.53 0.98 3.09
48 000 40 000 38 000	56 000 50 000 45 000	FR 168B FR 188 FR 4B	FR 168 BZZ FR 188 ZZ FR 4B ZZ	7.2 7.6 8.4	7.0 7.4 8.4	0.1 0.15 0.3	0.66 1.64 4.78	0.75 2.49 4.78
40 000	48 000	FR 1810	FR 1810 ZZ	9.2	9.0	0.15	1.71	1.63
32 000	38 000	FR 6	FR 6 ZZ	12.6	11.9	0.4	10.1	12.1

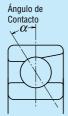
RODAMIENTOS DE BOLAS DE CONTACTO ANGULAR

RODAMIENTOS DE BOLAS DE CONTACTO ANGULAR DE UNA SOLA HILERA Y EMPAREJADOS

Diámetro Interior 10~ 50mm.... Páginas B50~B55 Diámetro Interior 60~120mm.... Páginas B56~B61 Diámetro Interior 130~200mm.... Páginas B62~B65

RODAMIENTOS DE BOLAS DE

Diámetro Interior 10~ 85mm..... Páginas B66~B67


CONTACTO ANGULAR DE DOBLE HILERA

RODAMIENTOS DE BOLAS DE CUATRO PUNTOS DE CONTACTO

Diámetro Interior 30~200mm..... Páginas B68~B71

DISEÑO, TIPOS Y CARACTERÍSTICAS

RODAMIENTOS DE BOLAS DE CONTACTO ANGULAR DE UNA SOLA HILERA

Estos rodamientos tienen un ángulo de contacto, por lo que pueden soportar cargas axiales importantes en una dirección además de las cargas radiales. Debido a su diseño, cuando se les aplica una carga radial se genera un componente de fuerza axial; por lo tanto, deben utilizarse dos rodamientos opuestos o una combinación de más de dos.

La rigidez de los rodamientos de bolas de contacto angular de una sola hilera puede aumentarse mediante la precarga, por lo que a menudo se utilizan en los husillos principales de las máquinas herramienta, para los cuales se requiere una alta precisión de funcionamiento. (Consulte el Capítulo 10, Precarga. Página A96).

Normalmente, las jaulas para los rodamientos de bolas de contacto angular cón un ángulo de contacto de 30° (Símbolo A) o de 40° (Símbolo B) se corresponden con lo indicado en la Tabla 1, pero según la aplicación también se utilizan jaulas de resina sintética mecanizada o jaulas de resina de poliamida moldeada. Los índices básicos de carga mostrados en las tablas de rodamientos se basan en la clasificación de las jaulas mostrada en la Tabla 1.

Aunque las cifras de las tablas de rodamientos (Páginas B50 a B61; diámetros interiores del rodamiento de 10 a 120) muestran rodamientos con anillos interiores del tipo rebajado, también están disponibles los rodamientos del tipo estándar. Consulte a NSK para información más detallada.

Tabla 1 Jaulas Estándar para Rodamientos de Bolas de Contacto Angular

Series	Jaulas de Acero Prensado	Jaulas de Latón Mecanizado
79A5, C	_	7900~7940
70A	7000~7018	7019~7040
70C	_	7000~7022
72A, B	7200~7222	7224~7240
72C	_	7200~7240
73A, B	7300~7320	7321~7340

Además, para rodamientos con el mismo número de serie, si el tipo de jaula es diferente el número de bolas también puede ser diferente. En tal caso, el índice de carga será distinto al mostrado en las tablas de rodamientos.

Los Rodamientos de Bolas de Contacto Angular con ángulos de contacto de 15° (Símbolo C) y de 25° (Símbolo A5) se utilizan principalmente en aplicaciones de alta precisión o alta velocidad, y se utilizan jaulas de latón mecanizado, de resina sintética o de poliamida moldeada.

La temperatura máxima de funcionamiento de las jaulas de poliamida moldeada es de 120°C.

RODAMIENTOS DE BOLAS DE CONTACTO ANGULAR EMPAREJADOS

Los tipos y características de los rodamientos de bolas de contacto angular emparejados se muestran en la Tabla 2.

Tabla 2 Tipos y Características de los Rodamientos de Bolas de Contacto Angular Emparejados

Figura	Disposición	Características
	Espalda contra espalda (DB) (Ejemplo) 7208 A DB	Pueden soportar cargas radiales y axiales en ambas direcciones. La distancia entre los centros efectivos de carga a_0 es grande, por lo que este tipo es adecuado si se aplican momentos.
-a0-	Cara a cara (DF) (Ejemplo) 7208 B DF	Pueden soportar cargas radiales y axiales en ambas direcciones. En comparación con el Tipo DB, la distancia entre los centros efectivos de carga es pequeña, de modo que la capacidad para soportar momentos es inferior a la del Tipo DB.
	Tándem (DT) (Ejemplo) 7208 A DT	Pueden soportar cargas radiales y axiales en una dirección. Puesto que dos rodamientos comparten la carga axial, esta disposición se utiliza cuando la carga en una dirección es elevada.

RODAMIENTOS DE BOLAS DE CONTACTO ANGULAR DE DOBLE HILERA

Este es básicamente un montaje espalda contra espalda de dos rodamientos de bolas de contacto angular de una sola hilera, pero sus anillos interiores y exteriores están integrados en uno. Pueden soportar cargas axiales en ambas direcciones, y la capacidad de soportar momentos es buena. Este tipo se utiliza como rodamientos de extremo fijo.

Sus jaulas son de acero prensado.

RODAMIENTOS DE BOLAS DE CUATRO PUNTOS DE CONTACTO

El anillo interior se divide radialmente en dos piezas. Su diseño permite que un rodamiento soporte cargas axiales importantes en cualquier dirección.

El ángulo de contacto es de 35°, por lo que la capacidad de carga axial es alta. Este tipo es adecuado para transportar cargas axiales puras o cargas combinadas en las que las cargas axiales son altas.

Las jaulas están fabricadas con latón mecanizado.

PRECAUCIONES PARA EL USO DE RODAMIENTOS DE BOLAS DE CONTACTO ANGULAR

En condiciones de funcionamiento duras, en las que la velocidad y la temperatura se acercan al límite, la lubricación es marginal, la vibración y las cargas momentáneas son elevadas, puede que estos rodamientos no resulten adecuados, especialmente para ciertos tipos de jaulas. En tal caso, consulte primero con NSK.

Y si la carga sobre los rodamientos de bolas de contacto angular es demasiado pequeña, o si la relación entre las cargas axiales y radiales de los rodamientos emparejados es superior a 'e' (e se muestra en las tablas de rodamientos) durante el funcionamiento, se produce un deslizamiento entre las bolas y los caminos de rodadura, lo cual puede provocar deterioro. Especialmente con rodamientos de gran tamaño, ya que el peso de las bolas y la jaula es elevado. Si se presuponen dichas condiciones de carga, consulte con NSK para la selección de los rodamientos.

TOLERANCIAS Y PRECISIÓN DE FUNCIONAMIENTO

RODAMIENTOS DE BOLAS DE CONTACTO	
ANGULAR DE UNA HILERA	Tabla 8.2 (Páginas A60~A63)
RODAMIENTOS DE BOLAS DE CONTACTO	
ANGULAR EMPAREJADOS	Tabla 8.2 (Páginas A60~A63)
RODAMIENTOS DE BOLAS DE CONTACTO	
ANGULAR DE DOBLE HILERA	Tabla 8.2 (Páginas A60~A63)
RODAMIENTOS DE BOLAS DE CUATRO	
PUNTOS DE CONTACTO	Tabla 8.2 (Páginas A60~A63)

AJUSTES RECOMENDADOS

ANGULAR DE UNA HILERAT	abla 9.2	(Página	A84)
T:	abla 9.4	(Página	A85)
RODAMIENTOS DE BOLAS DE CONTACTO			
ANGULAR EMPAREJADOST	abla 9.2	(Página	A84)
T:	abla 9.4	(Página	A85)
RODAMIENTOS DE BOLAS DE CONTACTO			
ANGULAR DE DOBLE HILERAT	abla 9.2	(Página	A84)
T:	abla 9.4	(Página	A85)
RODAMIENTOS DE BOLAS DE CUATRO			
PUNTOS DE CONTACTO	abla 9.2	(Página	A84)

JUEGOS INTERNOS

RODAMIENTOS DE BOLAS DE CONTACTO

RODAMIENTOS DE BOLAS DE CONTACTO

ANGULAR EMPAREJADOSTabla 9 17 (Página A94)

Los rodamientos de bolas de contacto angular emparejados con una precisión superior a P5 se utilizan principalmente en los husillos principales de las máquinas herramienta, por lo que se utilizan con una precarga para obtener mayor rigidez. Para facilitar la selección, se ajustan los juegos internos para conseguir Precargas Muy Ligeras, Ligeras, Medias y Pesadas. Su ajuste también es especial. En relación con estos aspectos, consulte las Tablas 10.1 y 10.2 (Páginas A98 y A99).

Tabla 9.4 (Página A85)

El juego (o precarga) de los rodamientos emparejados se obtiene apretando axialmente una pareja de rodamientos hasta que las caras laterales de sus anillos interiores o exteriores quedan presionadas entre sí.

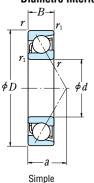
RODAMIENTOS DE BOLAS DE CONTACTO ANGULAR DE DOBLE HILERA

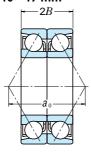
Consulte con NSK los aspectos relativos al juego de los rodamientos de bolas de contacto angular de hilera doble.

RODAMIENTOS DE BOLAS DE CUATRO

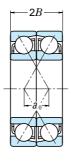
PUNTOS DE CONTACTO...... Tabla 9.18 (Página A94)

VELOCIDADES LÍMITE

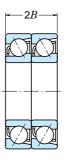

En casos de rodamientos de bolas de contacto angular de una sola hilera y emparejados, las velocidades límite mostradas en la tabla de rodamientos se refieren a rodamientos con jaula mecanizada. Si los rodamientos utilizan jaulas prensadas, las velocidades mostradas deben reducirse un 20%.


Las velocidades límite de los rodamientos con ángulos de contacto de 15° (Símbolo C) y de 25° (Símbolo A5) se refieren a rodamientos con una precisión de P5 o superior (con jaulas de resina sintética mecanizada o de poliamida moldeada).

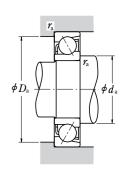
Las velocidades límite mostradas en las tablas de rodamientos deberían ajustarse según las condiciones de carga de los rodamientos. Igualmente, pueden conseguirse velocidades más altas realizando cambios en el método de lubricación, diseño de la jaula, etc. Consulte la Página A37 para información más detallada.


MONTAJES SIMPLES/EMPAREJADOS

Diámetro Interior 10 \sim 17 mm



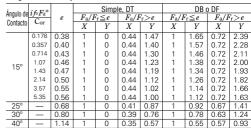
Espalda contra Espalda


Cara a Cara

DF

Tándem

DT


		ensio (mm)			Índices (N		Carga (Simp	le) kgf}	Factor	Lími		Efectivos		iones de aflán (m		Masa (kg)
d	D	В	γ mín.	% 1 mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	f_0	Grasa	Aceite	de Carga (mm) <i>a</i>	$d_{ m a}$ min.	$D_{ m a} \atop m máx.}$	∤ a máx.	aprox.
10	22 22 26	6 6 8		0.15 0.15 0.15	2 880 3 000 5 350	1 450 1 520 2 600	294 305 550	148 155 266	— 14.1 —	40 000 48 000 32 000	56 000 63 000 43 000	6.7 5.1 9.2	12.5 12.5 12.5	19.5 19.5 23.5	0.3 0.3 0.3	0.009 0.009 0.019
	26 30 30	8 9 9	0.6	0.15 0.3 0.3	5 300 5 400 5 000	2 490 2 710 2 500	540 555 510	254 276 255	12.6 — —	45 000 28 000 20 000	63 000 38 000 28 000	6.4 10.3 12.9	12.5 15 15	23.5 25 25	0.3 0.6 0.6	0.021 0.032 0.032
	30 35 35	9 11 11	0.6	0.3 0.3 0.3	5 400 9 300 8 750	2 610 4 300 4 050	550 950 890	266 440 410	13.2 — —	40 000 20 000 18 000	56 000 26 000 24 000	7.2 12.0 14.9	15 15 15	25 30 30	0.6 0.6 0.6	0.036 0.053 0.054
12	24 24 28	6 6 8		0.15 0.15 0.15	3 200 3 350 5 800	1 770 1 860 2 980	325 340 590	181 189 305	— 14.7 —	38 000 45 000 28 000	53 000 63 000 38 000	7.2 5.4 9.8	14.5 14.5 14.5	21.5 21.5 25.5	0.3 0.3 0.3	0.011 0.011 0.021
	28 32 32	8 10 10	0.6	0.15 0.3 0.3	5 800 8 000 7 450	2 900 4 050 3 750	590 815 760	296 410 380	13.2 — —	40 000 26 000 18 000	56 000 34 000 26 000	6.7 11.4 14.2	14.5 17 17	25.5 27 27	0.3 0.6 0.6	0.024 0.037 0.038
	32 37 37	10 12 12	0.6 1 1	0.3 0.6 0.6	7 900 9 450 8 850	3 850 4 500 4 200	805 965 900	395 460 425	12.5 — —	36 000 18 000 16 000	50 000 24 000 22 000	7.9 13.1 16.3	17 18 18	27 31 31	0.6 1 1	0.041 0.060 0.062
15	28 28 32	7 7 9		0.15 0.15 0.15	4 550 4 750 6 100	2 530 2 640 3 450	465 485 625	258 270 350	— 14.5 —	32 000 38 000 24 000	43 000 53 000 32 000	8.5 6.4 11.3	17.5 17.5 17.5	25.5 25.5 29.5	0.3 0.3 0.3	0.015 0.015 0.030
	32 35 35	9 11 11	0.6	0.15 0.3 0.3	6 250 8 650 7 950	3 400 4 650 4 300	635 880 810	345 475 440	14.1 — —	34 000 22 000 16 000	48 000 30 000 22 000	7.6 12.7 16.0	17.5 20 20	29.5 30 30	0.3 0.6 0.6	0.034 0.045 0.046
	35 42 42	11 13 13	0.6 1 1	0.3 0.6 0.6	8 650 13 400 12 500	4 550 7 100 6 600	885 1 370 1 270	460 720 670	13.2 — —	32 000 16 000 14 000	45 000 22 000 19 000	8.8 14.7 18.5	20 21 21	30 36 36	0.6 1 1	0.052 0.084 0.086
17	30 30 35	7 7 10	0.3	0.15 0.15 0.15	4 750 5 000 6 400	2 800 2 940 3 800	485 510 655	286 299 390	— 14.8 —	30 000 34 000 22 000	40 000 48 000 30 000	9.0 6.6 12.5	19.5 19.5 19.5	27.5 27.5 32.5	0.3 0.3 0.3	0.017 0.017 0.040
	35 40 40	10 12 12		0.15 0.3 0.3	6 600 10 800 9 950	3 800 6 000 5 500	675 1 100 1 010	390 610 565	14.5 — —	32 000 20 000 14 000	43 000 28 000 19 000	8.5 14.2 18.0	19.5 22 22	32.5 35 35	0.3 0.6 0.6	0.044 0.067 0.068
	40 47 47	12 14 14	0.6 1 1	0.3 0.6 0.6	10 900 15 900 14 800	5 850 8 650 8 000	1 110 1 630 1 510	595 880 820	13.3 — —	28 000 14 000 13 000	38 000 19 000 17 000	9.8 16.2 20.4	22 23 23	35 41 41	0.6 1 1	0.075 0.116 0.118

Notas (1) Para aplicaciones que funcionan cerca de la velocidad límite, consulte la Página B49.

⁽²⁾ Los sufijos A, A5, B y C representan ángulos de contacto de 30°, 25°, 40° y 15° respectivamente.

^{*}Para i, utilice 2 para DB, DF y 1 para DT

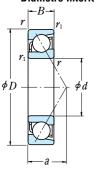
Carga Estática Equivalente $P_0=X_0F_r+Y_0F_a$

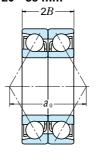
Ángulo de	Simp	le, DT	DB o	DF
Contacto	<i>X</i> ₀	Y_0	<i>X</i> ₀	Y_0
15°	0.5	0.46	1	0.92
25°	0.5	0.38	1	0.76
30°	0.5	0.33	1	0.66
40°	0.5	0.26	1	0.52

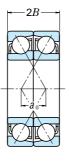
 $\begin{array}{l} \text{Montaje simple o DT} \\ \text{Cuando} \\ F_r {>} 0.5 F_r {+} Y_0 F_a \\ \text{utilice } P_0 {=} F_r \end{array}$

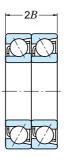
Números de Rodamiento (²)		Índices Bá	sicos de Carg	a (Emparej	ados) {kgf}	(1) (Emp		Distanci Centros d	de Carga	Dimensiones de Tope y Chaflán (mm)		
Simple Dup	olex	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Grasa	Aceite	DB (mr		$d_{ ext{b}}(^3)$	$D_{ m b}$ máx.	γ ь (³) máx.
7900 A5 DB DF	DT	4 700	2 900	475	296	32 000	43 000	13.5	1.5	—	20.8	0.15
7900 C DB DF	DT	4 900	3 050	500	310	38 000	53 000	10.3	1.7	—	20.8	0.15
7000 A DB DF	DT	8 750	5 200	890	530	24 000	34 000	18.4	2.4	11.2	24.8	0.15
7000 C DB DF	DT	8 650	5 000	880	510	36 000	50 000	12.8	3.2	—	24.8	0.15
7200 A DB DF	DT	8 800	5 400	900	555	22 000	30 000	20.5	2.5	12.5	27.5	0.3
7200 B DB DF	DT	8 100	5 000	825	510	16 000	22 000	25.8	7.8	12.5	27.5	0.3
7200 C DB DF	DT	8 800	5 200	895	530	32 000	45 000	14.4	3.6	—	27.5	0.3
7300 A DB DF	DT	15 100	8 600	1 540	880	16 000	22 000	24.0	2.0	12.5	32.5	0.3
7300 B DB DF	DT	14 200	8 100	1 450	825	14 000	20 000	29.9	7.9	12.5	32.5	0.3
7901 A5 DB DF	DT	5 200	3 550	530	360	30 000	43 000	14.4	2.4	—	22.8	0.15
7901 C DB DF	DT	5 450	3 700	555	380	36 000	50 000	10.8	1.2	—	22.8	0.15
7001 A DB DF	DT	9 400	5 950	955	610	22 000	30 000	19.5	3.5	13.2	26.8	0.15
7001 C DB DF	DT	9 400	5 800	960	590	32 000	45 000	13.4	2.6	—	26.8	0.15
7201 A DB DF	DT	13 000	8 050	1 330	820	20 000	28 000	22.7	2.7	14.5	29.5	0.3
7201 B DB DF	DT	12 100	7 500	1 230	765	15 000	20 000	28.5	8.5	14.5	29.5	0.3
7201 C DB DF	DT	12 800	7 700	1 310	785	30 000	40 000	15.9	4.1	—	29.5	0.3
7301 A DB DF	DT	15 400	9 000	1 570	915	15 000	20 000	26.1	2.1	17	32	0.6
7301 B DB DF	DT	14 400	8 400	1 460	855	13 000	18 000	32.6	8.6	17	32	0.6
7902 A5 DB DF	DT	7 400	5 050	755	515	26 000	34 000	17.0	3.0	—	26.8	0.15
7902 C DB DF	DT	7 750	5 300	790	540	30 000	43 000	12.8	1.2	—	26.8	0.15
7002 A DB DF	DT	9 950	6 850	1 010	700	19 000	26 000	22.6	4.6	16.2	30.8	0.15
7002 C DB DF	DT	10 100	6 750	1 030	690	28 000	38 000	15.3	2.7	—	30.8	0.15
7202 A DB DF	DT	14 000	9 300	1 430	950	18 000	24 000	25.4	3.4	17.5	32.5	0.3
7202 B DB DF	DT	12 900	8 600	1 310	875	13 000	18 000	32.0	10.0	17.5	32.5	0.3
7202 C DB DF 7302 A DB DF 7302 B DB DF	DT DT DT	14 100 21 800 20 200	9 050 14 200 13 200	1 440 2 220 2 060	925 1 440 1 340	26 000 13 000 11 000	36 000 17 000 15 000	17.7 29.5 36.9	4.3 3.5 10.9	20 20	32.5 37 37	0.3 0.6 0.6
7903 A5 DB DF	DT	7 750	5 600	790	570	24 000	32 000	18.0	4.0	—	28.8	0.15
7903 C DB DF	DT	8 150	5 850	830	600	28 000	38 000	13.3	0.7	—	28.8	0.15
7003 A DB DF	DT	10 400	7 650	1 060	780	17 000	24 000	25.0	5.0	18.2	33.8	0.15
7003 C DB DF	DT	10 700	7 600	1 100	775	26 000	34 000	17.0	3.0	—	33.8	0.15
7203 A DB DF	DT	17 600	12 000	1 790	1 220	16 000	22 000	28.5	4.5	19.5	37.5	0.3
7203 B DB DF	DT	16 100	11 000	1 650	1 130	11 000	15 000	35.9	11.9	19.5	37.5	0.3
7203 C DB DF	DT	17 600	11 700	1 800	1 190	22 000	32 000	19.6	4.4	—	37.5	0.3
7303 A DB DF	DT	25 900	17 300	2 640	1 760	11 000	15 000	32.5	4.5	22	42	0.6
7303 B DB DF	DT	24 000	16 000	2 450	1 640	10 000	14 000	40.9	12.9	22	42	0.6

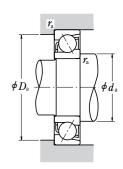
 $r_{\rm b}$


 $\phi d_{\rm b}$


 $\phi d_a \phi D_a$


Nota (3) Para rodamientos marcados — en la columna para $d_{\rm b}, d_{\rm b}$ y $r_{\rm b}$ para los ejes son $d_{\rm a}$ (mín.) y $r_{\rm a}$ (máx.) respectivamente.


MONTAJES SIMPLES/EMPAREJADOS


Diámetro Interior 20~35 mm

Simple	Espalda contra Espalda DB	Cara a Cara DF	Tánd D1	em
Dimensiones	Índices Básicos de Carga (Simple) Factor	Velocidades	Ce

		ensio (mm)			Índices (N	Básicos de		ole) {kgf}	Factor	Velocidades Límite (¹)		Centros Efectivos de Carga	v Ch	iones de aflán (m		Masa (kg)
d	D	В	γ mín.	% 1 mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	f_0	Grasa	Aceite	(mm) a	$d_{ m a}$ min.	$D_{ m a}$ máx.	∤ a máx.	aprox.
20	37 37 42	9 9 12		0.15 0.15 0.3	6 600 6 950 10 800	4 050 4 250 6 600	675 710 1 110	410 430 670	 14.9 	24 000 28 000 18 000	32 000 38 000 24 000	11.1 8.3 14.9	22.5 22.5 25	34.5 34.5 37	0.3 0.3 0.6	0.036 0.036 0.068
	42 47 47	12 14 14	0.6 1 1	0.3 0.6 0.6	11 100 14 500 13 300	6 550 8 300 7 650	1 130 1 480 1 360	665 845 780	14.0 — —	26 000 17 000 12 000	36 000 22 000 16 000	10.1 16.7 21.1	25 26 26	37 41 41	0.6 1 1	0.076 0.106 0.109
	47 52 52	14 15 15		0.6 0.6 0.6	14 600 18 700 17 300	8 050 10 400 9 650	1 480 1 910 1 770	825 1 060 985	13.3 — —	24 000 13 000 11 000	34 000 17 000 15 000	11.5 17.9 22.6	26 27 27	41 45 45	1 1 1	0.118 0.146 0.15
25	42 42 47	9 9 12	0.3	0.15 0.15 0.3	7 450 7 850 11 300	5 150 5 400 7 400	760 800 1 150	525 555 750	15.5 —	20 000 24 000 16 000	28 000 34 000 22 000	12.3 9.0 16.4	27.5 27.5 30	39.5 39.5 42	0.3 0.3 0.6	0.043 0.042 0.079
	47 52 52	12 15 15	0.6 1 1	0.3 0.6 0.6	11 700 16 200 14 800	7 400 10 300 9 400	1 190 1 650 1 510	755 1 050 960	14.7 —	22 000 15 000 10 000	30 000 20 000 14 000	10.8 18.6 23.7	30 31 31	42 46 46	0.6 1 1	0.089 0.13 0.133
	52 62 62	15 17 17	1 1.1 1.1	0.6 0.6 0.6	16 600 26 400 24 400	10 200 15 800 14 600	1 690 2 690 2 490	1 040 1 610 1 490	14.0 —	22 000 10 000 9 000	28 000 14 000 13 000	12.7 21.1 26.7	31 32 32	46 55 55	1 1 1	0.143 0.235 0.241
30	47 47 55	9 9 13	0.3 0.3 1	0.15 0.15 0.6	7 850 8 300 14 500	5 950 6 250 10 100	800 845 1 480	605 640 1 030	15.9 —	18 000 22 000 13 000	24 000 28 000 18 000	13.5 9.7 18.8	32.5 32.5 36	44.5 44.5 49	0.3 0.3 1	0.049 0.049 0.116
	55 62 62	13 16 16	1 1 1	0.6 0.6 0.6	15 100 22 500 20 500	10 300 14 800 13 500	1 540 2 300 2 090	1 050 1 510 1 380	14.9 — —	19 000 12 000 8 500	26 000 17 000 12 000	12.2 21.3 27.3	36 36 36	49 56 56	1 1 1	0.134 0.197 0.202
	62 72 72	16 19 19	1 1.1 1.1	0.6 0.6 0.6	23 000 33 500 31 000	14 700 20 900 19 300	2 350 3 450 3 150	1 500 2 130 1 960	13.9 — —	18 000 9 000 8 000	24 000 12 000 11 000	14.2 24.2 30.9	36 37 37	56 65 65	1 1 1	0.222 0.346 0.354
35	55 55 62	10 10 14	0.6 0.6 1	0.3 0.3 0.6	11 400 12 100 18 300	8 700 9 150 13 400	1 170 1 230 1 870	885 930 1 370	15.7 —	15 000 18 000 12 000	20 000 24 000 16 000	15.5 11.0 21.0	40 40 41	50 50 56	0.6 0.6 1	0.074 0.074 0.153
	62 72 72	14 17 17	1 1.1 1.1	0.6 0.6 0.6	19 100 29 700 27 100	13 700 20 100 18 400	1 950 3 050 2 760	1 390 2 050 1 870	15.0 — —	17 000 10 000 7 500	22 000 14 000 10 000	13.5 23.9 30.9	41 42 42	56 65 65	1 1 1	0.173 0.287 0.294
	72 80 80	17 21 21	1.5	0.6 1 1	30 500 40 000 36 500	19 900 26 300 24 200	3 100 4 050 3 750	2 030 2 680 2 460	13.9 — —	15 000 8 000 7 100	20 000 10 000 9 500	15.7 27.1 34.6	42 44 44	65 71 71	1 1.5 1.5	0.32 0.464 0.474

Notas (1) Para aplicaciones que funcionan cerca de la velocidad límite, consulte la Página B49.

⁽²⁾ Los sufijos A, A5, B y C representan ángulos de contacto de 30°, 25°, 40° y 15° respectivamente.

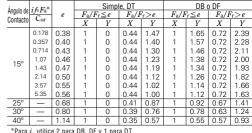
Y

2.39 2.28

2.11

2.00

1.93


1.82

1.66

1.63

1.41

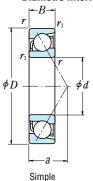
^{*}Para i, utilice 2 para DB, DF y 1 para DT

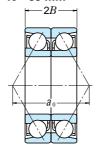
Carga Estática Equivalente $P_0 = X_0 F_r + Y_0 F_a$

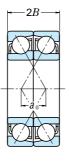
Ángulo de	Simp	le, DT	DB	DF
Contacto	<i>X</i> ₀	Y_0	<i>X</i> ₀	Y_0
15°	0.5	0.46	1	0.92
25°	0.5	0.38	1	0.76
30°	0.5	0.33	1	0.66
40°	0.5	0.26	1	0.52

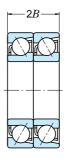
Montaje simple o DT Cuando $F_{\rm r}{>}0.5F_{\rm r}{+}Y_0F_{\rm a}$ utilice $P_0{=}F_{\rm r}$

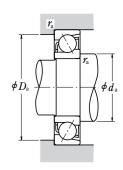
Números de Rodamiento (²)	Índices Bá (N	sicos de Carg I)		ados) {kgf}		les Límite arejados)	Distanci Centros d	de Carga	Din de Tope	nensione y Chaflá	es n (mm)
Simple Duplex	$C_{\rm r}$	C_{0r}	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite	DB a	,	$d_{ ext{b}}(^3)$	$D_{ m b}$ máx.	$r_b (^3)$ máx.
7904 A5 DB DF DT 7904 C DB DF DT 7004 A DB DF DT	10 700 11 300 17 600	8 100 8 500 13 200	1 090 1 150 1 800	825 865 1 340	19 000 22 000 15 000	26 000 32 000 20 000	22.3 16.6 29.9	4.3 1.4 5.9	_ _ 22.5	35.8 35.8 39.5	0.15 0.15 0.3
7004 C DB DF DT 7204 A DB DF DT 7204 B DB DF DT	18 000 23 500 21 600	13 100 16 600 15 300	1 840 2 400 2 210	1 330 1 690 1 560	20 000 13 000 9 500	30 000 19 000 13 000	20.3 33.3 42.1	3.7 5.3 14.1	 25 25	39.5 42 42	0.3 0.6 0.6
7204 C DB DF DT 7304 A DB DF DT 7304 B DB DF DT	23 600 30 500 28 200	16 100 20 800 19 300	2 410 3 100 2 870	1 650 2 130 1 970	19 000 10 000 9 000	26 000 13 000 12 000	23.0 35.8 45.2	5.0 5.8 15.2	25 25	42 47 47	0.6 0.6 0.6
7905 A5 DB DF DT 7905 C DB DF DT 7005 A DB DF DT	12 100 12 700 18 300	10 300 10 800 14 800	1 230 1 300 1 870	1 050 1 110 1 510	16 000 19 000 13 000	22 000 26 000 17 000	24.6 18.0 32.8	6.6 0.0 8.8	— — 27.5	40.8 40.8 44.5	0.15 0.15 0.3
7005 C DB DF DT 7205 A DB DF DT 7205 B DB DF DT	19 000 26 300 24 000	14 800 20 500 18 800	1 940 2 690 2 450	1 510 2 090 1 920	18 000 12 000 8 500	26 000 16 000 11 000	21.6 37.2 47.3	2.4 7.2 17.3	30 30	44.5 47 47	0.3 0.6 0.6
7205 C DB DF DT 7305 A DB DF DT 7305 B DB DF DT	27 000 43 000 39 500	20 400 31 500 29 300	2 750 4 400 4 050	2 080 3 250 2 980	17 000 8 500 7 500	24 000 11 000 10 000	25.3 42.1 53.5	4.7 8.1 19.5	30 30	47 57 57	0.6 0.6 0.6
7906 A5 DB DF DT 7906 C DB DF DT 7006 A DB DF DT	12 800 13 500 23 600	11 900 12 500 20 200	1 300 1 380 2 410	1 210 1 280 2 060	14 000 17 000 11 000	19 000 24 000 15 000	27.0 19.3 37.5	9.0 1.3 11.5	— 35	45.8 45.8 50	0.15 0.15 0.6
7006 C DB DF DT 7206 A DB DF DT 7206 B DB DF DT	24 600 36 500 33 500	20 500 29 500 27 000	2 510 3 750 3 400	2 090 3 000 2 760	15 000 10 000 7 100	22 000 13 000 9 500	24.4 42.6 54.6	1.6 10.6 22.6	— 35 35	50 57 57	0.6 0.6 0.6
7206 C DB DF DT 7306 A DB DF DT 7306 B DB DF DT	37 500 54 500 50 500	29 300 41 500 38 500	3 800 5 600 5 150	2 990 4 250 3 950	14 000 7 100 6 300	20 000 9 500 8 500	28.3 48.4 61.8	3.7 10.4 23.8	35 35	57 67 67	0.6 0.6 0.6
7907 A5 DB DF DT 7907 C DB DF DT 7007 A DB DF DT	18 600 19 600 29 700	17 400 18 300 26 800	1 890 2 000 3 050	1 770 1 860 2 740	12 000 14 000 9 500	17 000 20 000 13 000	31.0 22.1 42.0	11.0 2.1 14.0	— 40	52.5 52.5 57	0.3 0.3 0.6
7007 C DB DF DT 7207 A DB DF DT 7207 B DB DF DT	31 000 48 500 44 000	27 300 40 000 36 500	3 150 4 900 4 500	2 790 4 100 3 750	13 000 8 500 6 000	19 000 12 000 8 000	27.0 47.9 61.9	1.0 13.9 27.9	40 40	57 67 67	0.6 0.6 0.6
7207 C DB DF DT 7307 A DB DF DT 7307 B DB DF DT	49 500 65 000 59 500	40 000 52 500 48 500	5 050 6 600 6 100	4 050 5 350 4 950	12 000 6 300 5 600	17 000 8 500 7 500	31.3 54.2 69.2	2.7 12.2 27.2	— 41 41	67 74 74	0.6 1 1


 $\phi d_{\rm b}$

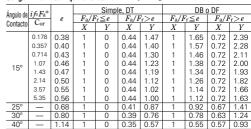

 ϕd_a ϕD_{z}


Nota Para rodamientos marcados — en la columna para d_b , d_b y r_b para los ejes son d_a (mín.) y r_a (máx.) respectivamente.


MONTAJES SIMPLES/EMPAREJADOS


Diámetro Interior 40~55 mm

Espalda contra Espalda	Cara a Cara	Tándem
DB	DF	DT


		ensio (mm)			Índices (1	Básicos de		ple) {kgf}	Factor	Lími	dades te (¹)	Centros Efectivos de Carga	v Cl	siones d naflán (n		Masa (kg)
d	D	В	γ mín.	% 1 mín.	$C_{\rm r}$	C_{0r}	$C_{ m r}$	$C_{0\mathrm{r}}$	f_0	Grasa	Aceite	(mm)	$d_{ m a}$ min.	$D_{ m a}$ máx.	∦ a máx.	aprox.
40	62	12	0.6	0.3	14 300	11 200	1 460	1 140	_	14 000	18 000	17.9	45	57	0.6	0.11
	62	12	0.6	0.3	15 100	11 700	1 540	1 200	15.7	16 000	22 000	12.8	45	57	0.6	0.109
	68	15	1	0.6	19 500	15 400	1 990	1 570	_	10 000	14 000	23.1	46	62	1	0.19
	68 80 80	15 18 18	1 1.1 1.1	0.6 0.6 0.6	20 600 35 500 32 000	15 900 25 100 23 000	2 100 3 600 3 250	1 620 2 560 2 340	15.4 —	15 000 9 500 6 700	20 000 13 000 9 000	14.7 26.3 34.2	46 47 47	62 73 73	1 1 1	0.213 0.375 0.383
	80 90 90	18 23 23	1.1 1.5 1.5	0.6 1 1	36 500 49 000 45 000	25 200 33 000 30 500	3 700 5 000 4 550	2 570 3 350 3 100	14.1 —	14 000 7 100 6 300	19 000 9 000 8 500	17.0 30.3 38.8	47 49 49	73 81 81	1 1.5 1.5	0.418 0.633 0.648
45	68 68 75	12 12 16	0.6 0.6 1	0.3 0.3 0.6	15 100 16 000 23 100	12 700 13 400 18 700	1 540 1 630 2 360	1 290 1 360 1 910	16.0 —	12 000 14 000 9 500	17 000 20 000 13 000	19.2 13.6 25.3	50 50 51	63 63 69	0.6 0.6 1	0.13 0.129 0.25
	75	16	1	0.6	24 400	19 300	2 490	1 960	15.4	14 000	19 000	16.0	51	69	1	0.274
	85	19	1.1	0.6	39 500	28 700	4 050	2 930	—	8 500	12 000	28.3	52	78	1	0.411
	85	19	1.1	0.6	36 000	26 200	3 650	2 680	—	6 300	8 500	36.8	52	78	1	0.421
	85	19	1.1	0.6	41 000	28 800	4 150	2 940	14.2	12 000	17 000	18.2	52	78	1	0.468
	100	25	1.5	1	63 500	43 500	6 450	4 450	—	6 300	8 500	33.4	54	91	1.5	0.848
	100	25	1.5	1	58 500	40 000	5 950	4 100	—	5 600	7 500	42.9	54	91	1.5	0.869
50	72 72 80	12 12 16	0.6 0.6 1	0.3 0.3 0.6	15 900 16 900 24 500	14 200 15 000 21 100	1 630 1 720 2 500	1 450 1 530 2 150	16.2 —	11 000 13 000 8 500	15 000 18 000 12 000	20.2 14.2 26.8	55 55 56	67 67 74	0.6 0.6 1	0.132 0.13 0.263
	80	16	1	0.6	26 000	21 900	2 650	2 230	15.7	12 000	17 000	16.7	56	74	1	0.293
	90	20	1.1	0.6	41 500	31 500	4 200	3 200	—	8 000	11 000	30.2	57	83	1	0.466
	90	20	1.1	0.6	37 500	28 600	3 800	2 920	—	5 600	8 000	39.4	57	83	1	0.477
	90	20	1.1	0.6	43 000	31 500	4 350	3 250	14.5	12 000	16 000	19.4	57	83	1	0.528
	110	27	2	1	74 000	52 000	7 550	5 300	—	5 600	7 500	36.6	60	100	2	1.1
	110	27	2	1	68 000	48 000	6 950	4 900	—	5 000	6 700	47.1	60	100	2	1.12
55	80 80 90	13 13 18	1 1 1.1	0.6 0.6 0.6	18 100 19 100 32 500	16 800 17 700 27 700	1 840 1 950 3 300	1 710 1 810 2 830	16.3 —	10 000 12 000 7 500	14 000 16 000 11 000	22.2 15.5 29.9	61 61 62	74 74 83	1 1 1	0.184 0.182 0.391
	90	18	1.1	0.6	34 000	28 600	3 500	2 920	15.5	11 000	15 000	18.7	62	83	1	0.43
	100	21	1.5	1	51 000	39 500	5 200	4 050	—	7 100	10 000	32.9	64	91	1.5	0.613
	100	21	1.5	1	46 500	36 000	4 700	3 700	—	5 300	7 100	43.0	64	91	1.5	0.627
	100	21	1.5	1	53 000	40 000	5 400	4 100	14.5	10 000	14 000	20.9	64	91	1.5	0.688
	120	29	2	1	86 000	61 500	8 750	6 250	—	5 000	6 700	39.8	65	110	2	1.41
	120	29	2	1	79 000	56 500	8 050	5 750	—	4 500	6 300	51.2	65	110	2	1.45

Notas (1) Para aplicaciones que funcionan cerca de la velocidad límite, consulte la Página B49.

⁽²⁾ Los sufijos A, A5, B y C representan ángulos de contacto de 30°, 25°, 40° y 15° respectivamente.

Carga Dinámica Equivalente $P = XF_r + YF_a$

^{*}Para i, utilice 2 para DB, DF y 1 para DT

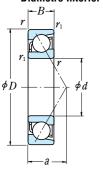
Carga Estática Equivalente $P_0 = X_0 F_r + Y_0 F_a$

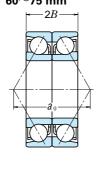
Ángulo de	Simp	le, DT	DB o DF					
Contacto	<i>X</i> ₀	Y_0	<i>X</i> ₀	Y_0				
15°	0.5	0.46	1	0.92				
25°	0.5	0.38	1	0.76				
30°	0.5	0.33	1	0.66				
40°	0.5	0.26	1	0.52				

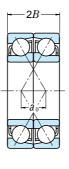
 $\begin{array}{l} \text{Montaje simple o DT} \\ \text{Cuando} \\ F_r {>} 0.5 F_r {+} Y_0 F_a \\ \text{utilice } P_0 {=} F_r \end{array}$

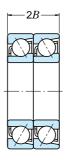
Números de	Índices B	ásicos de Car	ıa (Empare	iados)		les Límite	Distanc		Dimens	iones de	Tope v
Rodamiento (²)	(1)			{kgf}		arejados)	Centros (aflán (mr	
Simple Duplex	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite	DB a	DF	$d_{ m b}$ (3) mín.	$D_{ m b}$ máx.	7 ъ (³) máx.
7908 A5 DB DF DT 7908 C DB DF DT 7008 A DB DF DT	23 300 24 600 31 500	22 300 23 500 31 000	2 370 2 510 3 250	2 270 2 390 3 150	11 000 13 000 8 500	15 000 18 000 11 000	35.8 25.7 46.2	11.8 1.7 16.2	— — 45	59.5 59.5 63	0.3 0.3 0.6
7008 C DB DF DT 7208 A DB DF DT 7208 B DB DF DT	33 500 57 500 52 000	32 000 50 500 46 000	3 400 5 850 5 300	3 250 5 150 4 700	12 000 7 500 5 300	17 000 10 000 7 500	29.5 52.6 68.3	0.5 16.6 32.3	— 45 45	63 75 75	0.6 0.6 0.6
7208 C DB DF DT 7308 A DB DF DT 7308 B DB DF DT	59 000 79 500 73 000	50 500 66 000 60 500	6 000 8 100 7 400	5 150 6 700 6 200	11 000 5 600 5 000	15 000 7 500 6 700	34.1 60.5 77.5	1.9 14.5 31.5	— 46 46	75 84 84	0.6 1 1
7909 A5 DB DF DT 7909 C DB DF DT 7009 A DB DF DT	24 600 26 000 37 500	25 400 26 800 37 500	2 510 2 660 3 850	2 590 2 730 3 800	9 500 12 000 7 500	13 000 16 000 10 000	38.4 27.1 50.6	14.4 3.1 18.6	— 50	65.5 65.5 70	0.3 0.3 0.6
7009 C DB DF DT 7209 A DB DF DT 7209 B DB DF DT	39 500 64 500 58 500	38 500 57 500 52 500	4 050 6 550 5 950	3 950 5 850 5 350	11 000 7 100 5 000	15 000 9 500 6 700	32.1 56.5 73.5	0.1 18.5 35.5	50 50	70 80 80	0.6 0.6 0.6
7209 C DB DF DT 7309 A DB DF DT 7309 B DB DF DT	66 500 103 000 95 000	57 500 87 000 80 500	6 750 10 500 9 650	5 850 8 900 8 200	10 000 5 000 4 500	14 000 6 700 6 000	36.4 66.9 85.8	1.6 16.9 35.8	51 51	80 94 94	0.6 1 1
7910 A5 DB DF DT 7910 C DB DF DT 7010 A DB DF DT	25 900 27 400 40 000	28 400 30 000 42 000	2 640 2 800 4 050	2 900 3 050 4 300	9 000 11 000 7 100	12 000 15 000 9 500	40.5 28.3 53.5	16.5 4.3 21.5	— — 55	69.5 69.5 75	0.3 0.3 0.6
7010 C DB DF DT 7210 A DB DF DT 7210 B DB DF DT	42 000 67 000 60 500	44 000 63 000 57 000	4 300 6 850 6 200	4 450 6 400 5 850	10 000 6 300 4 500	14 000 9 000 6 300	33.4 60.4 78.7	1.4 20.4 38.7	— 55 55	75 85 85	0.6 0.6 0.6
7210 C DB DF DT 7310 A DB DF DT 7310 B DB DF DT	69 500 121 000 111 000	63 500 104 000 96 000	7 100 12 300 11 300	6 450 10 600 9 800	9 500 4 500 4 000	13 000 6 000 5 600	38.7 73.2 94.1	1.3 19.2 40.1	— 56 56	85 104 104	0.6 1 1
7911 A5 DB DF DT 7911 C DB DF DT 7011 A DB DF DT	29 300 31 000 52 500	33 500 35 500 55 500	2 990 3 150 5 350	3 400 3 600 5 650	8 000 9 500 6 300	11 000 13 000 8 500	44.5 31.1 59.9	18.5 5.1 23.9	— — 60	75 75 85	0.6 0.6 0.6
7011 C DB DF DT 7211 A DB DF DT 7211 B DB DF DT	55 500 83 000 75 000	57 500 79 000 72 000	5 650 8 450 7 650	5 850 8 050 7 350	9 000 6 000 4 000	12 000 8 000 5 600	37.4 65.7 86.0	1.4 23.7 44.0	61 61	85 94 94	0.6 1 1
7211 C DB DF DT 7311 A DB DF DT 7311 B DB DF DT	86 000 139 000 128 000	80 000 123 000 113 000	8 800 14 200 13 100	8 150 12 500 11 500	8 500 4 000 3 600	12 000 5 600 5 000	41.7 79.5 102.4	0.3 21.5 44.4	61 61	94 114 114	1 1 1

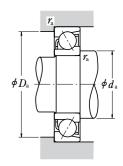
 $r_{\rm b}$


 $\phi d_{\rm b}$

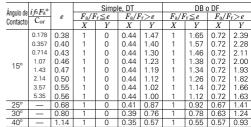

 $\phi d_a \phi D_a$


Nota (3) Para rodamientos marcados — en la columna para $d_{\rm b}, d_{\rm b}$ y $r_{\rm b}$ para los ejes son $d_{\rm a}$ (mín.) y $r_{\rm a}$ (máx.) respectivamente.


MONTAJES SIMPLES/EMPAREJADOS


Diámetro Interior 60~75 mm

Simple	Espalda contra Espalda	Cara a Cara	Tándem
	DB	DF	DT


		ensio mm)			Índices (N		Carga (Sim	ole) {kgf}	Factor	Lími	dades te (¹) m)	Centros Efectivos de Carga	V CI	siones d naflán (n		Masa (kg)
d	D	В	γ mín.	∤ 1 mín.	C_{r}	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	f_0	Grasa	Aceite	(mm)	$d_{ m a}$ mín.	$D_{ m a}$ máx.	∤ a máx.	aprox.
60	85	13	1	0.6	18 300	17 700	1 870	1 810	—	9 500	13 000	23.4	66	79	1	0.197
	85	13	1	0.6	19 400	18 700	1 980	1 910	16.5	11 000	15 000	16.2	66	79	1	0.194
	95	18	1.1	0.6	33 000	29 500	3 350	3 000	—	7 100	10 000	31.4	67	88	1	0.417
	95 110 110	18 22 22	1.1 1.5 1.5	0.6 1 1	35 000 62 000 56 000	30 500 48 500 44 500	3 600 6 300 5 700	3 150 4 950 4 550	15.7 —	10 000 6 700 4 800	14 000 9 000 6 300	19.4 35.5 46.7	67 69 69	88 101 101	1 1.5 1.5	0.46 0.798 0.815
	110	22	1.5	1	64 000	49 000	6 550	5 000	14.4	9 500	13 000	22.4	69	101	1.5	0.889
	130	31	2.1	1.1	98 000	71 500	10 000	7 250	—	4 800	6 300	42.9	72	118	2	1.74
	130	31	2.1	1.1	90 000	65 500	9 200	6 700	—	4 300	5 600	55.4	72	118	2	1.78
65	90 90 100	13 13 18	1 1 1.1	0.6 0.6 0.6	19 100 20 200 35 000	19 400 20 500 33 000	1 940 2 060 3 550	1 980 2 090 3 350	16.7 —	9 000 10 000 6 700	12 000 14 000 9 500	24.6 16.9 32.8	71 71 72	84 84 93	1 1 1	0.211 0.208 0.455
	100	18	1.1	0.6	37 000	34 500	3 800	3 500	15.9	10 000	13 000	20.0	72	93	1	0.493
	120	23	1.5	1	70 500	58 000	7 150	5 900	—	6 000	8 500	38.2	74	111	1.5	1.03
	120	23	1.5	1	63 500	52 500	6 500	5 350	—	4 300	6 000	50.3	74	111	1.5	1.05
	120	23	1.5	1	73 000	58 500	7 450	6 000	14.6	9 000	12 000	23.9	74	111	1.5	1.14
	140	33	2.1	1.1	111 000	82 000	11 300	8 350	—	4 300	6 000	46.1	77	128	2	2.12
	140	33	2.1	1.1	102 000	75 500	10 400	7 700	—	3 800	5 300	59.5	77	128	2	2.17
70	100 100 110	16 16 20	1 1 1.1	0.6 0.6 0.6	26 500 28 100 44 000	26 300 27 800 41 500	2 710 2 870 4 500	2 680 2 830 4 200	16.4 —	8 000 9 500 6 300	11 000 13 000 8 500	27.8 19.4 36.0	76 76 77	94 94 103	1 1 1	0.341 0.338 0.625
	110	20	1.1	0.6	47 000	43 000	4 800	4 400	15.7	9 000	12 000	22.1	77	103	1	0.698
	125	24	1.5	1	76 500	63 500	7 800	6 500	—	5 600	8 000	40.1	79	116	1.5	1.11
	125	24	1.5	1	69 000	58 000	7 050	5 900	—	4 000	5 600	52.9	79	116	1.5	1.14
	125	24	1.5	1	79 500	64 500	8 100	6 600	14.6	8 500	11 000	25.1	79	116	1.5	1.24
	150	35	2.1	1.1	125 000	93 500	12 700	9 550	—	4 000	5 300	49.3	82	138	2	2.6
	150	35	2.1	1.1	114 000	86 000	11 700	8 750	—	3 600	5 000	63.6	82	138	2	2.65
75	105 105 115	16 16 20	1 1 1.1	0.6 0.6 0.6	26 900 28 600 45 000	27 700 29 300 43 500	2 750 2 910 4 600	2 820 2 980 4 450	16.6 —	7 500 9 000 6 000	10 000 12 000 8 000	29.0 20.1 37.4	81 81 82	99 99 108	1 1 1	0.355 0.357 0.661
	115	20	1.1	0.6	48 000	45 500	4 900	4 650	15.9	8 500	12 000	22.7	82	108	1	0.748
	130	25	1.5	1	76 000	64 500	7 750	6 550	—	5 600	7 500	42.1	84	121	1.5	1.19
	130	25	1.5	1	68 500	58 500	7 000	5 950	—	3 800	5 300	55.5	84	121	1.5	1.22
	130	25	1.5	1	83 000	70 000	8 450	7 100	14.8	8 000	11 000	26.2	84	121	1.5	1.36
	160	37	2.1	1.1	136 000	106 000	13 800	10 800	—	3 800	5 000	52.4	87	148	2	3.13
	160	37	2.1	1.1	125 000	97 500	12 700	9 900	—	3 400	4 800	67.8	87	148	2	3.19

Notas (1) Para aplicaciones que funcionan cerca de la velocidad límite, consulte la Página B49.

⁽²⁾ Los sufijos A, A5, B y C representan ángulos de contacto de 30°, 25°, 40° y 15° respectivamente.

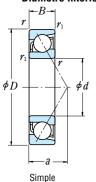
^{*}Para i, utilice 2 para DB, DF y 1 para DT

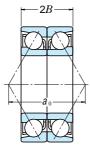
Carga Estática Equivalente $P_0 = X_0 F_r + Y_0 F_a$

Ángulo de	Simp	le, DT	DB	DF
Contacto	<i>X</i> ₀	Y_0	<i>X</i> ₀	Y_0
15°	0.5	0.46	1	0.92
25°	0.5	0.38	1	0.76
30°	0.5	0.33	1	0.66
40°	0.5	0.26	1	0.52

 $\begin{array}{l} \text{Montaje simple o DT} \\ \text{Cuando} \\ F_r {>} 0.5 F_r {+} Y_0 F_a \\ \text{utilice } P_0 {=} F_r \end{array}$

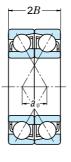
Números de Rodamiento (²)	Índices B	ásicos de Car I)	ga (Empare	jados) {kgf}	Velocidad (1) (Empa	arejados)	Distanc Centros	de Carga		iones de aflán (m	
Simple Duplex	$C_{\rm r}$	C_{0r}	$C_{\rm r}$	C_{0r}	Grasa	Aceite	,	nn, P ₀ DF	$d_{ m b}$ (3)	$D_{ m b}$ máx.	$n_b (^3)$ max.
7912 A5 DB DF DT	29 800	35 500	3 050	3 600	7 500	10 000	46.8	20.8	—	80	0.6
7912 C DB DF DT	31 500	37 500	3 200	3 800	9 000	12 000	32.4	6.4	—	80	0.6
7012 A DB DF DT	53 500	59 000	5 450	6 000	6 000	8 000	62.7	26.7	65	90	0.6
7012 C DB DF DT 7212 A DB DF DT 7212 B DB DF DT	57 000 100 000 91 000	61 500 97 500 89 000	5 800 10 200 9 300	6 250 9 950 9 050	8 500 5 300 3 800	12 000 7 100 5 300	38.8 71.1 93.3	2.8 27.1 49.3	66 66	90 104 104	0.6 1 1
7212 C DB DF DT 7312 A DB DF DT 7312 B DB DF DT	104 000 159 000 146 000	98 500 143 000 131 000	10 600 16 200 14 900	10 000 14 500 13 400	7 500 3 800 3 400	11 000 5 000 4 500	44.8 85.9 110.7	0.8 23.9 48.7	67 67	104 123 123	1 1 1
7913 A5 DB DF DT	31 000	39 000	3 150	3 950	7 100	9 500	49.1	23.1	—	85	0.6
7913 C DB DF DT	33 000	41 000	3 350	4 200	8 500	12 000	33.8	7.8	—	85	0.6
7013 A DB DF DT	56 500	65 500	5 750	6 700	5 600	7 500	65.6	29.6	70	95	0.6
7013 C DB DF DT 7213 A DB DF DT 7213 B DB DF DT	60 500 114 000 103 000	68 500 116 000 105 000	6 150 11 600 10 500	7 000 11 800 10 700	8 000 4 800 3 400	11 000 6 700 4 800	40.1 76.4 100.6	4.1 30.4 54.6	71 71	95 114 114	0.6 1 1
7213 C DB DF DT	119 000	117 000	12 100	12 000	7 100	9 500	47.8	1.8	72	114	1
7313 A DB DF DT	180 000	164 000	18 400	16 700	3 600	4 800	92.2	26.2	72	133	1
7313 B DB DF DT	166 000	151 000	16 900	15 400	3 200	4 300	119.0	53.0	72	133	1
7914 A5 DB DF DT	43 000	52 500	4 400	5 350	6 300	9 000	55.6	23.6	—	95	0.6
7914 C DB DF DT	45 500	55 500	4 650	5 650	7 500	11 000	38.8	6.8	—	95	0.6
7014 A DB DF DT	71 500	82 500	7 300	8 450	5 000	6 700	72.0	32.0	75	105	0.6
7014 C DB DF DT	76 000	86 000	7 750	8 750	7 100	10 000	44.1	4.1	—	105	0.6
7214 A DB DF DT	124 000	127 000	12 600	13 000	4 500	6 300	80.3	32.3	76	119	1
7214 B DB DF DT	112 000	116 000	11 500	11 800	3 200	4 500	105.8	57.8	76	119	1
7214 C DB DF DT	129 000	129 000	13 200	13 200	6 700	9 000	50.1	2.1	—	119	1
7314 A DB DF DT	203 000	187 000	20 700	19 100	3 200	4 300	98.5	28.5	77	143	1
7314 B DB DF DT	186 000	172 000	19 000	17 500	2 800	4 000	127.3	57.3	77	143	1
7915 A5 DB DF DT	44 000	55 500	4 450	5 650	6 000	8 500	58.0	26.0	—	100	0.6
7915 C DB DF DT	46 500	58 500	4 750	5 950	7 100	10 000	40.1	8.1	—	100	0.6
7015 A DB DF DT	73 000	87 500	7 450	8 900	4 800	6 700	74.8	34.8	80	110	0.6
7015 C DB DF DT 7215 A DB DF DT 7215 B DB DF DT	78 000 123 000 112 000	91 500 129 000 117 000	7 950 12 600 11 400	9 300 13 100 11 900	6 700 4 300 3 200	9 500 6 000 4 300	45.4 84.2 111.0	5.4 34.2 61.0	81 81	110 124 124	0.6 1 1
7215 C DB DF DT 7315 A DB DF DT 7315 B DB DF DT	134 000 221 000 202 000	140 000 212 000 195 000	13 700 22 500 20 600	14 200 21 600 19 800	6 300 3 000 2 800	9 000 4 000 3 800	52.4 104.8 135.6	2.4 30.8 61.6	82 82	124 153 153	1 1 1

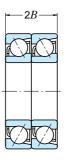

 $\phi d_{\rm b}$


 $\phi d_a \phi D_a$

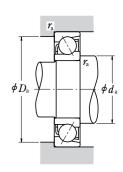
Nota (3) Para los rodamientos marcados — en la columna para $d_{\rm b}$, $d_{\rm b}$ y $r_{\rm b}$ para ejes son $d_{\rm a}$ (mín.) y $r_{\rm a}$ (máx.) respectivamente.

MONTAJES SIMPLES/EMPAREJADOS


Diámetro Interior 80~95 mm


Espalda contra Espalda

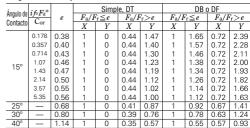
DB


Cara a Cara

DF

Tándem

DT


		ensio (mm)	nes		Índices (N		e Carga (Sim	ple) {kgf}	Factor	Veloci Lími (rp	t e (¹) m)	Centros Efectivos de Carga	V CI	siones d haflán (r	le Tope nm)	Masa (kg)
d	D	В	∤ mín.	% 1 mín.	$C_{\rm r}$	C_{0r}	$C_{\rm r}$	C_{0r}	f_0	Grasa	Aceite	(mm) <i>a</i>	$d_{ m a}$ min.	$D_{ m a} \atop m máx.}$	火 a máx.	aprox.
80	110	16	1	0.6	27 300	29 000	2 790	2 960	—	7 100	10 000	30.2	86	104	1	0.38
	110	16	1	0.6	29 000	30 500	2 960	3 150	16.7	8 500	12 000	20.7	86	104	1	0.376
	125	22	1.1	0.6	55 000	53 000	5 650	5 400	—	5 600	7 500	40.6	87	118	1	0.88
	125	22	1.1	0.6	58 500	55 500	6 000	5 650	15.7	8 000	11 000	24.7	87	118	1	0.966
	140	26	2	1	89 000	76 000	9 100	7 750	—	5 000	7 100	44.8	90	130	2	1.46
	140	26	2	1	80 500	69 500	8 200	7 050	—	3 600	5 000	59.1	90	130	2	1.49
	140 170 170	26 39 39	2 2.1 2.1	1 1.1 1.1	93 000 147 000 135 000	77 500 119 000 109 000	9 450 15 000 13 800	7 900 12 100 11 100	14.7 —	7 500 3 600 3 200	10 000 4 800 4 300	27.7 55.6 71.9	90 92 92	130 158 158	2 2 2	1.63 3.71 3.79
85	120 120 130	18 18 22	1.1 1.1 1.1	0.6 0.6 0.6	36 500 39 000 56 500	38 500 40 500 56 000	3 750 3 950 5 750	3 900 4 150 5 700	16.5 —	6 700 8 000 5 300	9 000 11 000 7 100	32.9 22.7 42.0	92 92 92	113 113 123	1 1 1	0.541 0.534 0.913
	130	22	1.1	0.6	60 000	58 500	6 150	6 000	15.9	7 500	10 000	25.4	92	123	1	1.01
	150	28	2	1	103 000	89 000	10 500	9 100	—	4 800	6 700	47.9	95	140	2	1.83
	150	28	2	1	93 000	81 000	9 500	8 250	—	3 400	4 800	63.3	95	140	2	1.87
	150	28	2	1	107 000	90 500	10 900	9 250	14.7	6 700	9 500	29.7	95	140	2	2.04
	180	41	3	1.1	159 000	133 000	16 200	13 500	—	3 400	4 500	58.8	99	166	2.5	4.33
	180	41	3	1.1	146 000	122 000	14 800	12 400	—	3 000	4 000	76.1	99	166	2.5	4.42
90	125 125 140	18 18 24	1.1 1.1 1.5	0.6 0.6 1	39 500 41 500 67 500	43 500 46 000 66 500	4 000 4 250 6 850	4 450 4 700 6 750	16.6 —	6 300 7 500 4 800	8 500 10 000 6 700	34.1 23.4 45.2	97 97 99	118 118 131	1 1 1.5	0.56 0.563 1.19
	140	24	1.5	1	71 500	69 000	7 300	7 050	15.7	7 100	9 500	27.4	99	131	1.5	1.34
	160	30	2	1	118 000	103 000	12 000	10 500	—	4 500	6 000	51.1	100	150	2	2.25
	160	30	2	1	107 000	94 000	10 900	9 550	—	3 200	4 300	67.4	100	150	2	2.29
	160	30	2	1	123 000	105 000	12 500	10 700	14.6	6 300	9 000	31.7	100	150	2	2.51
	190	43	3	1.1	171 000	147 000	17 400	15 000	—	3 200	4 300	61.9	104	176	2.5	5.06
	190	43	3	1.1	156 000	135 000	15 900	13 800	—	2 800	3 800	80.2	104	176	2.5	5.17
95	130 130 145	18 18 24	1.1 1.1 1.5	0.6 0.6 1	40 000 42 500 67 000	45 500 48 000 67 000	4 050 4 300 6 800	4 650 4 900 6 800	16.7 —	6 000 7 100 4 500	8 500 10 000 6 300	35.2 24.1 46.6	102 102 104	123 123 136	1 1 1.5	0.597 0.591 1.43
	145	24	1.5	1	73 500	73 000	7 500	7 450	15.9	6 700	9 000	28.1	104	136	1.5	1.42
	170	32	2.1	1.1	128 000	111 000	13 000	11 300	—	4 300	5 600	54.2	107	158	2	2.68
	170	32	2.1	1.1	116 000	101 000	11 800	10 300	—	3 000	4 000	71.6	107	158	2	2.74
	170	32	2.1	1.1	133 000	112 000	13 500	11 400	14.6	6 000	8 500	33.7	107	158	2	3.05
	200	45	3	1.1	183 000	162 000	18 600	16 600	—	3 000	4 000	65.1	109	186	2.5	5.83
	200	45	3	1.1	167 000	149 000	17 100	15 200	—	2 600	3 600	84.3	109	186	2.5	5.98

Notas (1) Para aplicaciones que funcionan cerca de la velocidad límite, consulte la Página B49.

⁽²⁾ Los sufijos A, A5, B y C representan ángulos de contacto de 30°, 25°, 40° y 15° respectivamente.

Carga Dinámica Equivalente $P = XF_r + YF_a$

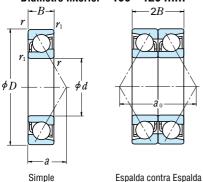
^{*}Para i, utilice 2 para DB, DF y 1 para DT

Carga Estática Equivalente $P_0 = X_0 F_r + Y_0 F_a$

Ī	Ángulo de	Simp	le, DT	DB o	DF
(Contacto	X_0	Y_0	<i>X</i> ₀	Y_0
	15°	0.5	0.46	1	0.92
	25°	0.5	0.38	1	0.76
	30°	0.5	0.33	1	0.66
-	40°	0.5	0.26	1	0.52

 $\begin{array}{l} \text{Montaje simple o DT} \\ \text{Cuando} \\ F_r \! > \! 0.5F_r \! + \! Y_0F_a \\ \text{utilice } P_0 \! = \! F_r \end{array}$

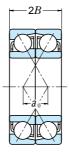
Números de Rodamiento (²)		ásicos de Car	ga (Empare	jados) {kgf}	Velocidad (1) (Empa		Distanc Centros			iones de aflán (m	
Simple Duplex	$C_{ m r}$	C_{0r}	$C_{\rm r}$	C_{0r}	Grasa (rp	m) Aceite	DB (m	,	$d_{ m b}$ (3)	$D_{ m b}$ máx.	γ _b (³) máx.
7916 A5 DB DF DT 7916 C DB DF DT 7016 A DB DF DT	47 000 89 500	58 000 61 500 106 000	4 550 4 800 9 150	5 900 6 250 10 800	5 600 6 700 4 300	8 000 9 500 6 000	60.3 41.5 81.2	28.3 9.5 37.2	— — 85	105 105 120	0.6 0.6 0.6
7016 C DB DF DT 7216 A DB DF DT 7216 B DB DF DT	95 500 145 000 131 000	111 000 152 000 139 000	9 700 14 700 13 300	11 300 15 600 14 100	6 300 4 000 2 800	9 000 5 600 4 000	49.4 89.5 118.3	5.4 37.5 66.3	86 86	120 134 134	0.6 1 1
7216 C DB DF DT 7316 A DB DF DT 7316 B DB DF DT	151 000 239 000 219 000	155 000 238 000 218 000	15 400 24 400 22 400	15 800 24 200 22 300	6 000 2 800 2 600	8 000 3 800 3 400	55.5 111.2 143.9	3.5 33.2 65.9	87 87	134 163 163	1 1 1
7917 A5 DB DF DT 7917 C DB DF DT 7017 A DB DF DT	59 500 63 000 91 500	77 000 81 500 112 000	6 100 6 450 9 350	7 850 8 300 11 400	5 300 6 300 4 300	7 500 9 000 5 600	65.8 45.5 84.1	29.8 9.5 40.1	— — 90	115 115 125	0.6 0.6 0.6
7017 C DB DF DT 7217 A DB DF DT 7217 B DB DF DT	98 000 167 000 151 000	117 000 178 000 162 000	9 950 17 100 15 400	12 000 18 200 16 500	6 000 3 800 2 800	8 500 5 300 3 800	50.8 95.8 126.6	6.8 39.8 70.6	91 91	125 144 144	0.6 1 1
7217 C DB DF DT 7317 A DB DF DT 7317 B DB DF DT	174 000 258 000 236 000	181 000 265 000 244 000	17 800 26 300 24 100	18 500 27 000 24 800	5 600 2 600 2 400	7 500 3 600 3 200	59.5 117.5 152.2	3.5 35.5 70.2	92 92	144 173 173	1 1 1
7918 A5 DB DF DT 7918 C DB DF DT 7018 A DB DF DT	64 000 67 500 109 000	87 000 92 000 133 000	6 500 6 900 11 200	8 900 9 400 13 500	5 000 6 000 3 800	7 100 8 500 5 300	68.1 46.8 90.4	32.1 10.8 42.4	— — 96	120 120 134	0.6 0.6 1
7018 C DB DF DT 7218 A DB DF DT 7218 B DB DF DT	116 000 191 000 173 000	138 000 206 000 188 000	11 900 19 500 17 700	14 100 21 000 19 100	5 600 3 600 2 600	8 000 5 000 3 400	54.8 102.2 134.9	6.8 42.2 74.9	96 96	134 154 154	1 1 1
7218 C DB DF DT 7318 A DB DF DT 7318 B DB DF DT	199 000 277 000 254 000	209 000 294 000 270 000	20 300 28 300 25 900	21 400 30 000 27 600	5 300 2 600 2 200	7 100 3 400 3 000	63.5 123.8 160.5	3.5 37.8 74.5	97 97	154 183 183	1 1 1
7919 A5 DB DF DT 7919 C DB DF DT 7019 A DB DF DT	64 500 68 500 109 000	91 000 96 000 134 000	6 600 7 000 11 100	9 250 9 800 13 600	4 800 5 600 3 800	6 700 8 000 5 000	70.5 48.1 93.3	34.5 12.1 45.3	_ _	125 125 139	0.6 0.6 1
7019 C DB DF DT 7219 A DB DF DT 7219 B DB DF DT	119 000 208 000 188 000	146 000 221 000 202 000	12 200 21 200 19 200	14 900 22 600 20 500	5 300 3 400 2 400	7 500 4 500 3 200	56.1 108.5 143.2	8.1 44.5 79.2	— 102 102	139 163 163	1 1 1
7219 C DB DF DT 7319 A DB DF DT 7319 B DB DF DT	216 000 297 000 272 000	224 000 325 000 298 000	22 000 30 500 27 700	22 800 33 000 30 500	4 800 2 400 2 200	6 700 3 200 3 000	67.5 130.2 168.7	3.5 40.2 78.7	102 102 102	163 193 193	1 1 1


 $\phi d_{\rm b}$

 $\phi d_a \phi D_a$

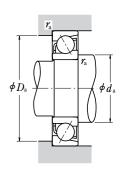
Nota (3) Para rodamientos marcados — en la columna para $d_{\rm b}, d_{\rm b}$ y $r_{\rm b}$ para los ejes son $d_{\rm a}$ (mín.) y $r_{\rm a}$ (máx.) respectivamente.

MONTAJES SIMPLES/EMPAREJADOS


Diámetro Interior 100~120 mm

Simple

DB


Cara a Cara

DF

Tándem

DT

		ensio (mm)			Índice:	s Básicos de	Carga (Sim	ple) {kgf}	Factor	Veloci Límit	e (1)	Centros Efectivos	y Cl	siones d naflán (m		Masa (kg)
d	D	В	γ mín.	∤ 1 mín.	$C_{\rm r}$	C_{0r}	$C_{\rm r}$	C_{0r}	f_0	Grasa (rp	m) Aceite	de Carga (mm) <i>a</i>	$d_{ m a}$	$\mathop{D}_{\rm max.}^{\rm a}$	∤ a máx.	aprox.
100	140 140 150	20 20 24	1.1 1.1 1.5	0.6 0.6 1	47 500 50 000 68 500	51 500 54 000 70 500	4 850 5 100 6 950	5 250 5 550 7 200	— 16.5 —	5 600 6 700 4 500	8 000 9 000 6 000	38.0 26.1 48.1	107 107 109	133 133 141	1 1 1.5	0.804 0.794 1.48
	150 180 180	24 34 34	1.5 2.1 2.1	1 1.1 1.1	75 500 144 000 130 000	77 000 126 000 114 000	7 700 14 700 13 300	7 900 12 800 11 700	16.0 —	6 300 4 000 2 800	9 000 5 300 3 800	28.7 57.4 75.7	109 112 112	141 168 168	1.5 2 2	1.46 3.22 3.28
	180 215 215	34 47 47	2.1 3 3	1.1 1.1 1.1	149 000 207 000 190 000	127 000 193 000 178 000	15 200 21 100 19 400	12 900 19 700 18 100	14.5 — —	5 600 2 800 2 400	8 000 3 800 3 400	35.7 69.0 89.6	112 114 114	168 201 201	2 2.5 2.5	3.65 7.29 7.43
105	145 145 160	20 20 26	1.1 1.1 2	0.6 0.6 1	48 000 51 000 80 000	54 000 57 000 81 500	4 900 5 200 8 150	5 500 5 800 8 350	16.6 —	5 600 6 300 4 300	7 500 9 000 5 600	39.2 26.7 51.2	112 112 115	138 138 150	1 1 2	0.82 0.826 1.84
	160 190 190	26 36 36	2 2.1 2.1	1 1.1 1.1	88 000 157 000 142 000	89 500 142 000 129 000	9 000 16 000 14 500	9 100 14 400 13 100	15.9 — —	6 000 3 800 2 600	8 500 5 000 3 600	30.7 60.6 79.9	115 117 117	150 178 178	2 2 2	1.82 3.84 3.92
	190 225 225	36 49 49	2.1 3 3	1.1 1.1 1.1	162 000 208 000 191 000	143 000 193 000 177 000	16 600 21 200 19 400	14 600 19 700 18 100	14.5 — —	5 300 2 600 2 400	7 500 3 600 3 200	37.7 72.1 93.7	117 119 119	178 211 211	2 2.5 2.5	4.33 9.34 9.43
110	150 150 170	20 20 28	1.1 1.1 2	0.6 0.6 1	49 000 52 000 96 500	56 000 59 500 95 500	5 000 5 300 9 850	5 750 6 050 9 700	— 16.7 —	5 300 6 300 4 000	7 100 8 500 5 300	40.3 27.4 54.4	117 117 120	143 143 160	1 1 2	0.877 0.867 2.28
	170 200 200	28 38 38	2 2.1 2.1	1 1.1 1.1	106 000 170 000 154 000	104 000 158 000 144 000	10 800 17 300 15 700	10 600 16 100 14 700	15.6 —	5 600 3 600 2 600	8 000 4 800 3 400	32.7 63.7 84.0	120 122 122	160 188 188	2 2 2	2.26 4.49 4.58
	200 240 240	38 50 50	2.1 3 3	1.1 1.1 1.1	176 000 220 000 201 000	160 000 215 000 197 000	17 900 22 500 20 500	16 300 21 900 20 100	14.5 —	5 000 2 600 2 200	7 100 3 400 3 000	39.8 75.5 98.4	122 124 124	188 226 226		5.1 11.1 11.2
120	165 165 180	22 22 28	1.1 1.1 2	0.6 0.6 1	67 500 72 000 102 000	77 000 81 000 107 000	6 900 7 300 10 400	7 850 8 300 10 900	— 16.5 —	4 800 5 600 3 600	6 300 7 500 5 000	44.2 30.1 57.3	127 127 130	158 158 170	1 1 2	1.15 1.15 2.45
	215 215	40 40	2.1 2.1	1.1 1.1	183 000 165 000	177 000 162 000	18 600 16 900	18 100 16 500	_	3 200 2 400	4 500 3 200	68.3 90.3	132 132	203 203	2	6.22 6.26

Notas (1) Para aplicaciones que funcionan cerca de la velocidad límite, consulte la Página **B49**.

252 000

231 000

25 100 25 700

23 000 23 600

2 200

2 000

3 000

2 800

82.3

107.2

134

134

246

246

2.5 14.5

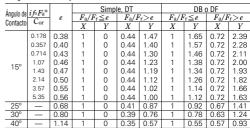
2.5 14.4

260

260 55 1.1

1.1

3


55

246 000 225 000

⁽²⁾ Los sufijos A, A5, B y C representan ángulos de contacto de 30°, 25°, 40° y 15° respectivamente.

^{*}Para i, utilice 2 para DB, DF y 1 para DT

Carga Estática Equivalente $P_0 = X_0 F_r + Y_0 F_a$

Ánguli	o de	Simp	le, DT	DB	DF
Conta	cto	X_0	Y_0	<i>X</i> ₀	<i>Y</i> ₀
15		0.5	0.46	1	0.92
25	0	0.5	0.38	1	0.76
30		0.5	0.33	1	0.66
40	0	0.5	0.26	1	0.52

 $\begin{array}{l} \text{Montaje simple o DT} \\ \text{Cuando} \\ F_r {>} 0.5 F_r {+} Y_0 F_a \\ \text{utilice } P_0 {=} F_r \end{array}$

	neros de miento (²)		Índices B	ásicos de Car _!	ga (Empare	jados) {kgf}	Velocidad (1) (Empa	arejados)	Distanc Centros	de Carga		iones de aflán (mi	
Simple	Dup	plex	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Grasa	Aceite	DB &	DF	$d_{ m b}$ (3) mín.	$D_{ m b}$ máx.	γ ъ (³) máx.
7920 A5	DB DF	DT	77 000	103 000	7 850	10 500	4 500	6 300	76.0	36.0	=	135	0.6
7920 C	DB DF	DT	81 500	108 000	8 300	11 100	5 300	7 500	52.2	12.2		135	0.6
7020 A	DB DF	DT	111 000	141 000	11 300	14 400	3 600	5 000	96.2	48.2		144	1
7020 C 7220 A 7220 B	DB DF DB DF DB DF	DT DT DT	122 000 233 000 212 000	154 000 251 000 229 000	12 500 23 800 21 600	15 800 25 600 23 300	5 300 3 200 2 200	7 100 4 300 3 000	57.5 114.8 151.5	9.5 46.8 83.5	107 107	144 173 173	1 1 1
7220 C 7320 A 7320 B	DB DF DB DF DB DF	DT DT DT	242 000 335 000 310 000	254 000 385 000 355 000	24 700 34 500 31 500	25 900 39 500 36 000	4 500 2 200 2 000	6 300 3 000 2 800	71.5 137.9 179.2	3.5 43.9 85.2	107 107	173 208 208	1 1 1
7921 A5	DB DF	DT	78 500	108 000	8 000	11 000	4 300	6 000	78.3	38.3	_	140	0.6
7921 C	DB DF	DT	83 000	114 000	8 450	11 600	5 300	7 100	53.5	13.5	_	140	0.6
7021 A	DB DF	DT	130 000	163 000	13 300	16 700	3 400	4 500	102.5	50.5	_	154	1
7021 C 7221 A 7221 B	DB DF DB DF DB DF	DT DT DT	143 000 254 000 231 000	179 000 283 000 258 000	14 600 25 900 23 500	18 200 28 900 26 300	4 800 3 000 2 200	6 700 4 000 3 000	61.5 121.2 159.8	9.5 49.2 87.8	112 112	154 183 183	1 1 1
7221 C	DB DF	DT	264 000	286 000	26 900	29 100	4 300	6 000	75.5	3.5	_	183	1
7321 A	DB DF	DT	335 000	385 000	34 500	39 500	2 200	2 800	144.3	46.3	_	218	1
7321 B	DB DF	DT	310 000	355 000	31 500	36 000	1 900	2 600	187.4	89.4	_	218	1
7922 A5	DB DF	DT	79 500	112 000	8 100	11 500	4 300	5 600	80.6	40.6	_	145	0.6
7922 C	DB DF	DT	84 500	119 000	8 600	12 100	5 000	6 700	54.8	14.8	_	145	0.6
7022 A	DB DF	DT	157 000	191 000	16 000	19 400	3 200	4 300	108.8	52.8	_	164	1
7022 C	DB DF	DT	172 000	208 000	17 600	21 200	4 500	6 300	65.5	9.5	—	164	1
7222 A	DB DF	DT	276 000	315 000	28 100	32 500	2 800	4 000	127.5	51.5	117	193	1
7222 B	DB DF	DT	250 000	289 000	25 500	29 400	2 000	2 800	168.1	92.1	117	193	1
7222 C	DB DF	DT	286 000	320 000	29 200	32 500	4 000	5 600	79.5	3.5	_	193	1
7322 A	DB DF	DT	360 000	430 000	36 500	44 000	2 000	2 600	151.0	51.0	_	233	1
7322 B	DB DF	DT	325 000	395 000	33 500	40 000	1 800	2 400	196.8	96.8	_	233	1
7924 A5	DB DF	DT	110 000	154 000	11 200	15 700	3 800	5 300	88.5	44.5	_	160	0.6
7924 C	DB DF	DT	117 000	162 000	11 900	16 600	4 500	6 300	60.2	16.2	_	160	0.6
7024 A	DB DF	DT	166 000	213 000	16 900	21 700	3 000	4 000	114.6	58.6	_	174	1
7224 A	DB DF	DT	297 000	355 000	30 500	36 000	2 600	3 600	136.7	56.7	_	208	1
7224 B	DB DF	DT	269 000	325 000	27 400	33 000	1 900	2 600	180.5	100.5		208	1
7324 A	DB DF	DT	400 000	505 000	41 000	51 500	1 800	2 400	164.7	54.7	_	253	1
7324 B	DB DF	DT	365 000	460 000	37 500	47 000	1 600	2 200	214.4	104.4		253	1

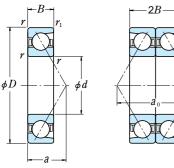
 $r_{\rm b}$

 $\phi d_{\rm b}$

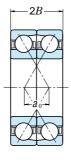
 ϕD_{z}

 ϕd_a

 $\phi D_{
m b}$

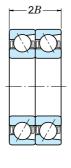

Nota (3) Para rodamientos marcados — en la columna para $d_{\rm b}$, $d_{\rm b}$ y $r_{\rm b}$ para los ejes son $d_{\rm a}$ (mín.) y $r_{\rm a}$ (máx.) respectivamente.

Espalda contra espalda

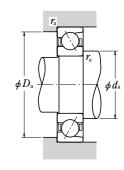

DB

MONTAJES SIMPLES/EMPAREJADOS

Diámetro Interior 130~170 mm



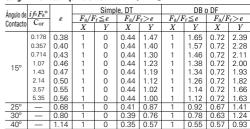
Simple


Cara a Cara

DF

Tándem

DT


		ensio (mm)			Índices (1	s Básicos de	Carga (Sim	ple) {kgf}	Factor	Veloci Límit (rp	e (1)	Centros Efectivos de Carga	y Cl	siones d naflán (m		Masa (kg)
d	D	В	∤ mín.	% 1 mín.	C_{r}	C_{0r}	$C_{\rm r}$	$C_{0\mathrm{r}}$	f_0	Grasa	Aceite	(mm)	$d_{ m a}$ min.	$D_{ m a}$ máx.	∦ a máx.	aprox.
130	180 180 200	24 24 33	1.5 1.5 2	1 1 1	74 000 78 500 117 000	86 000 91 000 125 000	7 550 8 000 12 000	8 750 9 250 12 800	— 16.5 —	4 300 5 000 3 400	6 000 7 100 4 500	48.1 32.8 64.1	139 139 140	171 171 190	1.5 1.5 2	1.54 1.5 3.68
	230 230	40 40	3 3	1.1 1.1	189 000 171 000	193 000 175 000	19 300 17 400	19 600 17 800	_	2 400 2 200	3 200 3 000	72.0 95.5	144 144	216 216	2.5 2.5	7.06 7.1
	280 280	58 58	4 4	1.5 1.5	273 000 250 000	293 000 268 000	27 900 25 500	29 800 27 400	_	2 200 1 900	2 800 2 600	88.2 115.0	148 148	262 262	3	17.5 17.6
140	190 190 210	24 24 33	1.5 1.5 2	1 1 1	75 000 79 500 120 000	90 000 95 500 133 000	7 650 8 100 12 200	9 200 9 700 13 500	— 16.7 —	4 000 4 800 3 200	5 600 6 700 4 300	50.5 34.1 67.0	149 149 150	181 181 200	1.5 1.5 2	1.63 1.63 3.9
	250 250	42 42	3 3	1.1 1.1	218 000 197 000	234 000 213 000	22 300 20 100	23 900 21 700	_	2 200 2 000	3 000 2 800	77.3 102.8	154 154	236 236	2.5 2.5	8.92 8.94
	300 300	62 62	4 4	1.5 1.5	300 000 275 000	335 000 310 000	30 500 28 100	34 500 31 500	_	2 000 1 700	2 600 2 400	94.5 123.3	158 158	282 282	3	21.4 21.6
150	210 210 225	28 28 35	2 2 2.1	1 1 1.1	96 500 102 000 137 000	115 000 122 000 154 000	9 850 10 400 14 000	11 800 12 400 15 700	16.6 —	3 800 4 300 2 400	5 000 6 000 3 000	56.0 38.1 71.6	160 160 162	200 200 213	2 2 2	2.97 2.96 4.75
	270 270	45 45	3	1.1 1.1	248 000 225 000	280 000 254 000	25 300 22 900	28 500 25 900	_	2 000 1 800	2 800 2 600	83.1 110.6	164 164	256 256	2.5 2.5	11.2 11.2
	320 320	65 65	4 4	1.5 1.5	315 000 289 000	370 000 340 000	32 500 29 400	38 000 34 500	_	1 800 1 600	2 400 2 200	100.3 131.1	168 168	302 302	3	26 25.9
160	220 240 290	28 38 48	2 2.1 3	1 1.1 1.1	106 000 155 000 263 000	133 000 176 000 305 000	10 800 15 800 26 800	13 500 18 000 31 500	16.7 — —	3 800 2 200 1 900	5 000 2 800 2 600	39.4 76.7 89.0	170 172 174	210 228 276	2 2 2.5	3.1 5.77 14.1
	290 340 340	48 68 68	3 4 4	1.1 1.5 1.5	238 000 345 000 315 000	279 000 420 000 385 000	24 200 35 500 32 000	28 400 43 000 39 500	_	1 700 1 700 1 500	2 400 2 200 2 000	118.4 106.2 138.9	174 178 178	276 322 322	2.5 3 3	14.2 30.7 30.8
170	230 260 310	28 42 52	2 2.1 4	1 1.1 1.5	113 000 186 000 295 000	148 000 214 000 360 000	11 500 19 000 30 000	15 100 21 900 36 500	16.8 — —	3 600 2 000 1 800	4 800 2 600 2 400	40.8 83.1 95.3	180 182 188	220 248 292	2 2 3	3.36 7.9 17.3
	310 360 360	52 72 72	4 4 4	1.5 1.5 1.5	266 000 390 000 355 000	325 000 485 000 445 000	27 200 39 500 36 000	33 000 49 500 45 500	_ _ _	1 600 1 600 1 400	2 200 2 200 2 000	126.7 112.5 147.2	188 188 188	292 342 342	3 3 3	17.6 35.8 35.6

Notas (1) Para aplicaciones que funcionan cerca de la velocidad límite, consulte la Página B49.

⁽²⁾ Los sufijos A, A5, B y C representan ángulos de contacto de 30°, 25°, 40° y 15° respectivamente.

Carga Dinámica Equivalente $P = XF_r + YF_a$

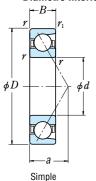
^{*}Para i, utilice 2 para DB, DF y 1 para DT

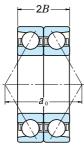
Carga Estática Equivalente $P_0=X_0F_r+Y_0F_a$

Ángulo de	Simp	le, DT	DB o DF			
Contacto	<i>X</i> ₀	Y_0	<i>X</i> ₀	<i>Y</i> ₀		
15°	0.5	0.46	1	0.92		
25°	0.5	0.38	1	0.76		
30°	0.5	0.33	1	0.66		
40°	0.5	0.26	1	0.52		

 $\begin{array}{l} \text{Montaje simple o DT} \\ \text{Cuando} \\ F_r {>} 0.5 F_r {+} Y_0 F_a \\ \text{utilice } P_0 {=} F_r \end{array}$

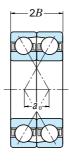
Nióma			Índiana D	ásicos de Car	na /Empara	iados)	Velocidad	es I ímite	Distanc	ia entre	Dimono	iones de	Topo v
	neros de miento (²)		(N		ya (Ellipale	{kgf}	(¹) (Empa	arejados) m)	Centros			aflán (mi	
Simple	Dup	olex	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite	,	a ₀ DF	$d_{ m b}$ (3) mín.	$D_{ m b}$ máx.	∕⁄ b (³) máx.
7926 C	DB DF DB DF DB DF	DT DT DT	120 000 128 000 191 000	172 000 182 000 251 000	12 300 13 000 19 400	17 500 18 500 25 600	3 400 4 000 2 600	4 800 5 600 3 600	96.3 65.5 128.3	48.3 17.5 62.3	_	174 174 194	1 1 1
	DB DF DB DF	DT DT	310 000 278 000	385 000 350 000	31 500 28 300	39 500 35 500	1 900 1 700	2 600 2 400	143.9 191.0	63.9 111.0	_	223 223	1 1
	DB DF DB DF	DT DT	445 000 405 000	585 000 535 000	45 500 41 500	59 500 54 500	1 700 1 500	2 200 2 000	176.3 230.0	60.3 114.0	_	271 271	1.5 1.5
7928 C	DB DF DB DF DB DF	DT DT DT	122 000 129 000 194 000	180 000 191 000 265 000	12 400 13 200 19 800	18 400 19 400 27 000	3 200 3 800 2 600	4 500 5 300 3 400	100.9 68.2 134.0	52.9 20.2 68.0	_ _ _	184 184 204	1 1 1
7228 A 7228 B	DB DF DB DF	DT DT	355 000 320 000	470 000 425 000	36 000 32 500	48 000 43 500	1 800 1 600	2 400 2 200	154.6 205.6	70.6 121.6		243 243	1 1
7328 A 7328 B	DB DF DB DF	DT DT	490 000 445 000	670 000 615 000	50 000 45 500	68 500 63 000	1 600 1 400	2 000 1 900	189.0 246.6	65.0 122.6	_	291 291	1.5 1.5
7930 C	DB DF DB DF DB DF	DT DT DT	157 000 166 000 222 000	231 000 244 000 305 000	16 000 16 900 22 700	23 500 24 900 31 500	3 000 3 600 1 900	4 000 4 800 2 400	112.0 76.2 143.3	56.0 20.2 73.3	_ 	204 204 218	1 1 1
	DB DF DB DF	DT DT	405 000 365 000	560 000 510 000	41 000 37 000	57 000 52 000	1 600 1 500	2 200 2 000	166.3 221.2	76.3 131.2	_	263 263	1 1
	DB DF DB DF	DT DT	515 000 470 000	745 000 680 000	52 500 48 000	75 500 69 500	1 500 1 300	1 900 1 800	200.7 262.2	70.7 132.2	_	311 311	1.5 1.5
	DB DF DB DF DB DF	DT DT DT	173 000 252 000 425 000	265 000 355 000 615 000	17 600 25 700 43 500	27 000 36 000 62 500	3 000 1 700 1 500	4 000 2 400 2 000	78.9 153.5 177.9	22.9 77.5 81.9	_ _ _	214 233 283	1 1 1
7332 A	DB DF DB DF DB DF	DT DT DT	385 000 565 000 515 000	555 000 845 000 770 000	39 500 57 500 52 500	57 000 86 000 78 500	1 400 1 400 1 200	1 900 1 800 1 700	236.8 212.3 277.8	140.8 76.3 141.8	_ _ _	283 331 331	1 1.5 1.5
	DB DF DB DF DB DF	DT DT DT	183 000 300 000 480 000	297 000 430 000 715 000	18 700 31 000 49 000	30 000 43 500 73 000	2 800 1 600 1 400	3 800 2 200 1 900	81.6 166.1 190.6	25.6 82.1 86.6	_ _ _	224 253 301	1 1 1.5
7234 B 7334 A 7334 B	DB DF DB DF DB DF	DT DT DT	435 000 630 000 575 000	650 000 970 000 890 000	44 000 64 500 59 000	66 500 99 000 90 500	1 300 1 300 1 100	1 700 1 700 1 600	253.4 225.0 294.3	149.4 81.0 150.3	_ _ _	301 351 351	1.5 1.5 1.5

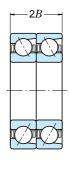

 $\phi d_{\rm b}$


 $\phi d_a \phi D_a$

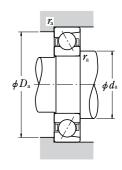
Nota (3) Para rodamientos marcados — en la columna para $d_{\rm b}, d_{\rm b}$ y $r_{\rm b}$ para los ejes son $d_{\rm a}$ (mín.) y $r_{\rm a}$ (máx.) respectivamente.

MONTAJES SIMPLES/EMPAREJADOS


Diámetro Interior 180~200 mm


Espalda contra Espalda

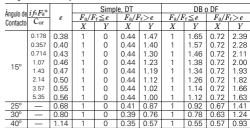
DB


Cara a Cara

DF

Tándem

DT


Dimensiones Índices Básico (mm) (N)				cos de Carga (Simple) Fac		Factor	Velocidades Límite (¹) (rpm)		Centros Efectivos de Carga	y Chaflán (mm)		Masa (kg)				
d	D	B	∤ mín.	${m \gamma}_1$ mín.	C_{r}	C_{0r}	$C_{\rm r}$	C_{0r}	f_0	Grasa	Aceite	(mm)	$d_{ m a}$ mín.	$D_{ m a}$ máx.	γ _a máx.	aprox.
180	250	33	2	1	145 000	184 000	14 800	18 800	16.6	3 200	4 500	45.3	190	240	2	4.9
	280	46	2.1	1.1	207 000	252 000	21 100	25 700	—	1 900	2 400	89.4	192	268	2	10.5
	320	52	4	1.5	305 000	385 000	31 000	39 000	—	1 700	2 200	98.2	198	302	3	18.1
	320	52	4	1.5	276 000	350 000	28 100	35 500	_	1 500	2 000	130.9	198	302	3	18.4
	380	75	4	1.5	410 000	535 000	41 500	54 500	_	1 500	2 000	118.3	198	362	3	42.1
	380	75	4	1.5	375 000	490 000	38 000	50 000	_	1 300	1 800	155.0	198	362	3	42.6
190	260	33	2	1	147 000	192 000	15 000	19 600	16.7	3 000	4 300	46.6	200	250	2	4.98
	290	46	2.1	1.1	224 000	280 000	22 800	28 600	—	1 800	2 400	92.3	202	278	2	11.3
	340	55	4	1.5	315 000	410 000	32 000	42 000	—	1 600	2 200	104.0	208	322	3	22.4
	340	55	4	1.5	284 000	375 000	28 900	38 000	_	1 400	2 000	138.7	208	322	3	22.5
	400	78	5	2	450 000	600 000	46 000	61 000	_	1 400	1 900	124.2	212	378	4	47.5
	400	78	5	2	410 000	550 000	42 000	56 000	_	1 300	1 700	162.8	212	378	4	47.2
200	280	38	2.1	1.1	189 000	244 000	19 300	24 900	16.5	2 800	4 000	51.2	212	268	2	6.85
	310	51	2.1	1.1	240 000	310 000	24 500	31 500	—	1 700	2 200	99.1	212	298	2	13.7
	360	58	4	1.5	335 000	450 000	34 500	46 000	—	1 500	2 000	109.8	218	342	3	26.5
	360	58	4	1.5	305 000	410 000	31 000	41 500	_	1 300	1 800	146.5	218	342	3	26.6
	420	80	5	2	475 000	660 000	48 500	67 000	_	1 300	1 800	129.5	222	398	4	54.4
	420	80	5	2	430 000	600 000	44 000	61 500	_	1 200	1 600	170.1	222	398	4	55.3

Notas (1) Para aplicaciones que funcionan cerca de la velocidad límite, consulte la Página B49.

(2) Los sufijos A, A5, B y C representan ángulos de contacto de 30°, 25°, 40° y 15° respectivamente.

Carga Dinámica Equivalente $P = XF_r + YF_a$

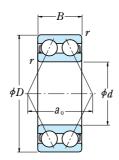
^{*}Para i, utilice 2 para DB, DF y 1 para DT

Carga Estática Equivalente $P_0 = X_0 F_r + Y_0 F_a$

Ángulo de	Simp	le, DT	DT DB o DF			
Contacto	<i>X</i> ₀	Y_0	<i>X</i> ₀	<i>Y</i> ₀		
15°	0.5	0.46	1	0.92		
25°	0.5	0.38	1	0.76		
30°	0.5	0.33	1	0.66		
40°	0.5	0.26	1	0.52		

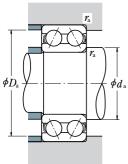
 $\begin{array}{l} \text{Montaje simple o DT} \\ \text{Cuando} \\ F_r {>}\, 0.5 F_r {+}\, Y_0 F_a \\ \text{utilice}\, P_0 {=} F_r \end{array}$

	Números de Rodamiento (²)		Índices Básicos de Carga (Emparejados) (N) {kgf}			Velocidades Límite (¹) (Emparejados) (rpm)		Distancia entre Centros de Carga		Dimensiones de Tope y Chaflán (mm)		
Simple	Duplex	$C_{\rm r}$	C_{0r}	$C_{\rm r}$	C_{0r}	Grasa	Aceite	,	B ₀ DF	$d_{ m b}(^3)$	$D_{ m b}$ máx.	$n_b (^3)$ máx.
7936 C 7036 A 7236 A	DB DF DT DB DF DT DB DF DT	236 000 335 000 495 000	370 000 505 000 770 000	24 000 34 500 50 500	37 500 51 500 78 500	2 600 1 500 1 400	3 600 2 000 1 800	90.6 178.8 196.3	24.6 86.8 92.3		244 273 311	1 1 1.5
7236 B 7336 A 7336 B	DB DF DT DB DF DT DB DF DT	450 000 665 000 605 000	700 000 1 070 000 975 000	45 500 68 000 62 000	71 000 109 000 99 500	1 200 1 200 1 100	1 700 1 600 1 500	261.8 236.6 309.9	157.8 86.6 159.9	_ 	311 371 371	1.5 1.5 1.5
7938 C 7038 A 7238 A	DB DF DT DB DF DT DB DF DT	239 000 365 000 510 000	385 000 560 000 825 000	24 400 37 000 52 000	39 000 57 000 84 000	2 400 1 400 1 300	3 400 1 900 1 700	93.3 184.6 208.0	27.3 92.6 98.0	_ 	254 283 331	1 1 1.5
7238 B 7338 A 7338 B	DB DF DT DB DF DT DB DF DT	460 000 730 000 670 000	750 000 1 200 000 1 100 000	47 000 74 500 68 000	76 000 122 000 112 000	1 100 1 100 1 000	1 600 1 500 1 400	277.3 248.3 325.5	167.3 92.3 169.5	_ 	331 390 390	1.5 2 2
7940 C 7040 A 7240 A	DB DF DT DB DF DT DB DF DT	305 000 390 000 550 000	490 000 620 000 900 000	31 500 40 000 56 000	50 000 63 500 92 000	2 200 1 300 1 200	3 200 1 800 1 600	102.3 198.2 219.6	26.3 96.2 103.6	_ _ _	273 303 351	1 1 1.5
7240 B 7340 A 7340 B	DB DF DT DB DF DT DB DF DT	495 000 770 000 700 000	815 000 1 320 000 1 200 000	50 500 78 500 71 500	83 000 134 000 123 000	1 100 1 100 950	1 500 1 400 1 300	292.9 259.0 340.1	176.9 99.0 180.1	_ _ _	351 410 410	1.5 2 2


 $\phi d_{\rm b}$

 $\phi d_a \phi D_a$

Nota (3) Para rodamientos marcados — en la columna para $d_{\rm b}, d_{\rm b}$ y $r_{\rm b}$ para los ejes son $d_{\rm a}$ (mín.) y $r_{\rm a}$ (máx.) respectivamente.

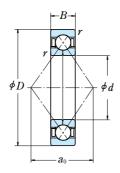

RODAMIENTOS DE BOLAS DE CONTACTO ANGULAR DE DOBLE HILERA

Diámetro Interior 10∼85 mm

		nsiones nm)		1)		cos de Carga	{kgf}		des Límite	Números
d	D	В	γ mín.	Cr	$C_{0\mathrm{r}}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite	de Rodamiento
10	30	14.3	0.6	7 150	3 900	730	400	17 000	22 000	5200
12	32	15.9	0.6	10 500	5 800	1 070	590	15 000	20 000	5201
15	35	15.9	0.6	11 700	7 050	1 190	715	13 000	17 000	5202
	42	19	1	17 600	10 200	1 800	1 040	11 000	15 000	5302
17	40	17.5	0.6	14 600	9 050	1 490	920	11 000	15 000	5203
	47	22.2	1	21 000	12 600	2 140	1 280	10 000	13 000	5303
20	47	20.6	1	19 600	12 400	2 000	1 270	10 000	13 000	5204
	52	22.2	1.1	24 600	15 000	2 510	1 530	9 000	12 000	5304
25	52	20.6	1	21 300	14 700	2 170	1 500	8 500	11 000	5205
	62	25.4	1.1	32 500	20 700	3 350	2 110	7 500	10 000	5305
30	62	23.8	1	29 600	21 100	3 000	2 150	7 100	9 500	5206
	72	30.2	1.1	40 500	28 100	4 150	2 870	6 300	8 500	5306
35	72	27	1.1	39 000	28 700	4 000	2 920	6 300	8 000	5207
	80	34.9	1.5	51 000	36 000	5 200	3 700	5 600	7 500	5307
40	80	30.2	1.1	44 000	33 500	4 500	3 400	5 600	7 100	5208
	90	36.5	1.5	56 500	41 000	5 800	4 200	5 300	6 700	5308
45	85	30.2	1.1	49 500	38 000	5 050	3 900	5 000	6 700	5209
	100	39.7	1.5	68 500	51 000	7 000	5 200	4 500	6 000	5309
50	90	30.2	1.1	53 000	43 500	5 400	4 400	4 800	6 000	5210
	110	44.4	2	81 500	61 500	8 300	6 250	4 300	5 600	5310
55	100	33.3	1.5	56 000	49 000	5 700	5 000	4 300	5 600	5211
	120	49.2	2	95 000	73 000	9 700	7 450	3 800	5 000	5311
60	110	36.5	1.5	69 000	62 000	7 050	6 300	3 800	5 000	5212
	130	54	2.1	125 000	98 500	12 800	10 000	3 400	4 500	5312
65	120	38.1	1.5	76 500	69 000	7 800	7 050	3 600	4 500	5213
	140	58.7	2.1	142 000	113 000	14 500	11 500	3 200	4 300	5313
70	125	39.7	1.5	94 000	82 000	9 600	8 400	3 400	4 500	5214
	150	63.5	2.1	159 000	128 000	16 200	13 100	3 000	3 800	5314
75	130	41.3	1.5	93 500	83 000	9 550	8 500	3 200	4 300	5215
80	140	44.4	2	99 000	93 000	10 100	9 500	3 000	3 800	5216
85	150	49.2	2	116 000	110 000	11 800	11 200	2 800	3 600	5217

Dist. entre Centros de Carga	Dimensi	ones de Tope y (mm)	/ Chaflán	Masa (kg)
a_0	$d_{\scriptscriptstyle m a}$ min.	$D_{ m a}$ máx.	∤ a máx.	aprox.
14.5	15	25	0.6	0.050
16.7	17	27	0.6	0.060
18.3	20	30	0.6	0.070
22.0	21	36	1	0.11
20.8	22	35	0.6	0.090
25.0	23	41	1	0.14
24.3	26	41	1	0.12
26.7	27	45	1	0.23
26.8	31	46	1	0.19
31.8	32	55	1	0.34
31.6	36	56	1	0.29
36.5	37	65	1	0.51
36.6	42	65	1	0.43
41.6	44	71	1.5	0.79
41.5	47	73	1	0.57
45.5	49	81	1.5	1.05
43.4	52	78	1	0.62
50.6	54	91	1.5	1.4
45.9	57	83	1	0.67
55.6	60	100	2	1.95
50.1	64	91	1.5	0.96
60.6	65	110	2	2.3
56.5	69	101	1.5	1.35
69.2	72	118	2	3.15
59.7	74	111	1.5	1.65
72.8	77	128	2	3.85
63.8	79	116	1.5	1.8
78.3	82	138	2	4.9
66.1	84	121	1.5	1.9
69.6	90	130	2	2.5
75.3	95	140	2	3.4

Carga Dinámica Equivalente

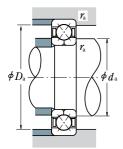

$P = XF_{r} + YF_{a}$										
$F_{\rm a}/I$	r≤e	$F_{\rm a}/I$	$F_{\rm a}/F_{\rm r}{>}e$							
X	Y	X	Y	$\mid e \mid$						
1	0.92	0.67	1.41	0.68						

Carga Estática Equivalente

 $P_0 = F_r + 0.76 F_a$

RODAMIENTOS DE BOLAS DE CUATRO PUNTOS DE CONTACTO

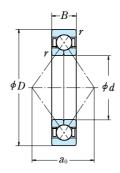
Diámetro Interior 30∼95 mm



	Dimens (mr			(1	Índices Básic	os de Carga	{kgf}	Velocidad (rp	
d	D	B	γ mín.	C_{a}	C_{0a}	C_{a}	C_{0a}	Grasa	Aceite
30	62	16	1	31 000	45 000	3 150	4 600	8 500	12 000
	72	19	1.1	46 000	63 000	4 700	6 450	8 000	11 000
35	72	17	1.1	41 000	61 500	4 200	6 250	7 500	10 000
	80	21	1.5	55 000	80 000	5 600	8 150	7 100	9 500
40	80	18	1.1	49 000	77 500	5 000	7 900	6 700	9 000
	90	23	1.5	67 000	100 000	6 850	10 200	6 300	8 500
45	85	19	1.1	55 000	88 500	5 600	9 000	6 300	8 500
	100	25	1.5	87 500	133 000	8 900	13 500	5 600	7 500
50	90	20	1.1	57 000	97 000	5 850	9 900	5 600	8 000
	110	27	2	102 000	159 000	10 400	16 200	5 000	6 700
55	100	21	1.5	71 000	122 000	7 200	12 500	5 300	7 100
	120	29	2	118 000	187 000	12 000	19 100	4 500	6 300
60	110	22	1.5	85 500	150 000	8 750	15 300	4 800	6 300
	130	31	2.1	135 000	217 000	13 800	22 200	4 300	5 600
65	120	23	1.5	97 500	179 000	9 950	18 300	4 300	6 000
	140	33	2.1	153 000	250 000	15 600	25 500	3 800	5 300
70	125	24	1.5	106 000	197 000	10 800	20 100	4 000	5 600
	150	35	2.1	172 000	285 000	17 500	29 100	3 600	5 000
75	130	25	1.5	110 000	212 000	11 200	21 700	3 800	5 300
	160	37	2.1	187 000	320 000	19 100	33 000	3 400	4 800
80	125	22	1.1	77 000	167 000	7 850	17 000	3 800	5 300
	140	26	2	124 000	236 000	12 600	24 100	3 600	5 000
	170	39	2.1	202 000	360 000	20 600	37 000	3 200	4 300
85	130	22	1.1	79 000	176 000	8 050	18 000	3 800	5 000
	150	28	2	143 000	276 000	14 600	28 200	3 400	4 800
	180	41	3	218 000	405 000	22 300	41 000	3 000	4 000
90	140	24	1.5	94 000	208 000	9 600	21 200	3 400	4 800
	160	30	2	164 000	320 000	16 700	32 500	3 200	4 300
	190	43	3	235 000	450 000	23 900	45 500	2 800	3 800
95	145	24	1.5	96 500	220 000	9 800	22 500	3 400	4 500
	170	32	2.1	177 000	340 000	18 000	35 000	3 000	4 000
	200	45	3	251 000	495 000	25 600	50 500	2 600	3 600

Observaciones

Si utiliza rodamientos de bolas de cuatro puntos de contacto, consulte con NSK.

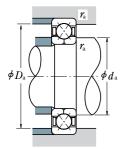

Carga Dinámica Equivalente $P_{\rm a} = F_{\rm a}$

Carga Estática Equivalente $P_{0a} = F_a$

Números de	Dist. entre Centros de Carga	Dimensi	ones de Tope (mm)	y Chaflán	Masa (kg)
Rodamiento	a_0	$d_{ m a}$ mín.	$D_{ m a}$ máx.	∤ a máx.	aprox.
QJ 206	32.2	36	56	1	0.24
QJ 306	35.7	37	65	1	0.42
QJ 207	37.5	42	65	1	0.35
QJ 307	40.3	44	71	1.5	0.57
QJ 208	42.0	47	73	1	0.45
QJ 308	45.5	49	81	1.5	0.78
QJ 209	45.5	52	78	1	0.52
QJ 309	50.8	54	91	1.5	1.05
QJ 210	49.0	57	83	1	0.59
QJ 310	56.0	60	100	2	1.35
QJ 211	54.3	64	91	1.5	0.77
QJ 311	61.3	65	110	2	1.75
QJ 212	59.5	69	101	1.5	0.98
QJ 312	66.5	72	118	2	2.15
QJ 213	64.8	74	111	1.5	1.2
QJ 313	71.8	77	128	2	2.7
QJ 214	68.3	79	116	1.5	1.3
QJ 314	77.0	82	138	2	3.18
QJ 215	71.8	84	121	1.5	1.5
QJ 315	82.3	87	148	2	3.9
QJ 1016	71.8	87	118	1	1.05
QJ 216	77.0	90	130	2	1.85
QJ 316	87.5	92	158	2	4.6
QJ 1017	75.3	92	123	1	1.1
QJ 217	82.3	95	140	2	2.2
QJ 317	92.8	99	166	2.5	5.34
QJ 1018	80.5	99	131	1.5	1.45
QJ 218	87.5	100	150	2	2.75
QJ 318	98.0	104	176	2.5	6.4
QJ 1019	84.0	104	136	1.5	1.5
QJ 219	92.8	107	158	2	3.35
QJ 319	103.3	109	186	2.5	7.4

RODAMIENTOS DE BOLAS DE CUATRO PUNTOS DE CONTACTO

Diámetro Interior 100 \sim 200 mm



	Dimens (m)			(Índices Básico N)	os de Carga	{kgf}	Velocidade (rpr	
d	D	В	∤ mín.	C_{a}	$C_{0\mathrm{a}}$	C_{a}	C_{0a}	Grasa	Aceite
100	150	24	1.5	98 500	232 000	10 000	23 700	3 200	4 300
	180	34	2.1	199 000	390 000	20 300	39 500	2 800	3 800
	215	47	3	300 000	640 000	31 000	65 500	2 400	3 400
105	160	26	2	115 000	269 000	11 800	27 400	3 000	4 000
	190	36	2.1	217 000	435 000	22 100	44 500	2 600	3 600
	225	49	3	305 000	640 000	31 000	65 500	2 400	3 200
110	170	28	2	139 000	315 000	14 200	32 000	2 800	3 800
	200	38	2.1	235 000	490 000	24 000	50 000	2 600	3 400
	240	50	3	320 000	710 000	32 500	72 500	2 200	3 000
120	180	28	2	147 000	350 000	15 000	36 000	2 600	3 600
	215	40	2.1	265 000	585 000	27 000	60 000	2 400	3 200
	260	55	3	360 000	835 000	36 500	85 500	2 000	2 800
130	200	33	2	169 000	415 000	17 300	42 000	2 400	3 200
	230	40	3	274 000	635 000	28 000	65 000	2 200	3 000
	280	58	4	400 000	970 000	40 500	99 000	1 900	2 600
140	210	33	2	172 000	435 000	17 600	44 500	2 200	3 000
	250	42	3	315 000	775 000	32 000	79 000	2 000	2 800
	300	62	4	440 000	1 110 000	44 500	114 000	1 700	2 400
150	225	35	2.1	197 000	505 000	20 100	51 500	2 000	2 800
	270	45	3	360 000	925 000	36 500	94 500	1 800	2 600
	320	65	4	460 000	1 230 000	47 000	125 000	1 600	2 200
160	240	38	2.1	224 000	580 000	22 800	59 000	1 900	2 600
	290	48	3	380 000	1 010 000	39 000	103 000	1 700	2 400
	340	68	4	505 000	1 400 000	51 500	143 000	1 500	2 000
170	260	42	2.1	268 000	705 000	27 300	72 000	1 800	2 400
	310	52	4	425 000	1 180 000	43 500	121 000	1 600	2 200
	360	72	4	565 000	1 610 000	57 500	164 000	1 400	2 000
180	280	46	2.1	299 000	830 000	30 500	84 500	1 700	2 200
	320	52	4	440 000	1 270 000	45 000	130 000	1 500	2 000
	380	75	4	595 000	1 770 000	60 500	180 000	1 300	1 800
190	290	46	2.1	325 000	925 000	33 000	94 000	1 600	2 200
	340	55	4	455 000	1 360 000	46 500	139 000	1 400	2 000
	400	78	5	655 000	1 980 000	67 000	202 000	1 300	1 700
200	310	51	2.1	345 000	1 020 000	35 500	104 000	1 500	2 000
	360	58	4	490 000	1 480 000	49 500	151 000	1 300	1 800
	420	80	5	690 000	2 180 000	70 500	222 000	1 200	1 600

Observaciones

Si utiliza rodamientos de bolas de cuatro puntos de contacto, consulte con NSK.

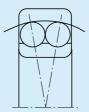
Carga Dinámica Equivalente

 $P_a = F_a$

Carga Estática Equivalente

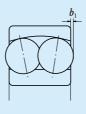
 $P_{0a} = F_a$

Números de	Dist. entre Centros de Carga	Dimensi	ones de Tope (mm)	y Chaflán	Masa (kg)
Rodamiento	(mm) a ₀	$d_{ m a}$ min.	$D_{ m a}$ máx.	$m{\gamma}_a$ máx.	aprox.
QJ 1020 QJ 220	87.5 98.0	109 112	141 168	1.5 2	1.6 4.0
QJ 320	110.3	114	201	2.5	9.3
QJ 1021 QJ 221	92.8 103.3	115 117	150 178	2 2	2.0 4.7
QJ 321	115.5	119	211	2.5	10.5
QJ 1022 QJ 222	98.0 108.5	120 122	160 188	2	2.5 5.6
QJ 322	122.5	124	226	2.5	12.5
QJ 1024 QJ 224	105.0 117.3	130 132	170 203	2 2	2.65 6.9
QJ 324	133.0	134	246	2.5	15.4
QJ 1026 QJ 226	115.5 126.0	140 144	190 216	2 2.5	4.0 7.7
QJ 326	143.5	148	262	3	19
QJ 1028 QJ 228	122.5 136.5	150 154	200 236	2 2.5	4.3 9.8
QJ 328 QJ 1030	154.0 131.3	158 162	282 213	3 2	24 5.2
QJ 230	147.0	164	256	2.5	12
QJ 330 QJ 1032	164.5 140.0	168 172	302 228	3	29 6.4
QJ 232	157.5	174	276	2 2.5	15
QJ 332 QJ 1034	175.1 150.5	178 182	322 248	3	31 8.6
QJ 234	168.0	188	292	2 3 3	19.5
QJ 334 QJ 1036	185.6 161.0	188 192	342 268		41 11
QJ 236 QJ 336	175.1 196.1	198 198	302 362	2 3 3	20.5 48
QJ 1038	168.0	202	278		11.5
QJ 238 QJ 338	185.6 206.6	208 212	322 378	2 3 4	23 54.5
QJ 1040	178.6	212	298	2 3	15
QJ 240 QJ 340	196.1 217.1	218 222	342 398	3 4	27 61.5
	= : 7 . 1		230		27.0



RODAMIENTOS DE BOLAS AUTOALINEANTES

RODAMIENTOS DE BOLAS AUTOALINEANTES Diámetro Interior 5-110 mm...... Páginas B74~B79


DISEÑO, TIPOS Y CARACTERÍSTICAS

El anillo exterior tiene una pista de rodadura esférica y su centro de curvatura coincide con el del rodamiento; por lo tanto, el eje del anillo interior, las bolas y la jaula pueden oscilar alrededor del centro del rodamiento. Este tipo es el aconsejado cuando la alineación del eje y del alojamiento resulta difícil y cuando el eje puede flectar. Puesto que el ángulo de contacto es menor, la capacidad de carga axial es baja. En general suelen utilizar jaulas de de acero estampado.

PROTUBERANCIA DE LAS BOLAS

Entre los rodamientos de bolas autoalineantes, en algunos las bolas sobresalen por sus caras laterales tal como se indica en la figura siguiente. El valor de esta protuberancia b_1 se indica en la tabla siguiente.

Nº del Rodamiento	b_1 (mm)
2222(K), 2316(K)	0.5
2319(K), 2320(K) 2321 , 2322(K)	0.5
1318(K)	1.5
1319(K)	2
1320(K), 1321 1322(K)	3

TOLERANCIAS Y PRECISIÓN **DE FUNCIONAMIENTO**

Tabla 8.2 (Páginas A60~A63)

AJUSTES RECOMENDADOS

Tabla 9.2 (Página A84) Tabla 9.4 (Página A85)

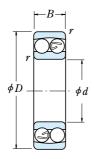
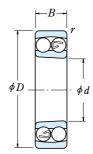
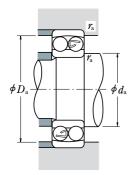

JUEGO INTERNO

Tabla 9.12 (Página A90)


DESALINEACIÓN ADMISIBLE

La desalineación admisible en los rodamientos de bolas autoalineantes es aproximadamente de 0.07 a 0.12 radianes (4° a 7°) bajo cargas normales. Sin embargo, dependiendo de la estructura a su alrededor, es posible que ángulos de estos valores no sean admisibles. Debe tenerse cuidado en el diseño estructural.

Diámetro Interior 5 \sim 30 mm


Diámetro Interior Cónico

	Dimens (mn			(N	Índices Básico	s de Carga	{kgf}		ıd Límite	Números
d	D	В	∤ min	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	C_{0r}	Grasa	Aceite	Diámetro Interior Cilíndrico
5	19	6	0.3	2 530	475	258	49	30 000	36 000	135
6	19	6	0.3	2 530	475	258	49	30 000	36 000	126
7	22	7	0.3	2 750	600	280	61	26 000	32 000	127
8	22	7	0.3	2 750	600	280	61	26 000	32 000	108
9	26	8	0.6	4 150	895	425	91	26 000	30 000	129
10	30	9	0.6	5 550	1 190	570	121	22 000	28 000	1200
	30	14	0.6	7 450	1 590	760	162	24 000	28 000	2200
	35	11	0.6	7 350	1 620	750	165	20 000	24 000	1300
	35	17	0.6	9 200	2 010	935	205	18 000	22 000	2300
12	32 32 37 37	10 14 12 17	0.6 0.6 1	5 700 7 750 9 650 12 100	1 270 1 730 2 160 2 730	580 790 985 1 240	130 177 221 278	22 000 22 000 18 000 17 000	26 000 26 000 22 000 22 000	1201 2201 1301 2301
15	35 35 42 42	11 14 13 17	0.6 0.6 1	7 600 7 800 9 700 12 300	1 750 1 850 2 290 2 910	775 795 990 1 250	179 188 234 296	18 000 18 000 16 000 14 000	22 000 22 000 20 000 18 000	1202 2202 1302 2302
17	40 40 47 47	12 16 14 19	0.6 0.6 1	8 000 9 950 12 700 14 700	2 010 2 420 3 200 3 550	815 1 010 1 300 1 500	205 247 325 365	16 000 16 000 14 000 13 000	20 000 20 000 17 000 16 000	1203 2203 1303 2303
20	47	14	1	10 000	2 610	1 020	266	14 000	17 000	1204
	47	18	1	12 800	3 300	1 310	340	14 000	17 000	2204
	52	15	1.1	12 600	3 350	1 280	340	12 000	15 000	1304
	52	21	1.1	18 500	4 700	1 880	480	11 000	14 000	2304
25	52	15	1	12 200	3 300	1 250	335	12 000	14 000	1205
	52	18	1	12 400	3 450	1 270	350	12 000	14 000	2205
	62	17	1.1	18 200	5 000	1 850	510	10 000	13 000	1305
	62	24	1.1	24 900	6 600	2 530	675	9 500	12 000	2305
30	62	16	1	15 800	4 650	1 610	475	10 000	12 000	1206
	62	20	1	15 300	4 550	1 560	460	10 000	12 000	2206
	72	19	1.1	21 400	6 300	2 190	645	8 500	11 000	1306
	72	27	1.1	32 000	8 750	3 250	895	8 000	10 000	2306

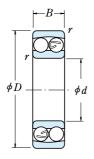
 $\textbf{Nota} \qquad \textbf{(1)} \quad \text{El sufijo K representa rodamientos con diámetro interior cónico } \textbf{(1:12)}$

Observaciones Para las dimensiones relacionadas con los adaptadores, consulte la Página B354.

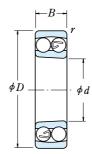
Carga Dinámica Equivalente

 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/F_{\rm r}{>}e$		
X	Y	X	Y	
1	Y_3	0.65	Y_2	

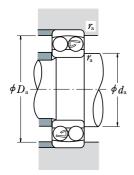

Carga Estática Equivalente

 $P_0 = F_r + Y_0 F_a$


Los valors de \emph{e}, \emph{Y}_2 , \emph{Y}_3 , e \emph{Y}_0 se listan en la tabla siguiente.

de rodamientos Diámetro	Dimension	es de Tope y (mm)	Chaflán	Constante	Facto	ores de Car	ga Axial	Masa (kg)
Interior Cónico	$d_{ m a}$ min	$D_{ m a}$ max	${m \gamma}_{ m a}$ max	e	Y_2	Y_3	Y_0	aprox.
=	7	17	0.3	0.34	2.9	1.9	1.9	0.009
	8	17	0.3	0.34	2.9	1.9	1.9	0.008
	9	20	0.3	0.31	3.1	2.0	2.1	0.013
=	10	20	0.3	0.31	3.1	2.0	2.1	0.016
	13	22	0.6	0.32	3.1	2.0	2.1	0.021
_ _ _	14 14 14 14	26 26 31 31	0.6 0.6 0.6 0.6	0.32 0.64 0.35 0.71	3.1 1.5 2.8 1.4	2.0 0.98 1.8 0.89	2.1 1.0 1.9 0.93	0.033 0.042 0.057 0.077
	16	28	0.6	0.36	2.7	1.8	1.8	0.039
	16	28	0.6	0.58	1.7	1.1	1.1	0.048
	17	32	1	0.33	2.9	1.9	2.0	0.066
	17	32	1	0.60	1.6	1.1	1.1	0.082
	19	31	0.6	0.32	3.1	2.0	2.1	0.051
	19	31	0.6	0.50	1.9	1.3	1.3	0.055
	20	37	1	0.33	2.9	1.9	2.0	0.093
	20	37	1	0.51	1.9	1.2	1.3	0.108
_ _ _	21 21 22 22	36 36 42 42	0.6 0.6 1 1	0.31 0.50 0.32 0.51	3.1 1.9 3.1 1.9	2.0 1.3 2.0 1.2	2.1 1.3 2.1 1.3	0.072 0.085 0.13 0.15
1204 K	25	42	1	0.29	3.4	2.2	2.3	0.12
2204 K	25	42	1	0.47	2.1	1.3	1.4	0.133
1304 K	26.5	45.5	1	0.29	3.4	2.2	2.3	0.165
2304 K	26.5	45.5	1	0.50	1.9	1.2	1.3	0.193
1205 K	30	47	1	0.28	3.5	2.3	2.4	0.14
2205 K	30	47	1	0.41	2.4	1.5	1.6	0.15
1305 K	31.5	55.5	1	0.28	3.5	2.3	2.4	0.255
2305 K	31.5	55.5	1	0.47	2.1	1.4	1.4	0.319
1206 K	35	57	1	0.25	3.9	2.5	2.6	0.22
2206 K	35	57	1	0.38	2.5	1.6	1.7	0.249
1306 K	36.5	65.5	1	0.26	3.7	2.4	2.5	0.385
2306 K	36.5	65.5	1	0.44	2.2	1.4	1.5	0.48

Diàmetro Interior 35~70 mm


Diámetro Interior Cónico

	Dimensiones (mm)			(N		sicos de Carga	{kgf}	Velocida (rp		Números
d	D	В	r min	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	Grasa	Aceite	Diámetro Interior Cilíndrico
35	72	17	1.1	15 900	5 100	1 620	520	8 500	10 000	1207
	72	23	1.1	21 700	6 600	2 210	675	8 500	10 000	2207
	80	21	1.5	25 300	7 850	2 580	800	7 500	9 500	1307
	80	31	1.5	40 000	11 300	4 100	1 150	7 100	9 000	2307
40	80	18	1.1	19 300	6 500	1 970	665	7 500	9 000	1208
	80	23	1.1	22 400	7 350	2 290	750	7 500	9 000	2208
	90	23	1.5	29 800	9 700	3 050	990	6 700	8 500	1308
	90	33	1.5	45 500	13 500	4 650	1 380	6 300	8 000	2308
45	85	19	1.1	22 000	7 350	2 240	750	7 100	8 500	1209
	85	23	1.1	23 300	8 150	2 380	830	7 100	8 500	2209
	100	25	1.5	38 500	12 700	3 900	1 300	6 000	7 500	1309
	100	36	1.5	55 000	16 700	5 600	1 700	5 600	7 100	2309
50	90	20	1.1	22 800	8 100	2 330	830	6 300	8 000	1210
	90	23	1.1	23 300	8 450	2 380	865	6 300	8 000	2210
	110	27	2	43 500	14 100	4 450	1 440	5 600	6 700	1310
	110	40	2	65 000	20 200	6 650	2 060	5 000	6 300	2310
55	100	21	1.5	26 900	10 000	2 750	1 020	6 000	7 100	1211
	100	25	1.5	26 700	9 900	2 720	1 010	6 000	7 100	2211
	120	29	2	51 500	17 900	5 250	1 820	5 000	6 300	1311
	120	43	2	76 500	24 000	7 800	2 450	4 800	6 000	2311
60	110	22	1.5	30 500	11 500	3 100	1 180	5 300	6 300	1212
	110	28	1.5	34 000	12 600	3 500	1 290	5 300	6 300	2212
	130	31	2.1	57 500	20 800	5 900	2 130	4 500	5 600	1312
	130	46	2.1	88 500	28 300	9 000	2 880	4 300	5 300	2312
65	120	23	1.5	31 000	12 500	3 150	1 280	4 800	6 000	1213
	120	31	1.5	43 500	16 400	4 450	1 670	4 800	6 000	2213
	140	33	2.1	62 500	22 900	6 350	2 330	4 300	5 300	1313
	140	48	2.1	97 000	32 500	9 900	3 300	3 800	4 800	2313
70	125	24	1.5	35 000	13 800	3 550	1 410	4 800	5 600	1214
	125	31	1.5	44 000	17 100	4 500	1 740	4 500	5 600	2214
	150	35	2.1	75 000	27 700	7 650	2 830	4 000	5 000	1314
	150	51	2.1	111 000	37 500	11 300	3 850	3 600	4 500	2314

Nota (1) El sufijo representa rodamientos con diámetro interior cónico (1 : 12)

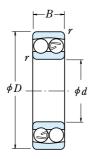
Observaciones Para las dimensiones relacionadas con los adaptadores, consulte las Páginas B354 y B355.

Carga Dinámica Equivalente

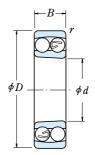
 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\mathrm{a}}/F_{\mathrm{r}}{>}e$		
X	Y	X	Y	
1	Y_3	0.65	Y_2	

Carga Estática Equivalente

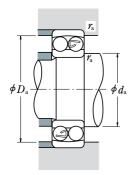

 $P_0 = F_r + Y_0 F_a$

Los valores de $e,\,Y_2$, $Y_3\,$, e Y_0 se indican en la tabla siguiente.


de Rodamientos	Dimension	es de Tope y	Chaflán	Constante	onstante Factores de Carga Axial				
Diámetro	Dillicitator	(mm)	Ullallall	Constante	Facil	res de Ga	rya Axiai	Masa (kg)	
Interior Cónico (¹)	$d_{ m a}$ min	$D_{ m a}$ max	$m{\gamma}_{\mathrm{a}}$ max	e	Y_2	Y_3	Y_0	aprox.	
1207 K	41.5	65.5	1	0.23	4.2	2.7	2.8	0.32	
2207 K	41.5	65.5	1	0.37	2.6	1.7	1.8	0.378	
1307 K	43	72	1.5	0.26	3.8	2.5	2.6	0.51	
2307 K	43	72	1.5	0.46	2.1	1.4	1.4	0.642	
1208 K	46.5	73.5	1	0.22	4.3	2.8	2.9	0.415	
2208 K	46.5	73.5	1	0.33	3.0	1.9	2.0	0.477	
1308 K	48	82	1.5	0.24	4.0	2.6	2.7	0.715	
2308 K	48	82	1.5	0.43	2.3	1.5	1.5	0.889	
1209 K	51.5	78.5	1	0.21	4.7	3.0	3.1	0.465	
2209 K	51.5	78.5	1	0.30	3.2	2.1	2.2	0.522	
1309 K	53	92	1.5	0.25	4.0	2.6	2.7	0.955	
2309 K	53	92	1.5	0.41	2.4	1.5	1.6	1.2	
1210 K	56.5	83.5	1	0.21	4.7	3.1	3.2	0.525	
2210 K	56.5	83.5	1	0.28	3.4	2.2	2.3	0.564	
1310 K	59	101	2	0.23	4.2	2.7	2.8	1.25	
2310 K	59	101	2	0.42	2.3	1.5	1.6	1.58	
1211 K	63	92	1.5	0.20	4.9	3.2	3.3	0.705	
2211 K	63	92	1.5	0.28	3.5	2.3	2.4	0.746	
1311 K	64	111	2	0.23	4.2	2.7	2.8	1.6	
2311 K	64	111	2	0.41	2.4	1.5	1.6	2.03	
1212 K	68	102	1.5	0.18	5.3	3.4	3.6	0.90	
2212 K	68	102	1.5	0.28	3.5	2.3	2.4	1.03	
1312 K	71	119	2	0.23	4.3	2.8	2.9	2.03	
2312 K	71	119	2	0.40	2.4	1.6	1.6	2.57	
1213 K	73	112	1.5	0.17	5.7	3.7	3.8	1.15	
2213 K	73	112	1.5	0.28	3.5	2.3	2.4	1.4	
1313 K	76	129	2	0.23	4.2	2.7	2.9	2.54	
2313 K	76	129	2	0.39	2.5	1.6	1.7	3.2	
_ _ _	78 78 81 81	117 117 139 139	1.5 1.5 2 2	0.18 0.26 0.22 0.38	5.3 3.7 4.4 2.6	3.4 2.4 2.8 1.7	3.6 2.5 3.0 1.8	1.3 1.52 3.19 3.9	

RODAMIENTOS DE BOLAS AUTOALINEANTES

Diàmetro Interior 75~110 mm


Diámetro Interior Cónico

	Dimens (mr			(N		sicos de Carga	{kgf}	Velocidad (rpr		Números
d	D	В	∤ min	C_{r}	$C_{0\mathrm{r}}$	C_{r}	$C_{0\mathrm{r}}$	Grasa	Aceite	Diámetro Interior Cilíndrico
75	130	25	1.5	39 000	15 700	4 000	1 600	4 300	5 300	1215
	130	31	1.5	44 500	17 800	4 550	1 820	4 300	5 300	2215
	160	37	2.1	80 000	30 000	8 150	3 050	3 800	4 500	1315
	160	55	2.1	125 000	43 000	12 700	4 400	3 400	4 300	2315
80	140	26	2	40 000	17 000	4 100	1 730	4 000	5 000	1216
	140	33	2	49 000	19 900	5 000	2 030	4 000	5 000	2216
	170	39	2.1	89 000	33 000	9 100	3 400	3 600	4 300	1316
	170	58	2.1	130 000	45 000	13 200	4 600	3 200	4 000	* 2316
85	150	28	2	49 500	20 800	5 050	2 120	3 800	4 500	1217
	150	36	2	58 500	23 600	5 950	2 400	3 800	4 800	2217
	180	41	3	98 500	38 000	10 000	3 850	3 400	4 000	1317
	180	60	3	142 000	51 500	14 500	5 250	3 000	3 800	2317
90	160	30	2	57 500	23 500	5 850	2 400	3 600	4 300	1218
	160	40	2	70 500	28 700	7 200	2 930	3 600	4 300	2218
	190	43	3	117 000	44 500	12 000	4 550	3 200	3 800	* 1318
	190	64	3	154 000	57 500	15 700	5 850	2 800	3 600	2318
95	170	32	2.1	64 000	27 100	6 550	2 770	3 400	4 000	1219
	170	43	2.1	84 000	34 500	8 550	3 500	3 400	4 000	2219
	200	45	3	129 000	51 000	13 200	5 200	3 000	3 600	* 1319
	200	67	3	161 000	64 500	16 400	6 550	2 800	3 400	* 2319
100	180	34	2.1	69 500	29 700	7 100	3 050	3 200	3 800	1220
	180	46	2.1	94 500	38 500	9 650	3 900	3 200	3 800	2220
	215	47	3	140 000	57 500	14 300	5 850	2 800	3 400	* 1320
	215	73	3	187 000	79 000	19 100	8 050	2 400	3 200	* 2320
105	190	36	2.1	75 000	32 500	7 650	3 300	3 000	3 600	1221
	190	50	2.1	109 000	45 000	11 100	4 550	3 000	3 600	2221
	225	49	3	154 000	64 500	15 700	6 600	2 600	3 200	* 1321
	225	77	3	200 000	87 000	20 400	8 850	2 400	3 000	* 2321
110	200	38	2.1	87 000	38 500	8 900	3 950	2 800	3 400	1222
	200	53	2.1	122 000	51 500	12 500	5 250	2 800	3 400	* 2222
	240	50	3	161 000	72 000	16 400	7 300	2 400	3 000	* 1322
	240	80	3	211 000	94 500	21 600	9 650	2 200	2 800	* 2322

Notas (1) El sufijo representa rodamientos con diámetro interior cónico (1 : 12)

^(*) Las bolas de los rodamientos marcados con un * sobresalen ligeramente de la cara lateral del rodamiento. Los valores se indican en la Página B73.

Carga Dinámica Equivalente

 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/F_{\rm r}{>}e$		
X	Y	X	Y	
1	Y_3	0.65	Y_2	

Carga Estática Equivalente

 $P_0 = F_r + Y_0 F_a$

Los valores de $e,\,Y_2$, $Y_3\,$, e Y_0 se indican en la tabla siguiente.

de Rodamiento	Dimensio	nes de Tope y (mm)	Chaflán	Constante	Facto	res de Cai	ga Axial	Masa (kg)
Diámetro Interior Cónico (¹)	$d_{ m a}$ min	$D_{ m a}$ max	${m \gamma}_{ m a}$ max	e	Y_2	Y_3	Y_0	aprox.
1215 K	83	122	1.5	0.17	5.6	3.6	3.8	1.41
2215 K	83	122	1.5	0.25	3.9	2.5	2.6	1.6
1315 K	86	149	2	0.22	4.4	2.8	2.9	3.65
2315 K	86	149	2	0.38	2.5	1.6	1.7	4.77
1216 K	89	131	2	0.16	6.0	3.9	4.1	1.73
2216 K	89	131	2	0.25	3.9	2.5	2.7	1.97
1316 K	91	159	2	0.22	4.5	2.9	3.1	4.31
* 2316 K	91	159	2	0.39	2.5	1.6	1.7	5.54
1217 K	94	141	2	0.17	5.7	3.7	3.8	2.09
2217 K	94	141	2	0.25	3.9	2.5	2.6	2.48
1317 K	98	167	2.5	0.21	4.6	2.9	3.1	5.13
2317 K	98	167	2.5	0.37	2.6	1.7	1.8	6.56
1218 K	99	151	2	0.17	5.8	3.8	3.9	2.55
2218 K	99	151	2	0.27	3.7	2.4	2.5	3.13
* 1318 K	103	177	2.5	0.22	4.3	2.8	2.9	5.94
2318 K	103	177	2.5	0.38	2.6	1.7	1.7	7.76
1219 K	106	159	2	0.17	5.8	3.7	3.9	3.21
2219 K	106	159	2	0.27	3.7	2.4	2.5	3.87
* 1319 K	108	187	2.5	0.23	4.3	2.8	2.9	6.84
* 2319 K	108	187	2.5	0.38	2.6	1.7	1.8	9.01
1220 K	111	169	2	0.17	5.6	3.6	3.8	3.82
2220 K	111	169	2	0.27	3.7	2.4	2.5	4.53
* 1320 K	113	202	2.5	0.24	4.1	2.7	2.8	8.46
* 2320 K	113	202	2.5	0.38	2.6	1.7	1.8	11.6
= =	116	179	2	0.18	5.5	3.6	3.7	4.52
	116	179	2	0.28	3.5	2.3	2.4	5.64
	118	212	2.5	0.23	4.2	2.7	2.9	10
	118	212	2.5	0.38	2.6	1.7	1.7	14.4
1222 K	121	189	2	0.17	5.7	3.7	3.9	5.33
* 2222 K	121	189	2	0.28	3.5	2.2	2.3	6.64
* 1322 K	123	227	2.5	0.22	4.4	2.8	3.0	12
* 2322 K	123	227	2.5	0.37	2.6	1.7	1.8	17.4

RODAMIENTOS DE RODILLOS CILÍNDRICOS

RODAMIENTOS DE RODILLOS CILÍNDRICOS De una sola hilera

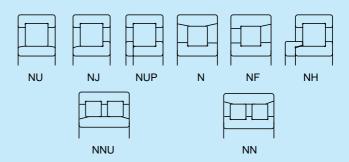
 Diámetro Interior
 20~ 65mm
 Páginas B
 84-B
 89

 Diámetro Interior
 70~160mm
 Páginas B
 90~B
 97

 Diámetro Interior
 170~500mm
 Páginas B
 98~B101

ANILLOS DE EMPUJE EN "L" PARA RODAMIENTOS

DE RODILLOS CILÍNDRICOS Diámetro Interior 20~320mmPáginas B102~B105


RODAMIENTOS DE RODILLOS CILÍNDRICOS DE DOBLE HILERA

Diámetro Interior 25~360mmPáginas B106~B109

Los Rodamientos de Rodillos Cilíndricos de Cuatro Hileras se describen en las Páginas B330 a B339.

DISEÑO, TIPOS Y CARACTERÍSTICAS

Según si presentan o no rebordes en sus anillos, los Rodamientos de Rodillos Cilíndricos se clasifican en los siguientes tipos.

Los Tipos NU, N, NNU y NN son adecuados como rodamientos de extremo libre. Los Tipos NJ y NF pueden soportar cargas axiales limitadas en una dirección. Los Tipos NH y NUP pueden utilizarse como rodamientos de extremo fijo.

Los rodamientos de rodillos cilíndricos de tipo NH están formados por rodamientos de rodillos cilíndricos de tipo NJ y por anillos de empuje en "L" de tipo HJ (Consulte las Páginas B102 a B105).

El reborde suelto del anillo interior de un ródamiento de rodillos cilíndricos de tipo NUP debería montarse de manera que la cara marcada quede en el exterior.

Se utilizan jaulas prensadas, mecanizadas o moldeadas para los rodamientos de rodillos cilíndricos estándar tal y como se muestra en la Tabla 1.

Tabla 1 Jaulas Estándar para Rodamientos de Rodillos Cilíndricos

Series	Jaulas de Acero Prensado (W)	Jaulas de Latón Mecanizado (M)	Jaulas de Poliamida Moldeada (T)
NU10**	_	1005~10/500	_
N2**	204~230	232~264	_
NU2**	214-230	232~264	_
NU2**E	205E~213E	214E~240E	204E
NU22**	2204~2230	2232~2252	_
NU22**E	_	2222E~2240E	2204E~2220E
N3 **	304~330	332~352	_
NU3**	312~330	332~352	_
NU3**E	305E~311E	312E~340E	304E
NU23**	2304~2320	2322~2340	_
NU23**E	_	2322E~2340E	2304E~2320E
NU4**	405~416	417~430	_

Los índices básicos de carga mostrados en las tablas de rodamientos se basan en la Clasificación de las Jaulas mostrada en la Tabla 1.

Para un determinado número de rodamiento, si el tipo de jaula no es el estándar, el número de rodillos puede variar; en dicho caso, el índice de carga será diferente al mostrado en las tablas de rodamientos.

Muchos de los rodamientos de doble hilera del Tipo NN son de alta precisión y tienen diámetros interiores cónicos, y se utilizan normalmente en los husillos principales de las máquinas herramienta. Sus jaulas son de sulfuro de polifenileno moldeado (PPS) o de latón mecanizado.

PRECAUCIONES PARA LA UTILIZACIÓN DE RODAMIENTOS DE RODILLOS CILÍNDRICOS

Si la carga sobre los rodamientos de rodillos cilíndricos llega a ser demasiado pequeña durante el funcionamiento, se produce un deslizamiento entre los rodillos y los caminos de rodadura, lo cual puede provocar la aparición de arañazos. Especialmente con rodamientos de gran tamaño, ya que el peso del rodillo y la jaula es elevado.

En caso de cargas de impacto elevadas o de vibraciones, a veces las jaulas de acero prensado son inadecuadas.

Si se esperan cargas muy pequeñas, cargas de impacto elevadas o vibraciones, consulte con NSK la selección de los rodamientos.

Los rodamientos con jaulas de poliamida moldeada (del tipo ET) pueden utilizarse de manera continua a temperaturas entre —40 y 120°C. Si los rodamientos deben utilizarse en aceite para engranajes, aceite hidráulico no inflamable o aceite ester a temperaturas superiores a los 100°C, consulte antes con NSK.

TOLERANCIAS Y PRECISIÓN DE FUNCIONAMIENTO

RODAMIENTOS DE RODILLOS CILINDRICOS	Tabla 8.2 (Paginas A60~A63)
RODAMIENTOS DE RODILLOS CILÍNDRICOS	
DE DORI E HILERA	Tabla 8.2 (Páginas A60~A63)

Tabla 2 Tolerancias para el Diámetro del Círculo Inscrito del Rodillo $F_{\rm w}$ y para el Diámetro del Círculo Circunscrito del Rodillo $E_{\rm w}$ de Rodamientos de Rodillos Cilíndricos con Anillos Intercambiables

Unidades : µm

Diámetro Nominal		Tolerancias pa NU, NJ, NUP, N	ara $F_{ m w}$ de tipos NH y NNU ${ extstyle \Delta F_{ m w}}$	Tolerancias para $E_{ m w}$ de tipos N, NF y NN Δ $E_{ m w}$		
más de	hasta	alta	baja	alta	baja	
_	20	+10	0	0	-10	
20	50	+15	0	0	— 15	
50	120	+20	0	0	- 20	
120	200	+25	0	0	-2 5	
200	250	+30	0	0	-30	
250	315	+35	0	0	- 35	
315	400	+40	0	0	-4 0	
400	500	+45	0	_	_	

AJUSTES RECOMENDADOS

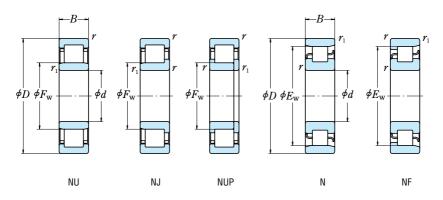
JUEGOS INTERNOS

RODAMIENTOS DE RODILLOS CILÍNDRICOS...... Tabla 9.14 (Página A91)
RODAMIENTOS DE RODILLOS CILÍNDRICOS
DE DOBLE HILERA Tabla 9.14 (Página A91)

DESALINEACIÓN ADMISIBLE

La desalineación admisible de los rodamientos de rodillos cilíndricos varía según el tipo y las especificaciones internas, pero en cargas normales los ángulos son aproximadamente los siguientes:

Rodamientos de Rodillos Cilíndricos de serie de ancho 0 ó 10,0012 radianes (4') Rodamientos de Rodillos Cilíndricos de serie de ancho 2.............0,0006 radianes (2')

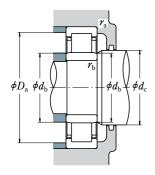

Para los rodamientos de rodillos cilíndricos de doble hilera, prácticamente no se permite desalineación.

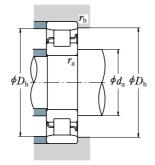
VELOCIDADES LÍMITE

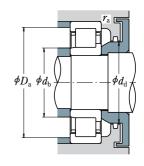
Las velocidades límite mostradas en las tablas de rodamientos deberían ajustarse según las condiciones de carga de los rodamientos. Igualmente, pueden conseguirse velocidades más altas realizando cambios en el método de lubricación, diseño de la jaula, etc. Consulte la Página A37 para información más detallada.

RODAMIENTOS DE RODILLOS CILÍNDRICOS DE UNA SOLA HILERA

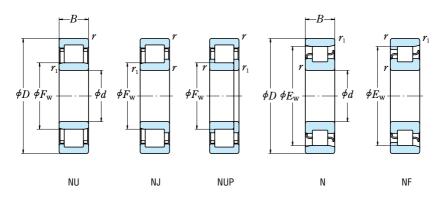
Diámetro Interior 20~35 mm




	Dimensiones Globales							Índices Básicos de Carga		Velocidades Límite(1)	
	(mm)							(N)		(rpm)	
d	D	В	γ mín.	7 1	$F_{ m W}$ mín.	$E_{ m W}$	C_{r}	C_{0r}	Grasa	Aceite	
20	47 47 47	14 14 18	1 1 1	0.6 0.6 0.6	<u> </u>	40 — —	15 400 25 700 20 700	12 700 22 600 18 400	15 000 13 000 13 000	18 000 16 000 16 000	
	47	18	1	0.6	26.5	—	30 500	28 300	13 000	16 000	
	52	15	1.1	0.6	—	44.5	21 400	17 300	12 000	15 000	
	52	15	1.1	0.6	27.5	—	31 500	26 900	12 000	15 000	
	52 52	21 21	1.1 1.1	0.6 0.6	28.5 27.5	_	30 500 42 000	27 200 39 000	11 000 11 000	14 000 14 000	
25	47 52 52	12 15 15	0.6 1 1	0.3 0.6 0.6	30.5 — 31.5	45 —	14 300 17 700 29 300	13 100 15 700 27 700	15 000 13 000 12 000	18 000 16 000 14 000	
	52 62 62	18 17 17	1 1.1 1.1	0.6 1.1 1.1	31.5 — 34	53 —	35 000 29 300 41 500	34 500 25 200 37 500	12 000 10 000 10 000	14 000 13 000 12 000	
	62	24	1.1	1.1	34	—	57 000	56 000	9 000	11 000	
	80	21	1.5	1.5	38.8	62.8	46 500	40 000	9 000	11 000	
30	55	13	1	0.6	36.5	48.5	19 700	19 600	12 000	15 000	
	62	16	1	0.6	—	53.5	24 900	23 300	11 000	13 000	
	62	16	1	0.6	37.5	—	39 000	37 500	9 500	12 000	
	62 72 72	20 19 19	1 1.1 1.1	0.6 1.1 1.1	37.5 — 40.5	62 —	49 000 38 500 53 000	50 000 35 000 50 000	9 500 8 500 8 500	12 000 11 000 10 000	
	72	27	1.1	1.1	40.5	—	74 500	77 500	8 000	9 500	
	90	23	1.5	1.5	45	73	62 500	55 000	7 500	9 500	
35	62	14	1	0.6	42	55	22 600	23 200	11 000	13 000	
	72	17	1.1	0.6	—	61.8	35 500	34 000	9 500	11 000	
	72	17	1.1	0.6	44	—	50 500	50 000	8 500	10 000	
	72 80 80	23 21 21	1.1 1.5 1.5	0.6 1.1 1.1	44 — 46.2	68.2 —	61 500 49 500 66 500	65 000 47 000 65 500	8 500 8 000 7 500	10 000 9 500 9 500	
	80	31	1.5	1.1	46.2	—	93 000	101 000	6 700	8 500	
	100	25	1.5	1.5	53	83	75 500	69 000	6 700	8 000	


Notas (¹) Las velocidades límite mostradas anteriormente se aplican a los rodamientos con jaulas mecanizadas (Sin sufijo). Para rodamientos con jaulas prensadas, reduzca la velocidad límite en un 20%. (No aplicable a referencias de rodamientos con sufijo EM, EW o ET.)

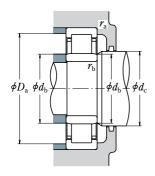
⁽²) Los rodamientos con sufijo ET tienen jaula de poliamida. La temperatura máxima de funcionamiento debería ser inferior a 120°C.

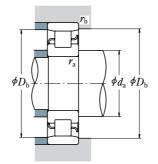

Números de Rodamiento (²)			[Dimensi	ones de (mi	Tope y (haflán				Masa (kg)
NU NJ NUP ¹ N NF	$d_{ m a}\!^{(4)}$ mín.	$d_{ m b}$ min.	$d_{ m b}$ (5) máx.	$d_{ m c}$ mín.	$d_{ m d}$ mín.	$D_{ m a}(^4)$ máx.	$D_{ m b}$ máx.	$D_{ m b}$ mín.	γ a máx.	∤ ъ máx.	aprox.
N 204 — — — N NF NU 204 ET NU NJ NUP — — NU2204 NU NJ — —	25 25 25	 24 24	— 25 25	— 29 29	— 32 32	— 42 42	43 —	42 — —	1 1 1	0.6 0.6 0.6	0.107 0.107 0.144
NU2204 ET NU NJ NUP — — N 304 — — N NF NU 304 ET NU NJ NUP — —	25 26.5 26.5	24 — 24	25 — 26	29 — 30	32 — 33	42 — 45.5	 48 	_ 46 _	1 1 1	0.6 0.6 0.6	0.138 0.148 0.145
NU2304 NU NJ NUP — — NU2304 ET NU NJ NUP — —	26.5 26.5	24 24	27 26	30 30	33 33	45.5 45.5	_	_	1 1	0.6 0.6	0.217 0.209
NU1005 NU — — — — N 205 — — N NF NU 205 EW NU NJ NUP — —	— 30 30	27 — 29	30 — 30	32 — 34	 37	43 — 47	 48 	 46 	0.6 1 1	0.3 0.6 0.6	0.094 0.135 0.136
NU2205 ET NU NJ NUP — — N 305 — — N NF NU 305 EW NU NJ NUP — —	30 31.5 31.5	29 — 31.5	30 — 32	34 — 37	37 — 40	47 — 55.5	— 55.5 —	 50 	1 1 1	0.6 1 1	0.16 0.233 0.269
NU2305 ET NU NJ NUP — — NU 405 NU NJ — N NF	31.5 33	31.5 33	32 37	37 41	40 46	55.5 72	— 72	— 64	1 1.5	1 1.5	0.338 0.57
NU1006 NU — — N — N 206 — — — N NF NU 206 EW NU NJ NUP — —	35 35 35	34 — 34	36 — 36	38 — 40	<u>-</u> 44	50 — 57	51 58 —	49 56 —	1 1 1	0.5 0.6 0.6	0.136 0.208 0.205
NU2206 ET NU NJ NUP — — N 306 — — N NF NU 306 EW NU NJ NUP — —	35 36.5 36.5	34 — 36.5	36 — 39	40 — 44	44 — 48	57 — 65.5	 65.5 	64 —	1 1 1	0.6 1 1	0.255 0.353 0.409
NU2306 ET NU NJ NUP — — NU 406 NU NJ — N NF	36.5 38	36.5 38	39 43	44 47	48 52	65.5 82	— 82	— 75	1 1.5	1 1.5	0.518 0.758
NU1007 NU NJ — N — N 207 — — N NF NU 207 EW NU NJ NUP — —	40 41.5 41.5	39 — 39	41 — 42	44 — 46	— 50	57 — 65.5	58 68 —	56 64 —	1 1 1	0.5 0.6 0.6	0.18 0.301 0.304
NU2207 ET NU NJ NUP — — N 307 — — N NF NU 307 EW NU NJ NUP — —	41.5 43 41.5	39 — 41.5	42 — 44	46 — 48	50 — 53	65.5 — 72	— 73.5 —	70 —	1 1.5 1.5	0.6 1 1	0.40 0.476 0.545
NU2307 ET NU NJ NUP — — NU 407 NU NJ — N NF	43 43	41.5 43	44 51	48 55	53 61	72 92	— 92	— 85	1.5 1.5	1 1.5	0.711 1.01

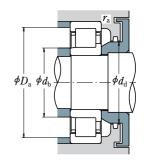
Notas (3) Si se utilizan anillos de empuje en "L" (Consulte la sección de los Anillos de Empuje en "L" que empieza en la página B100), los rodamientos pasan a ser del tipo NH.

⁽⁴⁾ Si se aplican cargas axiales, aumente d_a y reduzca D_a de los valores mostrados anteriormente.

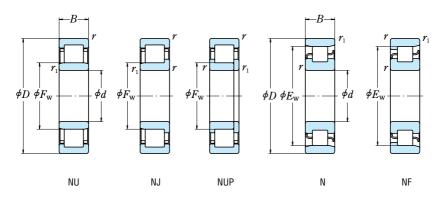
 d_b (máx.) son valores para ajustar los anillos para los Tipos NU, NJ.


Diámetro Interior 40~55 mm




		Dim	ensiones (mm	Globales			Índices Básic (N		Velocidades (rpm	
d	D	В	γ mín.	γ_1	$F_{ m w}$ mín.	$E_{ m W}$	C_{r}	C_{0r}	Grasa	Aceite
40	68 80 80	15 18 18	1 1.1 1.1	0.6 1.1 1.1	47 — 49.5	61 70 —	27 300 43 500 55 500	29 000 43 000 55 500	10 000 8 500 7 500	12 000 10 000 9 000
	80 90 90	23 23 23	1.1 1.5 1.5	1.1 1.5 1.5	49.5 — 52	77.5 —	72 500 58 500 83 000	77 500 57 000 81 500	7 500 6 700 6 700	9 000 8 500 8 000
	90 110	33 27	1.5 2	1.5 2	52 58	<u> </u>	114 000 95 500	122 000 89 000	6 000 6 000	7 500 7 500
45	75 85 85	16 19 19	1 1.1 1.1	0.6 1.1 1.1	52.5 — 54.5	67.5 75 —	32 500 46 000 63 000	35 500 47 000 66 500	9 000 7 500 6 700	11 000 9 000 8 000
	85 100 100	23 25 25	1.1 1.5 1.5	1.1 1.5 1.5	54.5 — 58.5	86.5 —	76 000 74 000 97 500	84 500 71 000 98 500	6 700 6 300 6 000	8 500 7 500 7 500
	100 120	36 29	1.5 2	1.5 2	58.5 64.5	100.5	137 000 107 000	153 000 102 000	5 300 5 600	6 700 6 700
50	80 90 90	16 20 20	1 1.1 1.1	0.6 1.1 1.1	57.5 — 59.5	72.5 80.4 —	32 000 48 000 69 000	36 000 51 000 76 500	8 000 7 100 6 300	10 000 8 500 7 500
	90 110 110	23 27 27	1.1 2 2	1.1 2 2	59.5 — 65	95 —	83 500 87 000 110 000	97 000 86 000 113 000	6 300 5 600 5 000	8 000 6 700 6 000
	110 130	40 31	2 2.1	2 2.1	65 70.8	 110.8	163 000 129 000	187 000 124 000	5 000 5 000	6 300 6 000
55	90 100 100	18 21 21	1.1 1.5 1.5	1 1.1 1.1	64.5 — 66	80.5 88.5 —	37 500 58 000 86 500	44 000 62 500 98 500	7 500 6 300 5 600	9 000 7 500 7 100
	100 120 120	25 29 29	1.5 2 2	1.1 2 2	66 — 70.5	104.5 —	101 000 111 000 137 000	122 000 111 000 143 000	5 600 5 000 4 500	7 100 6 300 5 600
	120 140	43 33	2 2.1	2 2.1	70.5 77.2	 117.2	201 000 139 000	233 000 138 000	4 500 4 500	5 600 5 600

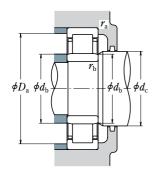
⁽²) Los rodamientos con sufijo ET tienen jaula de poliamida. La temperatura máxima de funcionamiento debería ser inferior a 120°C.

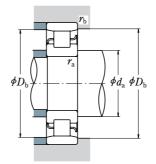

Números de		niento (²	²)				[Dimensi	ones de (m	Tope y (Chaflán				Masa (kg)
NU	L (3)	NUP	N	NF	$d_{ m a}^{(4)}$	$d_{ m b}$ min.	$d_{ m b}(^5)$ máx.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}(^4)$ máx.	$D_{ m b}$ máx.	$D_{ m b}$ mín.	γ a máx.	∤ b máx.	aprox.
NU1008 N N 208 — NU 208 EW N		NUP NUP	N N	NF	45 46.5 46.5	44 — 46.5	46 — 48	49 — 52	— — 56	63 — 73.5	64 73.5 —	62 72 —	1 1 1	0.6 1 1	0.223 0.375 0.379
NU2208 ET N N 308 – NU 308 EW N		NUP NUP	_ N _	NF	46.5 48 48	46.5 — 48	48 — 50	52 — 55	56 — 60	73.5 — 82	82 —	 79 	1 1.5 1.5	1 1.5 1.5	0.480 0.649 0.747
NU2308 ET N NU 408 N		NUP NUP	N	_ NF	48 49	48 49	50 56	55 60	60 67	82 101	 101	— 94	1.5 2	1.5 2	0.933 1.28
NU1009 N N 209 — NU 209 EW N	_	_ NUP	N N	NF NF	50 51.5 51.5	49 — 51.5	51 — 52	54 — 57	— 61	70 — 78.5	71 78.5 —	68 77 —	1 1 1	0.6 1 1	0.279 0.429 0.438
NU2209 ET N N 309 – NU 309 EW N	_	NUP NUP	_ N _	NF	51.5 53 53	51.5 — 53	52 — 56	57 — 60	61 — 66	78.5 — 92	92 —	 77 	1 1.5 1.5	1 1.5 1.5	0.521 0.869 1.01
NU2309 ET N NU 409 N		NUP NUP	_ N	_ NF	53 54	53 54	56 62	60 66	66 74	92 111	111	103	1.5 2	1.5 2	1.28 1.62
NU1010 N N 210 — NU 210 EW N		NUP NUP	N N	NF —	55 56.5 56.5	54 — 56.5	56 — 57	59 — 62	— 67	75 — 83.5	76 83.5 —	73 82 —	1 1 1	0.6 1 1	0.301 0.483 0.50
NU2210 ET N N 310 – NU 310 EW N		NUP NUP	_ N _	NF —	56.5 59 59	56.5 — 59	57 — 63	62 — 67	67 — 73	83.5 — 101	101	97 —	1 2 2	1 2 2	0.562 1.11 1.3
NU2310 ET N NU 410 N		NUP NUP	_ N	_ NF	59 61	59 61	63 68	67 73	73 81	101 119	 119	_ 113.3	2	2 2	1.7 1.99
NU1011 N N 211 — NU 211 EW N		_ NUP	N N	NF —	61.5 63 63	60 — 61.5	63 — 64	66 — 68	— 73	83.5 — 92	85 93.5 —	82 91 —	1 1.5 1.5	1 1 1	0.445 0.634 0.669
NU2211 ET N N 311 – NU 311 EW N		NUP NUP	_ N _	NF —	63 64 64	61.5 — 64	64 — 68	68 — 72	73 — 80	92 — 111	111 —	107 —	1.5 2 2	1 2 2	0.783 1.42 1.64
NU2311 ET N NU 411 N		NUP NUP	N	_ NF	64 66	64 66	68 75	72 79	80 87	111 129	 129	— 119	2 2	2 2	2.18 2.5

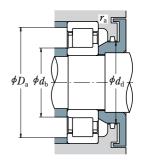
Notas (³) Si se utilizan anillos de empuje en "L" (Consulte la sección de los Anillos de Empuje en "L" que empieza en la página B100), los rodamientos pasan a ser del tipo NH.

⁽ 4) Si se aplican cargas axiales, aumente $d_{
m a}$ y reduzca $D_{
m a}$ de los valores mostrados anteriormente.

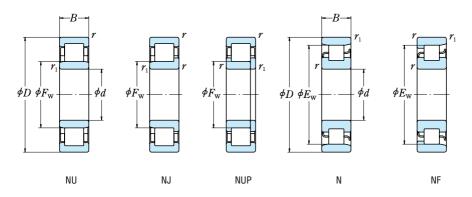
 d_b (máx.) son valores para ajustar los anillos para los Tipos NU, NJ.


Diámetro Interior 60~75 mm




		Dim	ensiones (mm	Globales			Índices Básic (N		Velocidades (rpm	
d	D	В	∤ mín.	7 1	$F_{ m W}$ mín.	$E_{ m W}$	$C_{\rm r}$	C_{0r}	Grasa	Aceite
60	95	18	1.1	1	69.5	85.5	40 000	48 500	6 700	8 500
	110	22	1.5	1.5	—	97.5	68 500	75 000	6 000	7 100
	110	22	1.5	1.5	72	—	97 500	107 000	5 300	6 300
	110 130 130	28 31 31	1.5 2.1 2.1	1.5 2.1 2.1	72 — 77	113 —	131 000 124 000 124 000	157 000 126 000 126 000	5 300 4 800 4 800	6 300 5 600 5 600
	130	31	2.1	2.1	77	_	150 000	157 000	4 800	5 600
	130	46	2.1	2.1	77	_	222 000	262 000	4 300	5 300
	150	35	2.1	2.1	83	127	167 000	168 000	4 300	5 300
65	100	18	1.1	1	74.5	90.5	41 000	51 000	6 300	8 000
	120	23	1.5	1.5	—	105.6	84 000	94 500	5 300	6 300
	120	23	1.5	1.5	78.5	—	108 000	119 000	4 800	5 600
	120 140 140	31 33 33	1.5 2.1 2.1	1.5 2.1 2.1	78.5 — 83.5	121.5 —	149 000 135 000 135 000	181 000 139 000 139 000	4 800 4 300 4 300	6 000 5 300 5 300
	140	33	2.1	2.1	82.5	—	181 000	191 000	4 300	5 300
	140	48	2.1	2.1	82.5	—	233 000	265 000	3 800	4 800
	160	37	2.1	2.1	89.3	135.3	182 000	186 000	4 000	4 800
70	110	20	1.1	1	80	100	58 500	70 500	6 000	7 100
	125	24	1.5	1.5	—	110.5	83 500	95 000	5 000	6 300
	125	24	1.5	1.5	83.5	—	119 000	137 000	5 000	6 300
	125 150 150	31 35 35	1.5 2.1 2.1	1.5 2.1 2.1	83.5 — 90	130 —	156 000 158 000 158 000	194 000 168 000 168 000	4 500 4 000 4 000	5 600 5 000 5 000
	150	35	2.1	2.1	89	—	205 000	222 000	4 000	5 000
	150	51	2.1	2.1	89	—	274 000	325 000	3 600	4 500
	180	42	3	3	100	152	228 000	236 000	3 600	4 300
75	115	20	1.1	1	85	105	60 000	74 500	5 600	6 700
	130	25	1.5	1.5	—	116.5	96 500	111 000	4 800	6 000
	130	25	1.5	1.5	88.5	—	130 000	156 000	4 800	6 000
	130 160 160	31 37 37	1.5 2.1 2.1	1.5 2.1 2.1	88.5 — 95.5	139.5 —	162 000 179 000 179 000	207 000 189 000 189 000	4 300 3 800 3 800	5 300 4 800 4 800
	160 160 190	37 55 45	2.1 2.1 3	2.1 2.1 3	95 95 104.5	— 160.5	240 000 330 000 262 000	263 000 395 000 274 000	3 800 3 400 3 400	4 800 4 300 4 000

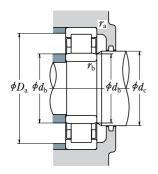
⁽²) Los rodamientos con sufijo ET tienen jaula de poliamida. La temperatura máxima de funcionamiento debería ser inferior a 120°C.

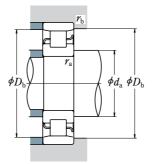

Números de Rodamiento (²)			[Dimensi	ones de (m	Tope y (Chaflán				Masa (kg)
NU NJ NUP N NF	$d_{ m a}$ (4)	$d_{ m b}$ min.	$d_{ m b}(^5) \atop { m máx.}$	$d_{ m c}$ min.	$d_{ m d}$	$D_{ m a}(^4)$ máx.	$D_{ m b}$ máx.	$D_{ m b}$ mín.	γ a máx.	∤ b máx.	aprox.
NU1012 NU NJ — N NF N 212 — — N NF NU 212 EW NU NJ NUP — —	66.5 68 68	65 — 68	68 — 70	71 — 75	_ _ 80	88.5 — 102	90 102 —	87 100 —	1 1.5 1.5	1 1.5 1.5	0.474 0.823 0.824
NU2212 ET NU NJ NUP — — N 312 — — N NF NU 312 NU NJ NUP — —	68 71 71	68 — 71	70 — 75	75 — 79	80 — 86	102 — 119	119	115 —	1.5 2 2	1.5 2 2	1.06 1.78 1.82
NU 312 EM NU NJ NUP — — NU2312 ET NU NJ NUP — — NU 412 NU NJ NUP N NF	71 71 71 71	71 71 71 71	75 75 80	79 79 79 85	86 86 94	119 119 139	139	130	2 2 2	2 2 2	2.06 2.7 3.04
NU 1013	71.5 73 73	70 — 73	73 — 76	76 — 81	94 — 87	93.5 — 112	95 112	92 108	1 1.5 1.5	1 1.5 1.5	0.504 1.05 1.05
NU2213 ET NU NJ NUP — — N 313 — — N NF	73 76	73 —	76 —	81	87	112	_ 129	 125	1.5 2	1.5 2	1.41 2.17
NU 313 EM NU NJ NUP — — NU2313 ET NU NJ NUP — —	76 76 76	76 76 76	81 80 80	85 85 85	93 93 93	129 129 129	_ _ _	_ _ _	2 2 2	2 2 2	2.23 2.56 3.16
NU 413 NU NJ — N NF NU1014 NU NJ NUP N NF N 214 — — N NF	76 76.5 78	76 75 —	86 79 —	91 82 —	100	149 103.5 —	149 105 117	138.8 101 113	2 1 1.5	2 1 1.5	3.63 0.693 1.14
NU 214 EM NU NJ NUP — — NU2214 ET NU NJ NUP — — N 314 — — N NF	78 78 81	78 78 —	81 81 —	86 86 —	92 92 —	117 117 —	_ 139	 133.5	1.5 1.5 2	1.5 1.5 2	1.29 1.49 2.67
NU 314 NU NJ NUP — — NU 314 EM NU NJ NUP — — NU2314 ET NU NJ NUP — —	81 81 81	81 81 81	87 86 86	92 92 92	100 100 100	139 139 139	_	_	2 2 2	2 2 2	2.75 3.09 3.92
NU 414 NU NJ NUP N NF NU1015 NU — N NF N 215 — N NF	83 81.5 83	83 80 —	97 83 —	102 87 —	112 — —	167 108.5 —	167 110 122	155 106 119	2.5 1 1.5	2.5 1 1.5	5.28 0.731 1.23
NU 215 EM NU NJ NUP — — NU2215 ET NU NJ NUP — — N 315 — — N NF	83 83 86	83 83	86 86 —	90 90 —	96 96 —	122 122 —	— — 149	 143	1.5 1.5 2	1.5 1.5 2	1.44 1.57 3.2
NU 315 NU NJ NUP — — NU 315 EM NU NJ NUP — — NU2315 ET NU NJ NUP — —	86 86 86	86 86 86	93 92 92	97 97 97	106 106 106	149 149 149			2 2 2	2 2 2	3.26 3.73 4.86
NU 415 NU NJ — N NF	88	88	102	107	118	177	177	164	2.5	2.5	6.27

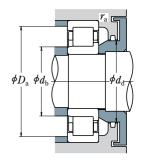
Notas (³) Si se utilizan anillos de empuje en "L" (Consulte la sección de los Anillos de Empuje en "L" que empieza en la página B100), los rodamientos pasan a ser del tipo NH.

⁽⁴⁾ Si se aplican cargas axiales, aumente d_a y reduzca D_a de los valores mostrados anteriormente.

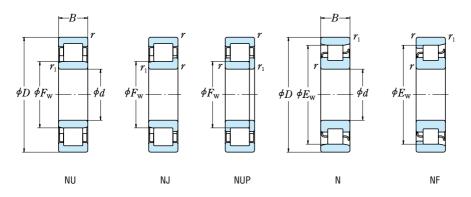
 d_b (máx.) son valores para ajustar los anillos para los Tipos NU, NJ.


Diámetro Interior 80~95 mm




		Dim	ensiones (mm	Globales			Índices Básic (N		Velocidades (rpm	
d	D	В	γ mín.	7 1	$F_{ m W}$ mín.	$E_{ m W}$	$C_{ m r}$	C_{0r}	Grasa	Aceite
80	125	22	1.1	1	91.5	113.5	72 500	90 500	5 300	6 300
	140	26	2	2	—	125.3	106 000	122 000	4 500	5 300
	140	26	2	2	95.3	—	139 000	167 000	4 500	5 300
	140 170 170	33 39 39	2 2.1 2.1	2 2.1 2.1	95.3 — 101	147 —	186 000 190 000 256 000	243 000 207 000 282 000	4 000 3 600 3 600	5 000 4 300 4 300
	170	58	2.1	2.1	101		355 000	430 000	3 200	4 000
	200	48	3	3	110	170	299 000	315 000	3 200	3 800
85	130	22	1.1	1	96.5	118.5	74 500	95 500	5 000	6 000
	150	28	2	2	—	133.8	120 000	140 000	4 300	5 000
	150	28	2	2	100.5	—	167 000	199 000	4 300	5 000
	150 180 180	36 41 41	2 3 3	2 3 3	100.5 — 108	156 —	217 000 212 000 212 000	279 000 228 000 228 000	3 800 3 400 3 400	4 500 4 000 4 000
	180	41	3	3	108	_	291 000	330 000	3 400	4 000
	180	60	3	3	108	_	395 000	485 000	3 000	3 800
	210	52	4	4	113	177	335 000	350 000	3 000	3 800
90	140	24	1.5	1.1	103	127	88 000	114 000	4 500	5 600
	160	30	2	2	—	143	152 000	178 000	4 000	4 800
	160	30	2	2	107	—	182 000	217 000	4 000	4 800
	160 190 190	40 43 43	2 3 3	2 3 3	107 — 113.5	165 —	242 000 240 000 240 000	315 000 265 000 265 000	3 600 3 200 3 200	4 300 3 800 3 800
	190	43	3	3	113.5	—	315 000	355 000	3 200	3 800
	190	64	3	3	113.5	—	435 000	535 000	2 800	3 400
	225	54	4	4	123.5	191.5	375 000	400 000	2 800	3 400
95	145	24	1.5	1.1	108	132	90 500	120 000	4 300	5 300
	170	32	2.1	2.1	—	151.5	158 000	183 000	3 800	4 500
	170	32	2.1	2.1	112.5	—	220 000	265 000	3 800	4 500
	170 200 200	43 45 45	2.1 3 3	2.1 3 3	112.5 — 121.5	173.5 —	273 000 259 000 259 000	350 000 289 000 289 000	3 400 3 000 3 000	4 000 3 600 3 600
	200 200 240	45 67 55	3 3 4	3 3 4	121.5 121.5 133.5	— 201.5	335 000 460 000 400 000	385 000 585 000 445 000	3 000 2 600 2 600	3 600 3 400 3 200

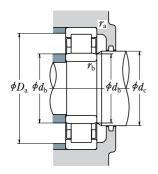
⁽²) Los rodamientos con sufijo ET tienen jaula de poliamida. La temperatura máxima de funcionamiento debería ser inferior a 120°C.

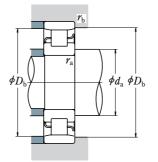


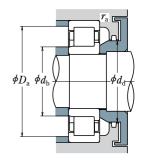
Número	s de Rodan	niento (²	2)			[Dimensi	ones de	Tope y (Chaflán				Masa (kg)
	NU NJ	NUP	N NF	$d_{ m a}^{(4)}$	$d_{ m b}$ mín.	$d_{ m b}(^5)$ máx.	$d_{ m c}$ mín.	$d_{ m d}$ min.	$D_{ m a}^{(4)}$	$D_{ m b}$ máx.	$D_{ m b}$ mín.	γ a máx.	∤ b máx.	aprox.
NU1016 N 216 NU 216 EM	NU — — — NU NJ	NUP NUP	N — N NF	86.5 89 89	85 — 89	90 — 92	94 — 97	_ _ 104	118.5 — 131	120 131 —	115 128 —	1 2 2	1 2 2	0.969 1.47 1.7
NU2216 ET N 316 NU 316 EM	NU NJ	NUP NUP	N NE	89	89 — 91	92 — 98	97 — 105	104 — 114	131 — 159	_ 159 _	150 —	2 2 2	2 2 2	1.96 3.85 4.45
NU2316 ET NU 416	NU NJ	NUP —	N N		91 93	98 107	105 112	114 124	159 187	 187	 173	2 2.5	2 2.5	5.73 7.36
NU1017 N 217 NU 217 EM	NU — NU NJ	_ NUP	N — N NF	91.5 94 94	90 — 94	95 — 98	99 — 104	_ 110	123.5 — 141	125 141 —	120 137 —	1 2 2	1 2 2	1.01 1.87 2.11
NU2217 ET N 317 NU 317	NU NJ NU NJ	NUP NUP	N NF	94 98 98	94 — 98	98 — 105	104 — 110	110 — 119	141 — 167	 167 	159 —	2 2.5 2.5	2 2.5 2.5	2.44 4.53 4.6
NU 317 EM NU2317 ET NU 417	NU NJ NU NJ NU NJ	NUP NUP	 _ N NF	98 98 101	98 98 101	105 105 110	110 110 115	119 119 128	167 167 194	— — 194	_ 180	2.5 2.5 3	2.5 2.5 3	5.26 6.77 9.56
NU1018 N 218 NU 218 EM	NU — — — NU NJ	NUP NUP	N — N NI — —	98 99 99	96.5 — 99	101 — 104	106 — 109	_ _ 116	132 — 151	133.5 151 —	129 146 —	1.5 2 2	1 2 2	1.35 2.31 2.6
NU2218 ET N 318 NU 318	NU NJ	NUP NUP	N NE	99 103 103	99 — 103	104 — 112	109 — 117	116 — 127	151 — 177	 177 	168 —	2 2.5 2.5	2 2.5 2.5	3.11 5.31 5.38
NU 318 EM NU2318 ET NU 418	NU NJ NU NJ	NUP NUP	 N NF	103 103	103 103 106	111 111 120	117 117 125	127 127 139	177 177 209	_ _ 209	_ _ 196	2.5 2.5 3	2.5 2.5 3	6.1 7.9 11.5
NU1019 N 219 NU 219 EM	NU NJ	_ NUP	N — N NI	103 106 106	101.5 — 106	106 — 110	111 — 116	_ 123	137 — 159	138.5 159	134 155 —	1.5 2 2	1 2 2	1.41 2.79 3.17
NU2219 ET N 319 NU 319	NU NJ	NUP NUP	N NE	106 108 108	106 — 108	110 — 118	116 — 124	123 — 134	159 — 187	_ 187 _	_ 177 _	2 2.5 2.5	2 2.5 2.5	3.81 6.09 6.23
NU 319 EM NU2319 ET NU 419	NO NJ NO NJ	NUP NUP NUP	 NI	108 108	108 108 111	118 118 130	124 124 136	134 134 149	187 187 224	 224	_ 206	2.5 2.5 3	2.5 2.5 3	7.13 9.21 13.6

Notes (³) Si se utilizan anillos de empuje en "L" (Consulte la sección de los Anillos de Empuje en "L" que empieza en la página B100), los rodamientos pasan a ser del tipo NH.

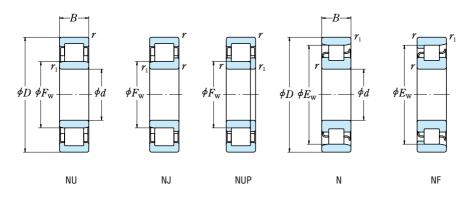
- (4) Si se aplican cargas axiales, aumente $d_{
 m a}$ y reduzca $D_{
 m a}$ de los valores mostrados anteriormente.
- d_b (máx.) son valores para ajustar los anillos para los Tipos NU, NJ.


Diámetro Interior 100~120 mm




	Dimensiones Globales (mm) d D B r r_1 $min.$							cos de Carga N)	Velocidades (rpm	
d	D	В	γ mín.	r_1	$F_{ m W}$ mín.	$E_{ m W}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite
100	150	24	1.5	1.1	113	137	93 000	126 000	4 300	5 300
	180	34	2.1	2.1	—	160	183 000	217 000	3 600	4 300
	180	34	2.1	2.1	119	—	249 000	305 000	3 600	4 300
	180	46	2.1	2.1	119	—	335 000	445 000	3 200	3 800
	215	47	3	3	—	185.5	299 000	335 000	2 800	3 400
	215	47	3	3	129.5	—	299 000	335 000	2 800	3 400
	215	47	3	3	127.5	_	380 000	425 000	2 800	3 400
	215	73	3	3	127.5	_	570 000	715 000	2 400	3 000
	250	58	4	4	139	211	450 000	500 000	2 600	3 000
105	160	26	2	1.1	119.5	145.5	109 000	149 000	4 000	4 800
	190	36	2.1	2.1	—	168.8	201 000	241 000	3 400	4 000
	190	36	2.1	2.1	125	—	262 000	310 000	3 400	4 000
	225	49	3	3	—	195	320 000	360 000	2 600	3 200
	225	49	3	3	133	—	425 000	480 000	2 600	3 200
	260	60	4	4	144.5	220.5	495 000	555 000	2 400	3 000
110	170	28	2	1.1	125	155	131 000	174 000	3 800	4 500
	200	38	2.1	2.1	—	178.5	229 000	272 000	3 200	3 800
	200	38	2.1	2.1	132.5	—	293 000	365 000	3 200	3 800
	200 240 240 280	53 50 50 65	2.1 3 3 4	2.1 3 3 4	132.5 — 143 155	207 — —	385 000 360 000 450 000 550 000	515 000 400 000 525 000 620 000	2 800 2 600 2 600 2 200	3 400 3 000 3 000 2 800
120	180	28	2	1.1	135	165	139 000	191 000	3 400	4 300
	215	40	2.1	2.1	—	191.5	248 000	299 000	3 000	3 400
	215	40	2.1	2.1	143.5	—	335 000	420 000	3 000	3 400
	215	58	2.1	2.1	143.5		450 000	620 000	2 600	3 200
	260	55	3	3	—	226	450 000	510 000	2 200	2 800
	260	55	3	3	154		530 000	610 000	2 200	2 800
	260	86	3	3	154		795 000	1 030 000	2 000	2 600
	310	72	5	5	170	260	675 000	770 000	2 000	2 400

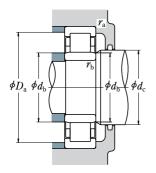
⁽²) Los rodamientos con sufijo ET tienen jaula de poliamida. La temperatura máxima de funcionamiento debería ser inferior a 120°C.

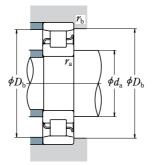

Números de Rodamiento (²)	Dimensiones de Tope y Chaflán (mm)	Masa (kg)
NU NJ NUP N NF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	aprox.
NU1020 NU NJ NUP N — N 220 — — N NF NU 220 EM NU NJ NUP — —	108 106.5 111 116 — 142 143.5 139 1.5 1 111 — — — — 169 163 2 2 111 111 116 122 130 169 — — 2 2	1.47 3.36 3.81
NU2220 ET NU NJ NUP — — N 320 — — N NF NU 320 NU NJ NUP — —	111 111 116 122 130 169 — — 2 2 113 — — — — 2.5 2.5 113 113 126 132 143 202 — — 2.5 2.5	4.69 7.59 7.69
NU 320 EM NU NJ NUP — — NU2320 ET NU NJ NUP — — NU 420 NU NJ — N NF		8.63 11.8 15.5
NU1021 NU — — N NF N 221 — — — N NF NU 221 EM NU NJ NUP — —		1.83 4.0 4.58
N 321 — — — N NF NU 321 EM NU NJ NUP — — NU 421 NU NJ — N NF	118 118 131 137 149 212 — — 2.5 2.5	8.69 9.84 17.3
NU1022 NU NJ — N NF N 222 — — — N NF NU 222 EM NU NJ NUP — —		2.27 4.64 5.37
NU2222 EM NU NJ NUP — — N 322 — — N NF NU 322 EM NU NJ NUP — — NU 422 NU NJ — — —	123 123 139 145 158 227 — — 2.5 2.5	7.65 10.3 11.8 22.1
NU1024 NU NJ NUP N — N 224 — — N NF NU 224 EM NU NJ NUP — —	129 126.5 133 138 — 171 173.5 167 2 1 131 — — — — 204 196 2 2 131 131 140 146 156 204 — — 2 2	2.43 5.63 6.43
NU2224 EM NU NJ NUP — — N 324 — — N NF NU 324 EM NU NJ NUP — —		9.51 12.9 15
NU 2324 EM NU NJ NUP — — NU 424 NU NJ NUP N —		25 30.2

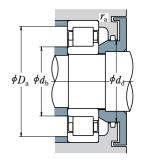
Notas (³) Si se utilizan anillos de empuje en "L" (Consulte la sección de los Anillos de Empuje en "L" que empieza en la página B100), los rodamientos pasan a ser del tipo NH.

⁽ 4) Si se aplican cargas axiales, aumente $d_{
m a}$ y reduzca $D_{
m a}$ de los valores mostrados anteriormente.

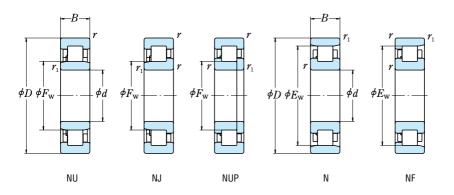
 d_b (máx.) son valores para ajustar los anillos para los Tipos NU, NJ.


Diámetro Interior 130~160 mm




	Dimensiones Globa $^{ m (mm)}$ d D B r $r_{ m min.}$							cos de Carga N)	Velocidades (rpm	
d	D	B	∤ mín.	r_1	$F_{\scriptstyle ext{W}}_{\scriptstyle ext{min.}}$	$E_{ m W}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite
130	200 230 230	33 40 40	2 3 3	1.1 3 3	148 — 153.5	182 204 —	172 000 258 000 365 000	238 000 320 000 455 000	3 200 2 600 2 600	3 800 3 200 3 200
	230 280 280	64 58 58	3 4 4	3 4 4	153.5 — 167	243 —	530 000 500 000 615 000	735 000 570 000 735 000	2 400 2 200 2 200	3 000 2 600 2 600
	280 340	93 78	4 5	4 5	167 185	 285	920 000 825 000	1 230 000 955 000	1 900 1 800	2 400 2 200
140	210 250 250	33 42 42	2 3 3	1.1 3 3	158 — 169	192 221 —	176 000 297 000 395 000	250 000 375 000 515 000	3 000 2 400 2 400	3 600 3 000 3 000
	250 300 300	68 62 62	3 4 4	3 4 4	169 — 180	260 —	550 000 550 000 665 000	790 000 640 000 795 000	2 200 2 000 2 000	2 800 2 400 2 400
	300 360	102 82	4 5	4 5	180 198	302	1 020 000 875 000	1 380 000 1 020 000	1 700 1 700	2 200 2 000
150	225 270 270	35 45 45	2.1 3 3	1.5 3 3	169.5 — 182	205.5 238 —	202 000 345 000 450 000	294 000 435 000 595 000	2 800 2 200 2 200	3 400 2 800 2 800
	270 320 320	73 65 65	3 4 4	3 4 4	182 — 193	277 —	635 000 590 000 760 000	930 000 690 000 920 000	2 000 1 800 1 800	2 600 2 200 2 200
	320 380	108 85	4 5	4 5	193 213	_	1 160 000 930 000	1 600 000 1 120 000	1 600 1 600	2 000 2 000
160	240 290 290	38 48 48	2.1 3 3	1.5 3 3	180 — 195	220 255 —	238 000 430 000 500 000	340 000 570 000 665 000	2 600 2 200 2 200	3 200 2 600 2 600
	290 340 340 340	80 68 68 114	3 4 4 4	3 4 4 4	193 — 204 204	292 — —	810 000 700 000 860 000 1 310 000	1 190 000 875 000 1 050 000 1 820 000	1 900 1 700 1 700 1 500	2 400 2 000 2 000 1 900

⁽²) Los rodamientos con sufijo ET tienen jaula de poliamida. La temperatura máxima de funcionamiento debería ser inferior a 120°C.

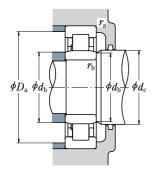

Números de Rodamiento (²)				I	Dimensi	ones de (m	Tope y (Chaflán				Masa (kg)
NU NJ NUP N	N NF	$d_{ m a}(^4)$ mín.	$d_{ m b}$ mín.	$d_{ m b}^{(5)}$	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}(^4)$ máx.	$D_{ m b}$ máx.	$D_{ m b}$ mín.	γ a máx.	∤ b máx.	aprox.
	N NF N NF	139 143 143	136.5 — 143	146 — 150	151 — 158	— — 168	191 — 217	193.5 217 —	184 208 —	2 2.5 2.5	1 2.5 2.5	3.66 6.48 8.03
NU2226 EM NU NJ NUP - N 326 — — N NU326EM NU NJ NUP -	N NF	143 146 146	143 — 146	150 — 163	158 — 169	168 — 184	217 — 264	 264 	 247.5 	2.5 3 3	2.5 3 3	9.44 17.7 18.7
NU2326EM NU NJ NUP - NU 426 NU NJ — -	 _ NF	146 150	146 150	163 180	169 187	184 208	264 320	 320	 291	3 4	3 4	30 39.6
	N — N NF — —	149 153 153	146.5 — 153	156 — 165	161 — 171	_ _ 182	201 — 237	203.5 237 —	194 225 —	2 2.5 2.5	1 2.5 2.5	3.87 8.08 9.38
NU2228EM NU NJ NUP _ N 328 — — N NU328EM NU NJ NUP _	N NF	153 156 156	153 — 156	165 — 176	171 — 182	182 — 198	237 — 284	 284 	 266 	2.5 3 3	2.5 3 3	15.2 21.7 22.8
NU2328EM NU NJ NUP - NU 428 NU NJ 1		156 160	156 160	176 193	182 200	198 222	284 340	 340	308	3 4	3 4	37.7 46.4
NU1030 NU NJ — 1 N 230 — — 1 NU230EM NU NJ NUP —	N NF N NF	161 163 163	158 — 163	167 — 177	173 — 184	_ _ 196	214 — 257	217 257 —	208 242 —	2 2.5 2.5	1.5 2.5 2.5	4.77 10.4 11.9
NU2230EM NU NJ NUP - N 330 — — - 1 NU330EM NU NJ NUP -	N NF	163 166 166	163 — 166	177 — 188	184 — 195	196 — 213	257 — 304	304 —	283 —	2.5 3 3	2.5 3 3	19.3 25.8 27.1
NU2330EM NU NJ NUP - NU 430 NU NJ	= =	166 170	166 170	188 208	195 216	213 237	304 360	_	_	3 4	3 4	45.1 55.8
NU1032 NU NJ — 1 N 232 — — 1 NU232EM NU NJ NUP —	N NF N NF	171 173 173	168 — 173	178 — 190	184 — 197	_ 210	229 — 277	232 277 —	222 261 —	2 2.5 2.5	1.5 2.5 2.5	5.81 14.1 14.7
NU2232EM NU NJ NUP - N 332 ! NU332EM NU NJ NUP - NU2332EM NU NJ NUP -	N —	173 176 176 176	173 — 176 176	188 — 199 199	197 — 211 211	210 — 228 228	277 — 324 324	 324 	298 — —	2.5 3 3 3	2.5 3 3 3	24.5 30.8 32.1 53.9

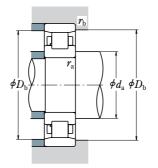
Notas (³) Si se utilizan anillos de empuje en "L" (Consulte la sección de los Anillos de Empuje en "L" que empieza en la página B100), los rodamientos pasan a ser del tipo NH.

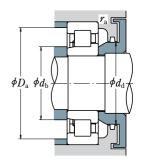
⁽ 4) Si se aplican cargas axiales, aumente $d_{
m a}$ y reduzca $D_{
m a}$ de los valores mostrados anteriormente.

 d_b (máx.) son valores para ajustar los anillos para los Tipos NU, NJ.

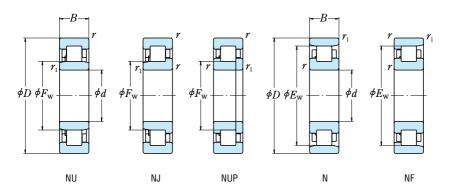
Diámetro Interior 170~220 mm


	Dimensiones Globales (mm) d D B r r_1 r_1 r_2 r_3							cos de Carga N)	Velocidades (rpm	
d	D	B	∤ mín.	r_1	$F_{\scriptstyle ext{W}}_{\scriptstyle ext{min.}}$	$E_{ m W}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite
170	260 310 310	42 52 52	2.1 4 4	2.1 4 4	193 — 207	237 272 —	287 000 475 000 605 000	415 000 635 000 800 000	2 400 2 000 2 000	2 800 2 400 2 400
	310 360 360 360	86 72 72 120	4 4 4	4 4 4 4	205 — 218 216	310 —	925 000 795 000 930 000 1 490 000	1 330 000 1 010 000 1 150 000 2 070 000	1 800 1 600 1 600 1 400	2 200 2 000 2 000 1 800
180	280 320 320	46 52 52	2.1 4 4	2.1 4 4	205 — 217	255 282 —	355 000 495 000 625 000	510 000 675 000 850 000	2 200 1 900 1 900	2 600 2 200 2 200
	320 380 380 380	86 75 75 126	4 4 4	4 4 4 4	215 — 231 227	328 —	1 010 000 905 000 985 000 1 560 000	1 510 000 1 150 000 1 230 000 2 220 000	1 700 1 500 1 500 1 300	2 000 1 800 1 800 1 700
190	290 340 340	46 55 55	2.1 4 4	2.1 4 4	215 — 230	265 299 —	365 000 555 000 695 000	535 000 770 000 955 000	2 000 1 800 1 800	2 600 2 200 2 200
	340 400 400 400	92 78 78 132	4 5 5 5	4 5 5 5	228 — 245 240	345 —	1 100 000 975 000 1 060 000 1 770 000	1 670 000 1 260 000 1 340 000 2 520 000	1 600 1 400 1 400 1 300	2 000 1 700 1 700 1 600
200	310 360 360	51 58 58	2.1 4 4	2.1 4 4	229 — 243	281 316 —	390 000 620 000 765 000	580 000 865 000 1 060 000	2 000 1 700 1 700	2 400 2 000 2 000
	360 420 420 420	98 80 80 138	4 5 5 5	4 5 5 5	241 — 258 253	360 —	1 220 000 975 000 1 140 000 1 910 000	1 870 000 1 270 000 1 450 000 2 760 000	1 500 1 300 1 300 1 200	1 800 1 600 1 600 1 500
220	340 400 400	56 65 65	3 4 4	3 4 4	250 — 270	310 350 —	500 000 760 000 760 000	750 000 1 080 000 1 080 000	1 800 1 500 1 500	2 200 1 800 1 800
	400 460 460	108 88 88	4 5 5	4 5 5	270 — 284	396 —	1 140 000 1 190 000 1 190 000	1 810 000 1 570 000 1 570 000	1 300 1 200 1 200	1 600 1 500 1 500


Notas (1) Si se utilizan anillos de empuje en "L" (Consulte la página B101), los rodamientos pasan a ser del Tipo NH.

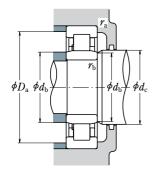

⁽²⁾ Si se aplican cargas axiales, aumente d_a y reduzca D_a de los valores mostrados anteriormente.

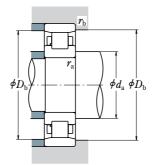
⁽³⁾ $d_{\rm b}$ (máx.) son valores para ajustar los anillos para los Tipos NU, NJ.

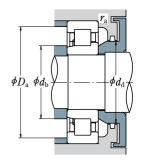


Núme	Números de Rodamiento					Dimensi	ones de (m	Tope y	Chaflán				Masa (kg)
	NU NJ NUP	N N	$m{d}_{\mathrm{a}}$		$d_{ m b}$ (3)	$d_{ m c}$ mín.	$d_{ m d}$ mín.	$D_{ m a}$ (2) máx.	$D_{ m b}$ máx.	$D_{ m b}$ mín.	火 a máx.	∤ b máx.	aprox.
NU1034 N 234 NU234EM	NU NJ — — — — NU NJ NUP	N - N N	- 181 F 186 - 186	· —	190 — 202	197 — 211	 223	249 — 294	249 294 —	239 278 —	2 3 3	2 3 3	7.91 17.4 18.3
NU2234EM N 334 NU334EM NU2334EM	NU NJ NUP NU NJ NUP NU NJ NUP	N -	- 186 - 186 - 186 - 186	186	200 — 213 210	211 — 223 223	223 — 241 241	294 — 344 344	344 —	316 —	3 3 3	3 3 3	29.9 36.6 37.9 63.4
NU1036 N 236 NU236EM	NU NJ — NU NJ NUP	N N N N		· —	202 — 212	209 — 221	_ 233	269 — 304	269 304 —	258 288 —	2 3 3	2 3 3	10.2 18.1 19
NU2236EM N 336 NU336EM NU2336EM	NU NJ NUP NU NJ NUP NU NJ NUP	N N		196	210 — 226 222	221 — 235 235	233 — 255 255	304 — 364 364	364 — —	335 — —	3 3 3 3	3 3 3 3	31.4 42.6 44 74.6
NU1038 N 238 NU238EM	NU NJ — NU NJ NUP	N - N N	- 201 F 206 - 206	· —	212 — 225	219 — 234	 247	279 — 324	279 324 —	268 305 —	2 3 3	2 3 3	10.7 22 23
NU2238EM N 338 NU338EM NU2338EM	NU NJ NUP NU NJ NUP NU NJ NUP	N -	- 206 - 210 - 210 - 210	210	223 — 240 235	234 — 248 248	247 — 268 268	324 — 380 380	380 — —	352 — —	3 4 4 4	3 4 4 4	38.3 48.7 50.6 86.2
NU1040 N 240 NU240EM	NU NJ — NU NJ NUP	N N N N	F 211 F 216 - 216	· —	226 — 238	233 — 247	 261	299 — 344	299 344 —	284 323 —	2 3 3	2 3 3	14 26.2 27.4
NU2240EM N 340 NU340EM NU2340EM	NU NJ NUP NU NJ NUP NU NJ NUP	N N	- 216 F 220 - 220 - 220	220	235 — 252 247	247 — 263 263	261 — 283 283	344 — 400 400	400 — —	367 — —	3 4 4 4	3 4 4 4	46.1 55.3 57.1 99.3
NU1044 N 244 NU 244	NU NJ — NU NJ NUP	N - N N	- 233 F 236 - 236	· —	247 — 264	254 — 273	_ _ 289	327 — 384	327 384 —	313 357 —	2.5 3 3	2.5 3 3	18.2 37 37.3
NU2244 N 344 NU 344	NU NJ —	N -	- 240 - 240		264 — 278	273 — 287	289 — 307	384 — 440	440 —	403 —	3 4 4	3 4 4	61.8 72.8 74.6

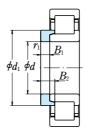
Diámetro Interior 240~500 mm


		Dim	ensiones (mn	s Globales				cos de Carga N)	Velocidades (rpm	
d	D	B	r mín.	r_1	$F_{\scriptstyle ext{W}}_{\scriptstyle ext{min.}}$	$E_{ m W}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite
240	360 440 440	56 72 72	3 4 4	3 4 4	270 — 295	330 385 —	530 000 935 000 935 000	820 000 1 340 000 1 340 000	1 600 1 300 1 300	2 000 1 600 1 600
	440 500 500	120 95 95	4 5 5	4 5 5	295 — 310	430 —	1 440 000 1 360 000 1 360 000	2 320 000 1 820 000 1 820 000	1 200 1 100 1 100	1 500 1 300 1 300
260	400 480 480	65 80 80	4 5 5	4 5 5	296 — 320	364 420 —	645 000 1 100 000 1 100 000	1 000 000 1 580 000 1 580 000	1 500 1 200 1 200	1 800 1 500 1 500
	480 540	130 102	5 6	5 6	320 336	_	1 710 000 1 540 000	2 770 000 2 090 000	1 100 1 000	1 300 1 200
280	420 500 500	65 80 80	4 5 5	4 5 5	316 — 340	384 440 —	660 000 1 140 000 1 140 000	1 050 000 1 680 000 1 680 000	1 400 1 100 1 100	1 700 1 400 1 400
300	460 540	74 85	4 5	4 5	340 364	420 —	885 000 1 400 000	1 400 000 2 070 000	1 300 1 100	1 500 1 300
320	480 580 580	74 92 92	4 5 5	4 5 5	360 — 390	440 510 —	905 000 1 540 000 1 540 000	1 470 000 2 270 000 2 270 000	1 200 950 950	1 400 1 200 1 200
340	520	82	5	5	385	475	1 080 000	1 740 000	1 100	1 300
360	540	82	5	5	405	495	1 110 000	1 830 000	1 000	1 300
380	560	82	5	5	425	_	1 140 000	1 910 000	1 000	1 200
400	600	90	5	5	450	550	1 360 000	2 280 000	900	1 100
420	620	90	5	5	470	570	1 390 000	2 380 000	850	1 100
440	650	94	6	6	493	_	1 470 000	2 530 000	800	1 000
460	680	100	6	6	516	624	1 580 000	2 740 000	750	950
480	700	100	6	6	536	644	1 620 000	2 860 000	750	900
500	720	100	6	6	556	664	1 660 000	2 970 000	710	850


Notas (1) Si se utilizan anillos de empuje en "L" (Consulte la página B101), los rodamientos pasan a ser del Tipo NH.


⁽²⁾ Si se aplican cargas axiales, aumente d_a y reduzca D_a de los valores mostrados anteriormente.

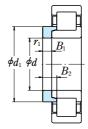
⁽³⁾ d_b (máx.) son valores para ajustar los anillos para los Tipos NU, NJ.



Números de Rodamiento		l	Dimensi	ones de (m	Tope y (Chaflán				Masa (kg)
NU NJ NUP N NF	$d_{ m a}$ (2) $d_{ m b}$ mín.		$d_{ m c}$ min.	$d_{ m d}$ mín.	$D_{ m a}\!$	$D_{ m b}$ máx.	$D_{ m b}$ mín.	γ a máx.	∤ ъ máx.	aprox.
NU1048 NU NJ — N — N 248 — — N NF NU 248 NU NJ NUP — —	253 253 256 — 256 256	_	275 — 298	_ _ 316	347 — 424	347 424 —	333 392 —	2.5 3 3	2.5 3 3	19.5 49.6 50.4
NU2248 NU — — — — N 348 — — N — NU 348 NU NJ — — —	— 256 260 — 260 260	_	298 — 313	316 — 333	424 — 480	- 480 -	438 —	3 4 4	3 4 4	84.9 92.3 94.6
NU1052 NU NJ — N NF N 252 — — N — NU 252 NU NJ — —	276 276 280 — 280 280	292	300 — 323	_ _ 343	384 — 460	384 460 —	367 428 —	3 4 4	3 4 4	29.1 66.2 67.1
NU2252 NU — NUP — — NU 352 NU NJ — —	280 280 286 286	314	323 339	343 359	460 514	=	_	4 5	4 5	111 118
NU1056 NU NJ NUP N NF N 256 — — N NF NU 256 NU NJ — —	296 296 300 — 300 300	_	320 — 344	_ 364	404 — 480	404 480 —	387 448 —	3 4 4	3 4 4	30.8 69.6 70.7
NU1060 NU NJ — N NF NU 260 NU NJ — — —	316 316 320 320	358	344 368	 391	444 520	444 —	424 —	3 4	3 4	43.7 89.2
NU1064 NU — N NF N 264 — N — NU 264 NU NJ — —	336 336 340 — 340 340	_	365 — 394	_ 420	464 — 560	464 560 —	444 519 —	3 4 4	3 4 4	46.1 110 112
NU1068 NU NJ — N NF	360 360		390	_	500	500	479	4	4	61.8
NU1072 NU — N NF NU1076 NU — — —	380 380 — 400		410 430	_	520 540	520 —	499 —	4	4 4	64.6 67.5
NU1080 NU — NUP N —	420 420	445	455	_	580	580	554.5	4	4	88.2
NU1084 NU — N —	440 440		475	_	600	600	574.5	4	4	91.7
NU1088	- 466 486 486		498 521	_	624 654	— 654	— 628.5	5 5	5 5	105 123
NU1096 NU NJ — N —	506 506		541	_	674	674	654	5	5	127
NU10/500 NU — — N —	526 526	5 551	558	_	694	694	674	5	5	131

RODAMIENTOS DE RODILLOS CILÍNDRICOS

Anillos de Empuje en "L" Diámetro Interior 20∼85 mm


Anillo de Empuje en "L"

	Dimens	iones G (mm)	lobales		Números de	Masa (kg)
d	d_1	B_1	B_2	$ m \emph{r}_1$ mín.	Rodamiento	aprox.
20	30	3	6.75	0.6	HJ 204	0.012
	29.8	3	5.5	0.6	HJ 204 E	0.011
	30	3	7.5	0.6	HJ 2204	0.012
	29.8	3	6.5	0.6	HJ 2204 E	0.012
	31.8	4	7.5	0.6	HJ 304	0.017
	31.4	4	6.5	0.6	HJ 304 E	0.017
	31.8	4	8.5	0.6	HJ 2304	0.017
	31.4	4	7.5	0.6	HJ 2304 E	0.018
25	34.8	3	6	0.6	HJ 205 E	0.014
	34.8	3	6.5	0.6	HJ 2205 E	0.014
	38.2	4	7	1.1	HJ 305 E	0.025
	38.2	4	8	1.1	HJ 2305 E	0.026
	43.6	6	10.5	1.5	HJ 405	0.057
30	41.4	4	7	0.6	HJ 206 E	0.025
	41.4	4	7.5	0.6	HJ 2206 E	0.025
	45.1	5	8.5	1.1	HJ 306 E	0.042
	45.1	5	9.5	1.1	HJ 2306 E	0.043
	50.5	7	11.5	1.5	HJ 406	0.080
35	48.2	4	7	0.6	HJ 207 E	0.033
	48.2	4	8.5	0.6	HJ 2207 E	0.035
	51.1	6	9.5	1.1	HJ 307 E	0.060
	51.1	6	11	1.1	HJ 2307 E	0.062
	59	8	13	1.5	HJ 407	0.12
40	54.1	5	8.5	1.1	HJ 208 E	0.049
	54.1	5	9	1.1	HJ 2208 E	0.050
	57.7	7	11	1.5	HJ 308 E	0.088
	57.7	7	12.5	1.5	HJ 2308 E	0.091
	64.8	8	13	2	HJ 408	0.14
45	59.1	5	8.5	1.1	HJ 209 E	0.055
	59.1	5	9	1.1	HJ 2209 E	0.055
	64.5	7	11.5	1.5	HJ 309 E	0.11
	64.5	7	13	1.5	HJ 2309 E	0.113
	71.8	8	13.5	2	HJ 409	0.175
50	64.1	5	9	1.1	HJ 210 E	0.061
	64.1	5	9	1.1	HJ 2210 E	0.061
	71.4	8	13	2	HJ 310 E	0.151
	71.4	8	14.5	2	HJ 2310 E	0.155
	78.8	9	14.5	2.1	HJ 410	0.23

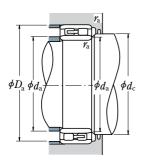
	Dimens	iones G (mm)	ilobales		Números de	Masa (kg)
d	d_1	B_1	B_2	∤ 1 mín.	Rodamiento	aprox.
55	70.9	6	9.5	1.1	HJ 211 E	0.087
	70.9	6	10	1.1	HJ 2211 E	0.088
	77.6	9	14	2	HJ 311 E	0.195
	77.6	9	15.5	2	HJ 2311 E	0.20
	85.2	10	16.5	2.1	HJ 411	0.29
60	77.7	6	10	1.5	HJ 212 E	0.108
	77.7	6	10	1.5	HJ 2212 E	0.108
	84.5	9	14.5	2.1	HJ 312 E	0.231
	84.5	9	16	2.1	HJ 2312 E	0.237
	91.8	10	16.5	2.1	HJ 412	0.34
65	84.5	6	10	1.5	HJ 213 E	0.129
	84.5	6	10.5	1.5	HJ 2213 E	0.131
	90.6	10	15.5	2.1	HJ 313 E	0.288
	90.6	10	18	2.1	HJ 2313 E	0.298
	98.5	11	18	2.1	HJ 413	0.42
70	89.5	7	11	1.5	HJ 214 E	0.157
	89.5	7	11.5	1.5	HJ 2214 E	0.158
	97.5	10	15.5	2.1	HJ 314 E	0.33
	97.5	10	18.5	2.1	HJ 2314 E	0.345
	110.5	12	20	3	HJ 414	0.605
75	94.5	7	11	1.5	HJ 215 E	0.166
	94.5	7	11.5	1.5	HJ 2215 E	0.167
	104.2	11	16.5	2.1	HJ 315 E	0.41
	104.2	11	19.5	2.1	HJ 2315 E	0.43
	116	13	21.5	3	HJ 415	0.71
80	101.6	8	12.5	2	HJ 216 E	0.222
	101.6	8	12.5	2	HJ 2216 E	0.222
	110.6	11	17	2.1	HJ 316 E	0.46
	110.6	11	20	2.1	HJ 2316 E	0.48
	122	13	22	3	HJ 416	0.78
85	107.6	8	12.5	2	HJ 217 E	0.25
	107.6	8	13	2	HJ 2217 E	0.252
	117.9	12	18.5	3	HJ 317 E	0.575
	117.9	12	22	3	HJ 2317 E	0.595
	126	14	24	4	HJ 417	0.88

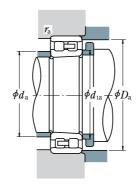
Diámetro Interior 90∼320 mm

Anillo de Empuje en "L"

	Dimens	iones ((mm)	Globales		Números de	Masa (kg)		Dimens	iones ((mm)	Globales		Números de	Masa (kg)
d	d_1	B_1	B_2	∤ 1 mín.	Rodamiento	aprox.	d	d_1	B_1	B_2	${m \gamma}_1$ mín.	Rodamiento	aprox
90	114.4 114.4 124.2	9 9 12	14 15 18.5	2 2 3	HJ 218 E HJ 2218 E HJ 318 E	0.32 0.325 0.63	150	193.7 193.7 210	12 12 15	19.5 24.5 25	3 3 4	HJ 230 E HJ 2230 E HJ 330 E	1.26 1.35 2.35
	124.2 137	12 14	22 24	3 4	HJ 2318 E HJ 418	0.66 1.05		210 234	15 20	31.5 36.5	4 5	HJ 2330 E HJ 430	2.48 4.7
95	120.6 120.6 132.2	9 9 13	14 15.5 20.5	2.1 2.1 3	HJ 219 E HJ 2219 E HJ 319 E	0.355 0.365 0.785	160	207.3 206.1 222.1	12 12 15	20 24.5 25	3 3 4	HJ 232 E HJ 2232 E HJ 332 E	1.48 1.55 2.59
	132.2 147	13 15	24.5 25.5	3 4	HJ 2319 E HJ 419	0.815 1.3		222.1	15	32	4	HJ 2332 E	2.76
100	127.5 127.5 139.6	10 10 13	15 16 20.5	2.1 2.1 3	HJ 220 E HJ 2220 E HJ 320 E	0.44 0.45 0.89	170	220.8 219.5 238	12 12 16	20 24 33.5	4 4 4	HJ 234 E HJ 2234 E HJ 2334 E	1.7 1.79 3.25
	139.6 153.5	13 16	23.5 27	3 4	HJ 2320 E HJ 420	0.92 1.5	180	230.8 229.5	12 12	20 24	4	HJ 236 E HJ 2236 E	1.79
105	147 159.5	13 16	20.5 27	3 4	HJ 321 E HJ 421	0.97 1.65	190	252 244.5	17 13	35 21.5	4	HJ 2336 E HJ 238 E	3.85 2.19
110	141.7 141.7 155.8	11 11 14	17 19.5 22	2.1 2.1 3	HJ 222 E HJ 2222 E HJ 322 E	0.62 0.645 1.21		243.2 266	13 18	26.5 36.5	4 5	HJ 2238 E HJ 2338 E	2.31 4.45
	155.8 171	14 17	26.5 29.5	3 4	HJ 2322 E HJ 422	1.27	200	258 256.9	14 14 14	23 34 28	4 4 4	HJ 240 E HJ 2240 HJ 2240 E	2.65 2.6 2.78
120	153.4 153.4 168.6	11 11 14	17 20 22.5	2.1 2.1 3	HJ 224 E HJ 2224 E HJ 324 E	0.71 0.745 1.41	220		18 15	30 27.5	5 4	HJ 340 E HJ 244	5.0 3.55
	168.6 188	14 17	26 30.5	3	HJ 2324 E HJ 424	1.46 2.6		286 307	15 20	36.5 36	4 5	HJ 2244 HJ 344	3.55 7.05
130	164.2 164.2 182.3	17 11 11 14	17 21 23	3 3 4	HJ 226 E HJ 2226 E HJ 326 E	0.79 0.84 1.65	240	313 313 335	16 16 22	29.5 38.5 39.5	4 4 5	HJ 248 HJ 2248 HJ 348	4.65 4.65 8.2
	182.3 205	14 18	28 32	4 5	HJ 2326 E HJ 426	1.73 3.3	260	340 340 362	18 18 24	33 40.5 43	5 5 6	HJ 252 HJ 2252 HJ 352	6.2 6.2 11.4
140	180 180	11 11	18 23	3	HJ 228 E HJ 2228 E	0.99 1.07	280	360	18	33	5	HJ 256	7.4
	196 196	15 15	25 31	4	HJ 328 E HJ 2328 E	2.04 2.14	300	387	20	34.5	5	HJ 260	9.15
	219	18	33	5	HJ 428	3.75	320	415	21	37	5	HJ 264	11.3

RODAMIENTOS DE RODILLOS CILÍNDRICOS DE DOBLE HILERA -


Diámetro Interior 25~140 mm


φD·	γ PEw NN Diámetro Cilíndo	Interior	φD φ	NN olámetro Inter	r - φd ior	PNNU Diámetro Interior Cilíndrico	φF _w φD	NNU metro Interio Cónico	$\phi d \phi F_{ m w}$
			ones Globa (mm)	lles		Índices Básico (N)		Velocidad (rp	
d	D	B	r	$F_{ m W}$ mín.	Ew	$C_{\rm r}$	C_{0r}	Grasa	Aceite
25	47	16	0.6	_	41.3	25 800	30 000	14 000	17 000
30	55	19	1	_	48.5	31 000	37 000	12 000	14 000
35	62	20	1	_	55	39 500	50 000	10 000	12 000
40	68	21	1	_	61	43 500	55 500	9 000	11 000
45	75	23	1	_	67.5	52 000	68 500	8 500	10 000
50	80	23	1	_	72.5	53 000	72 500	7 500	9 000
55	90	26	1.1	_	81	69 500	96 500	6 700	8 000
60	95	26	1.1	_	86.1	73 500	106 000	6 300	7 500
65	100	26	1.1	_	91	77 000	116 000	6 000	7 100
70	110	30	1.1	_	100	97 500	148 000	5 600	6 700
75	115	30	1.1	_	105	96 500	149 000	5 300	6 300
80	125	34 34	1.1	_	113	119 000	186 000	4 800	6 000
85 90	130 140	34	1.1 1.5	_	118 127	125 000 143 000	201 000 228 000	4 500 4 300	5 600 5 000
95	145	37	1.5		132	150 000	246 000	4 000	5 000
100	140 150	40 37	1.1 1.5	112 —	— 137	155 000 157 000	295 000 265 000	4 000 4 000	5 000 4 800
105	145 160	40 41	1.1 2	117	 146	161 000 198 000	315 000 320 000	3 800 3 800	4 800 4 500
110	150 170	40 45	1.1 2	122 —	— 155	167 000 229 000	335 000 375 000	3 600 3 400	4 500 4 300
120	165 180	45 46	1.1 2	133.5 —	— 165	183 000 239 000	360 000 405 000	3 200 3 200	4 000 3 800
130	180 200	50 52	1.5 2	144 —	— 182	274 000 284 000	545 000 475 000	3 000 3 000	3 800 3 600
140	190 210	50 53	1.5 2	154 —	 192	283 000 298 000	585 000 515 000	2 800 2 800	3 600 3 400
Nota	(1) Floufi	in K renres	enta a roda	mientos con	diámetros inte	riores cónicos (conici	dad 1 · 12)		

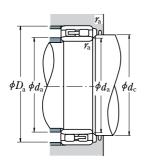
Nota (1) El sufijo K representa a rodamientos con diámetros interiores cónicos (conicidad 1 : 12).

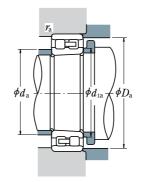
Observaciones La creación de rodamientos de rodillos cilíndricos de doble hilera es generalmente en las clases de alta precisión (Clase 5 o superior).

Números de Diámetro	e Rodamiento Diámetro		Dii	mension	es de Top (mm)	oe y Chaflái	1		Masa (kg)
Interior Cilíndrico	Interior Cónico ⁽¹)	mín. d a	$\mathfrak{m}^{(2)}$	$d_{ m 1a} \over { m min.}$	$d_{ m c}$ min.	$_{ m m\acute{a}x.}$ D	a mín.	∦ a máx.	aprox.
NN 3005	NN 3005 K	29	_	29	_	43	42	0.6	0.127
NN 3006	NN 3006 K	35	_	36	_	50	50	1	0.198
NN 3007	NN 3007 K	40	_	41	_	57	56	1	0.258
NN 3008	NN 3008 K	45	_	46	_	63	62	1	0.309
NN 3009	NN 3009 K	50	_	51	_	70	69	1	0.407
NN 3010	NN 3010 K	55	_	56	_	75	74	1	0.436
NN 3011	NN 3011 K	61.5	_	62	_	83.5	83	1	0.647
NN 3012	NN 3012 K	66.5	_	67	_	88.5	88	1	0.693
NN 3013	NN 3013 K	71.5	_	72	_	93.5	93	1	0.741
NN 3014	NN 3014 K	76.5	_	77	_	103.5	102	1	1.06
NN 3015	NN 3015 K	81.5	_	82	_	108.5	107	1	1.11
NN 3016	NN 3016 K	86.5	_	87	_	118.5	115	1	1.54
NN 3017	NN 3017 K	91.5	_	92	_	123.5	120	1	1.63
NN 3018	NN 3018 K	98	_	99	_	132	129	1.5	2.09
NN 3019	NN 3019 K	103	_	104	_	137	134	1.5	2.19
NNU 4920 NN 3020	NNU 4920 K NN 3020 K	106.5 108	111 —	108 109	115 —	133.5 142	 139	1 1.5	1.9 2.28
NNU 4921 NN 3021	NNU 4921 K NN 3021 K	111.5 114	116 —	113 115	120 —	138.5 151	— 148	1 2	1.99 2.88
NNU 4922 NN 3022	NNU 4922 K NN 3022 K	116.5 119	121 —	118 121	125 —	143.5 161	 157	1 2	2.07 3.71
NNU 4924 NN 3024	NNU 4924 K NN 3024 K	126.5 129	133 —	128 131	137 —	158.5 171	 167	1 2	2.85 4.04
NNU 4926 NN 3026	NNU 4926 K NN 3026 K	138 139	143 —	140 141	148 —	172 191	 185	1.5 2	3.85 5.88
NNU 4928 NN 3028	NNU 4928 K NN 3028 K	148 149	153 —	150 151	158 —	182 201	— 195	1.5 2	4.08 6.34

Nota (2) d_a (máx.) son valores para ajustar los anillos para el Tipo NNU.

RODAMIENTOS DE RODILLOS CILÍNDRICOS DE DOBLE HILERA -


Diámetro Interior 150~360 mm


φD ·	ν ΦE _w NI Diámetro Cilínd	Interior	φD φ	NN Diámetro Inte	r - φd t	NNU Diámetro Interior Cilíndrico	$d \phi F_{ m w} \phi D$	NNU Diámetro nterior Cónico	
			ones Globa (mm)	ıles			cos de Carga N)	Velocidade (rpr	
d	D	B	r	$F_{ m W}$ mín.	$E_{ m W}$	$C_{ m r}$	$C_{0\mathrm{r}}$	Grasa	Aceite
150	210	60	2	167		350 000	715 000	2 600	3 200
	225	56	2.1	—	206	335 000	585 000	2 600	3 000
160	220 240	60 60	2 2.1	177 —	219	365 000 375 000	760 000 660 000	2 400 2 400	3 000 2 800
170	230	60	2	187		375 000	805 000	2 400	2 800
	260	67	2.1	—	236	450 000	805 000	2 200	2 600
180	250	69	2	200		480 000	1 020 000	2 200	2 600
	280	74	2.1	—	255	565 000	995 000	2 000	2 400
190	260	69	2	211.5		485 000	1 060 000	2 000	2 600
	290	75	2.1	—	265	595 000	1 080 000	2 000	2 400
200	280	80	2.1	223		570 000	1 220 000	1 900	2 400
	310	82	2.1	—	282	655 000	1 170 000	1 800	2 200
220	300	80	2.1	243		600 000	1 330 000	1 700	2 200
	340	90	3	—	310	815 000	1 480 000	1 700	2 000
240	320 360	80 92	2.1 3	263 —	330	625 000 855 000	1 450 000 1 600 000	1 600 1 500	2 000 1 800
260	360	100	2.1	289		935 000	2 100 000	1 400	1 800
	400	104	4	—	364	1 030 000	1 920 000	1 400	1 700
280	380	100	2.1	309		960 000	2 230 000	1 300	1 700
	420	106	4	—	384	1 080 000	2 080 000	1 300	1 500
300	420	118	3	336		1 230 000	2 870 000	1 200	1 500
	460	118	4	—	418	1 290 000	2 460 000	1 200	1 400
320	440	118	3	356		1 260 000	3 050 000	1 100	1 400
	480	121	4	—	438	1 350 000	2 670 000	1 100	1 300
340	520	133	5	_	473	1 670 000	3 300 000	1 000	1 200
360	540	134	5	_	493	1 700 000	3 450 000	950	1 200
Note	(1) El out	iio V rantaa			diána atua a inta u	ioroo oónicoo (coni	aidad 1 . 10\		

Nota (1) El sufijo K representa a rodamientos con diámetros interiores cónicos (conicidad 1 : 12).

ObservacionesLa creación de rodamientos de rodillos cilíndricos de doble hilera es generalmente en las clases de alta precisión (Clase 5 o superior).

Números o		Dii	mension	es de Top (mm)	e y Chaf	lán		Masa (kg)	
Interior Cilíndrico	Interior Cónico(¹)	mín.	$m{d}_{ m a}(^2)$ máx.	$d_{ m 1a}$ mín.	$d_{ m c}$ min.	máx.	$D_{ m a}$ mín.	火 a máx.	aprox.
NNU 4930	NNU 4930 K	159	166	162	171	201	209	2	6.39
NN 3030	NN 3030 K	161	—	162	—	214		2	7.77
NNU 4932 NN 3032	NNU 4932 K NN 3032 K	169 171	176 —	172 172	182 —	211 229	222	2 2	6.76 9.41
NNU 4934 NN 3034	NNU 4934 K NN 3034 K	179 181	186 —	182 183	192 —	221 249	239	2 2	7.12 12.8
NNU 4936	NNU 4936 K	189	199	193	205	241		2 2	10.4
NN 3036	NN 3036 K	191	—	193	—	269	258		16.8
NNU 4938	NNU 4938 K	199	211	203	217	251		2 2	10.9
NN 3038	NN 3038 K	201	—	203	—	279	268		17.8
NNU 4940	NNU 4940 K	211	222	214	228	269		2 2	15.3
NN 3040	NN 3040 K	211	—	214	—	299	285		22.7
NNU 4944	NNU 4944 K	231	242	234	248	289		2	16.6
NN 3044	NN 3044 K	233	—	236	—	327	313	2.5	29.6
NNU 4948	NNU 4948 K	251	262	254	269	309	334	2	18
NN 3048	NN 3048 K	253	—	256	—	347		2.5	32.7
NNU 4952	NNU 4952 K	271	288	275	295	349		2	31.1
NN 3052	NN 3052 K	276	—	278	—	384	368		47.7
NNU 4956 NN 3056	NNU 4956 K NN 3056 K	291 296	308	295 298	315 —	369 404	388	2	33 51.1
NNU 4960	NNU 4960 K	313	335	318	343	407		2.5	51.9
NN 3060	NN 3060 K	316	—	319	—	444	422	3	70.7
NNU 4964	NNU 4964 K	333	355	338	363	427		2.5	54.9
NN 3064	NN 3064 K	336	—	340	—	464	442	3	76.6
NN 3068	NN 3068 K	360	_	365	_	500	477	4	102
NN 3072	NN 3072 K	380	_	385	_	520	497	4	106

Nota (2) d_a (máx.) son valores para ajustar los anillos para el Tipo NNU.

RODAMIENTOS DE RODILLOS CÓNICOS

RODAMIENTOS DE RODILLOS CÓNICOS DE DISEÑO MÉTRICO

Diámetro Interior 15~100mm	Páginas	B116~B123
Diámetro Interior 105~240mm	. Páginas	B124~B129
Diámetro Interior 260~440mm	. Páginas	B130~B131

RODAMIENTOS DE RODILLOS CÓNICOS DE DISEÑO EN PULGADAS

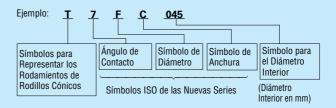
Diámetro Interior 12.000~	47.625mm	. Páginas B132~B145
Diámetro Interior 48.412~	69.850mm	. Páginas B146~B153
Diámetro Interior 70.000~2	206.375mm	. Páginas B154~B167

El índice para cada rodamiento de rodillos cónicos de diseño en pulgadas se encuentra en el Apéndice 14 (Página C26).

RODAMIENTOS DE RODILLOS CÓNICOS DE DOBLE HILERA

Los Rodamientos de Rodillos Cónicos de Cuatro Hileras se describen en las Páginas B330 a B335.

DISEÑO, TIPOS Y CARACTERÍSTICAS


Los rodamientos de rodillos cónicos están diseñados de forma que los ápices de los conos formados por las pistas de rodadura del cono y la copa de los rodillos cónicos coincidan en un punto del eje del rodamiento. Cuando se aplica una carga radial, se genera un componente de fuerza axial; por lo tanto, es necesario utilizar dos rodamientos en oposición o algún otro tipo de disposición múltiple.

En los rodamientos de rodillos cónicos de ángulo pronunciado y de ángulo medio, se añade el símbolo respectivo de ángulo de contacto C o D después del número del diámetro interior. En rodamientos de rodillos cónicos de ángulo normal, no se usa ningún símbolo de ángulo de contacto.

Los rodamientos de rodillos cónicos de ángulo medio se usan principalmente en ejes de engranajes o en diferenciales de automóviles.

Entre éstos con gran capacidad de carga (series HR), algunos rodamientos tienen el número básico con el sufijo J para cumplir con las especificaciones ISO para el diámetro de la pista de rodadura de cara posterior de la copa, ancho de la copa, y ángulo de contacto. Por lo tanto, el conjunto del cono y la copa de los rodamientos con el mismo número básico con sufijo J son intercambiables internacionalmente.

Entre los rodamientos de rodillos cónicos de diseño métrico especificados por ISO 355, encontramos los que tienen dimensiones distintas de las dimensiones de las series 3XX utilizados en el pasado. Parte de ellos se listan en las tablas de los rodamientos. Cumplen con las especificaciones ISO para el diámetro externo menor de la copa y el ángulo de contacto. Los grupos del cono y la copa son intercambiables internacionalmente. La formulación del número de rodamiento, distinta del diseño métrico anterior, es la siguiente:

Además de los rodamientos de rodillos cónicos, también existen rodamientos de diseño en pulgadas. Para los rodamientos de grupos de conos y copas de diseño en pulgadas, excepto para los rodamientos de rodillos cónicos de cuatro hileras, los números de los rodamientos se formulan aproximadamente de esta forma:

En rodamientos de rodillos cónicos, además de los rodillos de hilera única, existen varias combinaciones de rodamientos.

Las jaulas de los rodamientos de los rodillos cónicos suelen ser de acero prensado.

Tabla 1 Diseño y Características de Combinaciones de Rodamientos de Rodillos Cónicos

Figura	Disposición	Ej. de nº de Rodamiento	Características
	Espalda contra espalda	HR30210JDB+KLR10	Se combinan dos rodamientos estándar. Los juegos entre rodamientos se ajustan con espaciadores en el cono o espaciadores en la copa. Los conos, las copas y los espaciadores están marcados con números serie y con
	Cara a cara	HR30210JDF+KR	marcas de alineación. Los componentes con el mismo número de serie pueden montarse teniendo en cuenta los símbolos de alineación.
	Tipo KBE	100KBE31+L	El tipo KBE es una disposición espalda contra espalda de los rodamientos con la copa y el espaciador integrados, y el tipo KH es una disposición cara a cada en la que los conos están integrados. Puesto que el juego del rodamiento se ajusta por
	Tipo KH	110KH31+K	medio de espaciadores, es necesario que los componentes tengan el mismo número de serie para el montaje con relación a los símbolos de alineación.

TOLERANCIAS Y PRECISIÓN DE FUNCIONAMIENTO

RODAMIENTOS DE RODILLOS CÓNICOS

DE DISEÑO MÉTRICO...... Tabla 8.3 (Páginas A64~A67)

RODAMIENTOS DE RODILLOS CÓNICOS

DE DISEÑO EN PULGADAS...... Tabla 8.4 (Páginas A68~A69)

Entre los rodamientos de rodillos cónicos de diseño por pulgadas, existen algunos para los que se aplican las siguientes clases de precisión. Para más detalles, consulte con NSK.

(1) Rodamientos de Línea J (en las tablas de rodamientos, los rodamientos precedidos de lacktriangle)

Tabla 2 Tolerancias para Conos (CLASE K)

Unidades: µm

Diámetro Intel d (m	rior	Δ	dmp	$V_{d\mathrm{p}}$	$V_{d\mathrm{mp}}$	$K_{i\mathrm{a}}$
más de	hasta	alta baja		máx.	máx.	máx.
10	18	0	-12	12	9	15
18 30	30 50	0	- 12 - 12	12 12	9 9	18 20
50 80	80 120	0	- 15 - 20	15 20	11 15	25 30
120	180	0	- 25	25	19	35
180 250 315	250 315 400	0 0 0	-30 -35 -40	30 35 40	23 26 30	50 60 70

Tabla 3 Tolerancias para Copas (CLASE K)

Unidades : μm

Diámetro Nom <i>D</i> (n	inal	Δi	Omp	$V_{D\mathrm{p}}$	$V_{D\mathrm{mp}}$	K_{ea}
más de	hasta	alta	baja	máx.	máx.	máx.
18 30 50	30 50 80	0 0 0	- 12 - 14 - 16	12 14 16	9 11 12	18 20 25
80 120 150 180 250	120 150 180 250 315 400	0 0 0 0	-18 -20 -25 -30 -35 -40	18 20 25 30 35	14 15 19 23 26 30	35 40 45 50 60
315 400	500 500	0	- 40 - 45	40 45	30 34	70 80

Tabla 4 Tolerancias para las Anchuras Efectivas de los Grupos de Conos y Copas y Anchura General (CLASE K)

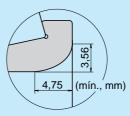
Unidades: µm

Diámetro Noi (m		Efectiva del	de la Anchura Grupo del Cono $1_{T_{1\mathrm{S}}}$	Efectiva	de la Anchura de la Copa T ₂₈	Desviación de la Anchura Total $\varDelta_{T{ m s}}$		
más de	hasta	alta	baja	alta	baja	alta	baja	
10	80	+100	0	+100	0	+200	0	
80	120	+100	 100	+100	— 100	+200	— 200	
120	315	+150	 150	+200	— 100	+350	 250	
315	400	+200	— 200	+200	— 200	+400	- 400	

(2) Rodamientos para Ejes Delanteros de Automóviles

(En las tablas de rodamientos, los precedidos por t)

Tabla 5 Tolerancias para el Diámetro Interior la Anchura General


Unidades: µm

	Diámetro Nor a	ninal Interio	or	Diámetro	ción del o Interior ds	Desviación de la Anchura General $\varDelta_{T ext{s}}$		
ma	ás de	ha	ısta	alta	baja	alta	baja	
(mm)	1/25.4	(mm)	1/25.4					
-	_	76.200	3.0000	+20	0	+356	0	

Las tolerancias para el diámetro exterior y para el salto radial de conos y copas son las indicadas en la Tabla 8.4.2 (Páginas A68 y A69).

(3) Dimensiones Especiales del Chaflán

Para los rodamientos marcados con "espec." en la columna r en las tablas de rodamientos, la dimensión del chaflán de la cara posterior del cono es la indicada en la figura siguiente.

AJUSTES RECOMENDADOS

JUEGO INTERNO

RODAMIENTOS DE RODILLOS CÓNICOS DE DISEÑO	MÉTRICO
(Emparejados y de doble hilera)	Tabla 9.16 (Página A93)
RODAMIENTOS DE RODILLOS CÓNICOS DE DISEÑO	EN PULGADAS
(Emparejados y de doble hilera)	Tabla 9.16 (Página A93)

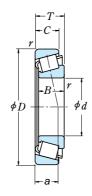
DIMENSIONES RELACIONADAS CON EL MONTAJE

Las dimensiones relacionadas con el montaje de los rodamientos de rodillos cilíndricos se indican en las tablas de rodamientos. Puesto que las jaulas sobresalen de las caras de los anillos de los rodamientos de rodillos cónicos, úselos con precaución al diseñar ejes y alojamientos.

Cuando se aplican cargas axiales importantes, las dimensiones y resistencia del chaflán del eje deben ser suficientes para soportar el reborde del cono.

DESALINEACIÓN ADMISIBLE

El ángulo de desalineación admisible en los rodamientos de rodillos cónicos es aproximadamente de 0.0009 radianes (3').

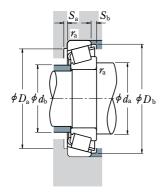

VELOCIDADES LÍMITE

Las velocidades límite mostradas en las tablas de rodamientos deberían ajustarse según las condiciones de carga de los rodamientos. Igualmente, pueden conseguirse velocidades más altas realizando cambios en el método de lubricación, diseño de la jaula, etc. Consulte la Página A37 para información más detallada.

PRECAUCIONES PARA LA UTILIZACIÓN DE RODAMIENTOS DE RODILLOS CÓNICOS

- 1. Si la carga sobre los rodamientos de rodillos cónicos es demasiado pequeña, o si la relación entre las cargas axiales y radiales de los rodamientos emparejados es superior a 'e' (e se muestra en las tablas de rodamientos) durante el funcionamiento, se produce un deslizamiento entre los rodillos cónicos y las pistas de rodadura pudiendo llegar a dañar los rodamientos. Especialmente con rodamientos de gran tamaño, ya que el peso de los rodillos y la jaula es elevado. Si se preven tales condiciones de carga, consulte con NSK para seleccionar los rodamientos más adecuados.
- 2. Confirme los valores de "Dimensiones del Tope y Chaflán" de $D_{\rm a},\,D_{\rm b},\,S_{\rm a},\,S_{\rm b}$ si se selecciona la serie HR.

Diámetro Interior 15~28 mm



		Di	mensiones (mm)	3				ndices Básico	s de Carga		Velocidad (rpi	
d	D	T	В	С	Cono	Copa Y	$C_{ m r}$	C_{0r}	C_{r}	kgf $_{0 m r}$	Grasa	Aceite
	D	1	Б	C		mín.	c_r	C _{0r}	C _r	C _{0r}		
15	35 42	11.75 14.25	11 13	10 11	0.6 1	0.6 1	14 800 23 600	13 200 21 100	1 510 2 400	1 350 2 160	11 000 9 500	15 000 13 000
17	40 40	13.25 17.25	12 16	11 14	1 1	1 1	20 100 27 100	19 900 28 000	2 050 2 770	2 030 2 860	9 500 9 500	13 000 13 000
	47	15.25	14	12	1	1	29 200	26 700	2 980	2 720	8 500	12 000
	47 47	15.25 20.25	14 19	10.5 16	1 1	1 1	22 000 37 500	20 300 36 500	2 240 3 800	2 070 3 750	8 000 8 500	11 000 11 000
20	42 47	15 15.25	15 14	12 12	0.6 1	0.6 1	24 600 27 900	27 400 28 500	2 510 2 850	2 800 2 900	9 000 8 000	12 000 11 000
	47 47	15.25 19.25	14 18	12 15	0.3	1 1	23 900 35 500	24 000 37 500	2 430 3 650	2 450 3 850	8 000 8 500	11 000 11 000
	47 52	19.25 16.25	18 15	15 13	1 1.5	1 1.5	31 500 35 000	33 500 33 500	3 200 3 550	3 400 3 400	8 000 7 500	11 000 11 000 10 000
	52 52	16.25 22.25	15 21	12 18	1.5 1.5	1.5 1.5	25 300 45 500	24 500 47 500	2 580 4 650	2 490 4 850	7 100 8 000	10 000 10 000 11 000
22	44	15	15	11.5	0.6	0.6	25 600	29 400	2 610	3 000	8 500	11 000
	50 50	15.25 15.25	14 14	12 12	1 1	1 1	29 200 27 200	30 500 29 500	2 980 2 780	3 150 3 000	7 500 7 500	10 000 10 000
	50 50	19.25 19.25	18 18	15 15	1 1	1 1	36 500 33 500	40 500 39 500	3 750 3 400	4 100 4 000	7 500 7 500	11 000 10 000
	56 56	17.25 17.25	16 16	14 13	1.5 1.5	1.5 1.5	37 000 34 500	36 500 34 000	3 750 3 500	3 750 3 500	7 100 6 700	9 500 9 500
25	47 47	15 17	15 17	11.5 14	0.6	0.6	27 400 31 000	33 000 38 000	2 800 3 150	3 400 3 900	8 000 8 000	11 000 11 000
	52	16.25	15	13	1	1	32 000	35 000	3 300	3 550	7 100	10 000
	52 52	16.25 19.25	15 18	12 16	1	1	28 100 40 000	31 500 45 000	2 860 4 050	3 200 4 600	9 700 7 100	9 500 10 000
	52 52	19.25 22	18 22	15 18	1 1	1 1	35 000 47 500	42 000 56 500	3 550 4 850	4 250 5 750	7 100 7 500	9 500 10 000
	62 62	18.25 18.25	17 17	15 14	1.5 1.5	1.5 1.5	47 500 42 000	46 000 45 000	4 850 4 300	4 700 4 550	6 300 6 000	8 500 8 500
	62 62	18.25 18.25	17 17	13 13	1.5 1.5	1.5 1.5	38 000 38 000	40 500 40 500	3 900 3 900	4 100 4 100	5 600 5 600	8 000 8 000
	62	25.25	24	20	1.5	1.5	62 500	66 000	6 400	6 750	6 300	8 500
28	52 58	16 17.25	16 16	12 14	1	1	32 000 39 500	39 000 41 500	3 300 4 050	3 950 4 200	7 100 6 300	9 500 9 000
	58 58	17.25 20.25	16 19	12 16	1 1	1 1	34 000 47 500	38 500 54 000	3 450 4 850	3 900 5 500	6 300 6 300	8 500 9 000
	58 68	20.25 19.75	19 18	16 15	1 1.5	1 1.5	42 000 55 000	49 500 55 500	4 300 5 650	5 050 5 650	6 300 6 000	9 000 8 000
	68	19.75	18	14	1.5	1.5	49 500	50 500	5 000	5 150	5 600	7 500

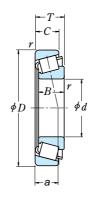
Observaciones

El sufijo C representa rodamientos de rodillos cónicos de ángulo medio Puesto que están diseñados para aplicaciones específicas, consulte con NSK cuando use rodamientos con el sufijo C.

Carga Dinámica Equivalente

 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/I$	r > e		
X	Y	X	Y		
1	0	0.4	Y_1		

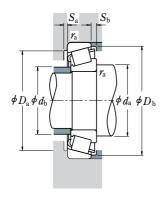

Carga Estática Equivalente

 $P_0 = 0.5F_r + Y_0 F_a$

Cuando $F_{\rm r}$ > $0.5F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se indican en la tabla siguiente.

Números de	Serie Dimen- sional			Dimer	siones	de Tope (mm)	e y Cha	ıflán	Cono	Сора	Centros Efectivos de Carga	Cons- tante		res de Axial	Masa (kg)
Rodamientos	ISO355 aprox.	$d_{\scriptscriptstyle m a}$ mín.	$d_{ m b}$ máx.	L máx.) _a mín.	$D_{ m b}$ mín.	$S_{ m a}$ mín.	$S_{ m b}$ mín.		$rac{r}_a$ máx.	(mm)	e	Y_1	Y_0	aprox.
30202		23	19	30	30	33	2	1.5	0.6	0.6	8.2	0.32	1.9	1.0	0.053
HR 30302 J	2FB	24	22	36	36	38.5		3	1	1	9.5	0.29	2.1	1.2	0.098
HR 30203 J	2DB	26	23	34	34	37.5	2	2	1	1	9.7	0.35	1.7	0.96	0.079
HR 32203 J	2DD	26	22	34	34	37	2	3	1	1	11.2	0.31	1.9	1.1	0.103
HR 30303 J	2FB	26	24	41	40	43	2	3	1	1	10.4	0.29	2.1	1.2	0.134
30303 D HR 32303 J	2FD	29 28	23 23	41 41	34 39	44 43	2	4.5 4	1	1	15.4 12.5	0.81 0.29	0.74 2.1	0.41 1.2	0.129 0.178
HR 32004 XJ HR 30204 J HR 30204 C-A-	3CC 2DB	28 29 29	24 27 26	37 41 41	35 40 37	40 44 44	3 2 2	3 3 3	0.6 1 0.3	0.6 1 1	10.6 11.0 13.0	0.37 0.35 0.55	1.6 1.7 1.1	0.88 0.96 0.60	0.097 0.127 0.126
HR 32204 J	2DD	29	25	41	38	44.5	3	4	1	1	12.6	0.33	1.8	1.0	0.161
HR 32204 CJ	5DD	29	25	41	36	44	2	4	1	1	14.5	0.52	1.2	0.64	0.166
HR 30304 J	2FB	31	27	44	44	47.5	2	3	1.5	1.5	11.6	0.30	2.0	1.1	0.172
30304 D HR 32304 J	— 2FD	34 33	26 26	43 43	37 42	49 48	2	4	1.5 1.5	1.5 1.5	16.7 13.9	0.81 0.30	0.74 2.0	0.41 1.1	0.168 0.241
HR 320/22 XJ	_	30	27	39	37	42	3	3.5	0.6	0.6	11.1	0.40	1.5	0.83	0.103
HR 302/22		31	29	44	42	47	2	3	1	1	11.6	0.37	1.6	0.90	0.139
HR 302/22 C	3CC	31	29	44	40	47	2	3	1	1	13.0	0.49	1.2	0.67	0.144
HR 322/22 HR 322/22 C HR 303/22 HR 303/22 C	_ _ _	31 31 33 33	28 29 30 30	44 44 47 47	41 39 46 44	47 48 50 52.5	2 2 2 3	4 4 3 4	1 1 1.5 1.5	1 1 1.5 1.5	13.5 15.2 12.4 15.9	0.37 0.51 0.32 0.59	1.6 1.2 1.9 1.0	0.89 0.65 1.0 0.56	0.18 0.185 0.208 0.207
HR 32005 XJ	4CC	33	30	42	40	45	3	3.5	0.6	0.6	11.8	0.43	1.4	0.77	0.116
HR 33005 J	2CE	33	29	42	41	44	3	3	0.6	0.6	11.0	0.29	2.1	1.1	0.131
HR 30205 J	3CC	34	31	46	44	48.5	2	3	1	1	12.7	0.38	1.6	0.88	0.157
HR 30205 C	2CD	34	32	46	43	49.5	2	4	1	1	14.4	0.53	1.1	0.62	0.155
HR 32205 J		34	30	46	44	50	2	3	1	1	13.5	0.36	1.7	0.92	0.189
HR 32205 C		34	30	46	40	50	2	4	1	1	15.8	0.53	1.1	0.62	0.19
HR 33205 J	2DE	34	29	46	43	49.5	4	4	1	1	14.1	0.35	1.7	0.94	0.221
HR 30305 J	2FB	36	34	54	54	57	2	3	1.5	1.5	13.2	0.30	2.0	1.1	0.27
HR 30305 C	—	36	35	53	49	58.5	3	4	1.5	1.5	16.4	0.55	1.1	0.60	0.276
HR 30305 DJ	(7FB)	39	34	53	47	59	2	5	1.5	1.5	19.9	0.83	0.73	0.40	0.265
HR 31305 J	7FB	39	33	53	47	59	3	5	1.5	1.5	19.9	0.83	0.73	0.40	0.265
HR 32305 J	2FD	38	32	53	51	57	3	5	1.5	1.5	15.6	0.30	2.0	1.1	0.376
HR 320/28 XJ	4CC	37	33	46	44	50	3	4	1	1	12.8	0.43	1.4	0.77	0.146
HR 302/28	—	37	34	52	50	55	2	3	1	1	13.2	0.35	1.7	0.93	0.203
HR 302/28 C	—	37	34	52	48	54	2	5	1	1	16.9	0.64	0.94	0.52	0.198
HR 322/28		37	34	52	49	55	2	4	1	1	14.6	0.37	1.6	0.89	0.243
HR 322/28 CJ	5DD	37	33	52	45	55	2	4	1	1	16.8	0.56	1.1	0.59	0.251
HR 303/28		39	37	59	58	61	2	4.5	1.5	1.5	14.5	0.31	1.9	1.1	0.341
HR 303/28 C		39	38	59	57	63	3	5.5	1.5	1.5	17.4	0.52	1.2	0.64	0.335

Diámetro Interior 30~35 mm



		Di	mensiones (mm)	;	0	0		Índices Básico	s de Carga	{kgf}	Velocidad (rp	
d	D	T	В	С	Cono	Copa <i>Y</i> mín.	C_{r}	C_{0r}	$C_{\rm r}$	C_{0r}	Grasa	Aceite
30	47	12	12	9	0.3	0.3	17 600	24 400	1 800	2 490	7 500	10 000
	55	17	17	13	1	1	36 000	44 500	3 700	4 550	6 700	9 000
	55	20	20	16	1	1	42 000	54 000	4 250	5 500	6 700	9 000
	62	17.25	16	14	1	1	43 000	47 500	4 400	4 850	6 000	8 000
	62	17.25	16	12	1	1	35 500	37 000	3 650	3 800	5 600	7 500
	62	21.25	20	17	1	1	52 000	60 000	5 300	6 150	6 000	8 500
	62	21.25	20	16	1	1	48 000	56 000	4 900	5 750	6 000	8 000
	62	25	25	19.5	1	1	66 500	79 500	6 800	8 100	6 000	8 000
	72	20.75	19	16	1.5	1.5	59 500	60 000	6 050	6 100	5 300	7 500
	72	20.75	19	14	1.5	1.5	56 500	55 500	5 800	5 650	5 300	7 100
	72	20.75	19	14	1.5	1.5	49 000	52 500	5 000	5 350	4 800	6 700
	72	20.75	19	14	1.5	1.5	49 000	52 500	5 000	5 350	4 800	6 800
	72	28.75	27	23	1.5	1.5	80 000	88 500	8 150	9 000	5 600	7 500
	72	28.75	27	23	1.5	1.5	76 000	86 500	7 750	8 800	5 600	7 500
32	58 58 65 65	17 21 18.25 18.25	17 20 17 17	13 16 15 14	1 1 1	1 1 1	37 500 41 000 48 500 45 500	47 000 50 000 54 000 52 500	3 800 4 150 4 950 4 650	4 800 5 100 5 500 5 350	6 300 6 300 5 600 5 600	8 500 8 500 8 000 7 500
	65	22.25	21	18	1	1	56 000	65 000	5 700	6 650	6 000	8 000
	65	22.25	21	17	1	1	49 500	60 000	5 050	6 100	5 600	7 500
	65	26	26	20.5	1	1	70 000	86 500	7 150	8 850	5 600	8 000
	75	21.75	20	17	1.5	1.5	56 000	56 000	5 700	5 700	5 300	7 100
35	55	14	14	11.5	0.6	0.6	27 400	39 000	2 790	3 950	6 300	8 500
	62	18	18	14	1	1	43 500	55 500	4 400	5 650	5 600	8 000
	62	21	21	17	1	1	49 000	65 000	4 950	6 650	5 600	8 000
	72	18.25	17	15	1.5	1.5	54 000	59 500	5 500	6 050	5 300	7 100
	72	18.25	17	13	1.5	1.5	47 000	54 500	4 750	5 550	5 000	6 700
	72	24.25	23	19	1.5	1.5	70 500	83 500	7 150	8 550	5 300	7 100
	72	24.25	23	18	1.5	1.5	60 500	71 500	6 200	7 300	5 000	7 100
	72	28	28	22	1.5	1.5	86 500	108 000	8 850	11 100	5 300	7 100
	80	22.75	21	18	2	1.5	76 000	79 000	7 750	8 050	4 800	6 700
	80	22.75	21	16	2	1.5	68 000	70 500	6 900	7 200	4 800	6 300
	80	22.75	21	15	2	1.5	62 000	68 000	6 350	6 950	4 300	6 000
	80	22.75	21	15	2	1.5	62 000	68 000	6 350	6 950	4 300	6 000
	80	32.75	31	25	2	1.5	99 000	111 000	10 100	11 300	5 000	6 700

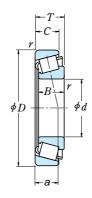
Observaciones

El sufijo C representa rodamientos de rodillos cónicos de ángulo medio. Puesto que están diseñados para aplicaciones específicas, consulte con NSK cuando use rodamientos con el sufijo C.

Carga Dinámica Equivalente

 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/I$	r > e		
X	Y	X	Y		
1	0	0.4	<i>Y</i> ₁		

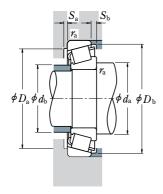

Carga Estática Equivalente

 $P_0 = 0.5F_r + Y_0 F_a$

Cuando $F_r>0.5F_r+Y_0F_a$, use $P_0=F_r$ Los valores de $e,\ Y_1$, y Y_0 se muestran en la tabla siguiente.

Números de	Serie Dimen-			Dimer	siones	de Topo (mm)	e y Cha	flán	Cono	Сора	Centros Efectivos de Carga	Cons- tante		res de Axial	Masa (kg)
Rodamientos	sional ISO355 aprox.	$d_{ m a}$ mín.	$d_{ m b}$ máx.	L máx.) _a mín.	$D_{ m b}$ mín.	$S_{ m a}$ mín.	$S_{ m b}$ mín.		$oldsymbol{r}_{ m a}$ máx.	(mm) a	e	Y_1	Y_0	aprox.
HR 32906 J HR 32006 XJ HR 33006 J	2BD 4CC 2CE	34 39 39	34 35 35	44 49 49	42 47 48	44 53 52	3 3 3	3 4 4	0.3 1 1	0.3 1 1	9.2 13.5 13.1	0.32 0.43 0.29	1.9 1.4 2.1	1.0 0.77 1.1	0.074 0.172 0.208
HR 30206 J HR 30206 C HR 32206 J	3DB — 3DC	39 39 39	37 36 36	56 56 56	52 49 51	58 59 58.5	2 2 2	3 5 4	1 1 1	1 1 1	13.9 17.8 15.4	0.38 0.68 0.38	1.6 0.88 1.6	0.88 0.49 0.88	0.238 0.221 0.297
HR 32206 C HR 33206 J HR 30306 J HR 30306 C	2DE 2FB	39 39 41 41	35 35 40 38	56 56 63 63	48 52 62 59	59 59.5 66 67	2 5 3 3	5 5.5 4.5 6.5	1 1 1.5 1.5	1 1 1.5 1.5	17.8 16.1 15.1 18.5	0.55 0.34 0.32 0.55	1.1 1.8 1.9 1.1	0.60 0.97 1.1 0.60	0.293 0.355 0.403 0.383
HR 30306 DJ HR 31306 J HR 32306 J HR 32306 CJ	(7FB) 7FB 2FD 5FD	44 44 43 43	40 40 38 36	63 63 63 63	55 55 59 54	68 68 66 68	3 3 3	6.5 6.5 5.5 5.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	23.1 23.1 18.0 22.0	0.83 0.83 0.32 0.55	0.73 0.73 1.9 1.1	0.40 0.40 1.1 0.60	0.393 0.393 0.57 0.583
HR 320/32 XJ 330/32 HR 302/32 HR 302/32 C	4CC — — —	41 41 41 41	37 37 39 39	52 52 59 59	49 50 56 54	55 55 61 62	3 2 3 3	4 4 3 4	1 1 1	1 1 1 1	14.2 13.8 14.7 16.9	0.45 0.31 0.37 0.55	1.3 1.9 1.6 1.1	0.73 1.1 0.88 0.60	0.191 0.225 0.277 0.273
HR 322/32 HR 322/32 C HR 332/32 J 303/32	_ _ 2DE _	41 41 41 44	38 39 38 42	59 59 59 66	54 51 55 64	61 62 62 68	3 3 5 3	4 5 5.5 4.5	1 1 1 1.5	1 1 1 1.5	15.9 20.2 17.0 15.9	0.37 0.59 0.35 0.33	1.6 1.0 1.7 1.8	0.88 0.56 0.95 1.0	0.336 0.335 0.40 0.435
HR 32907 J HR 32007 XJ HR 33007 J	2BD 4CC 2CE	43 44 44	40 40 40	50 56 56	50 54 55	52.5 60 59	3 4 4	2.5 4 4	0.6 1 1	0.6 1 1	10.7 15.0 14.1	0.29 0.45 0.31	2.1 1.3 2.0	1.1 0.73 1.1	0.123 0.229 0.267
HR 30207 J HR 30207 C HR 32207 J	3DB 3DC	46 46 46	43 44 42	63 63 63	62 59 61	67 68 67.5	3 3 3	3 5 5	1.5 1.5 1.5	1.5 1.5 1.5	15.0 19.6 17.9	0.38 0.66 0.38	1.6 0.91 1.6	0.88 0.50 0.88	0.34 0.331 0.456
HR 32207 C HR 33207 J HR 30307 J	2DE 2FB	46 46 47	42 41 45	63 63 71	58 61 69	68.5 68 74	3 5 3	6 6 4.5	1.5 1.5 2	1.5 1.5 1.5	20.6 18.3 16.7	0.55 0.35 0.32	1.1 1.7 1.9	0.60 0.93 1.1	0.442 0.54 0.538
HR 30307 C HR 30307 DJ HR 31307 J HR 32307 J	— 7FB 7FB 2FE	47 51 51 49	44 44 44 43	71 71 71 71	65 62 62 66	74 77 77 74	3 3 3 3	6.5 7.5 7.5 7.5	2 2 2 2	1.5 1.5 1.5 1.5	20.3 25.2 25.2 20.7	0.55 0.83 0.83 0.32	1.1 0.73 0.73 1.9	0.60 0.40 0.40 1.1	0.518 0.519 0.52 0.765

Diámetro Interior 40∼50 mm



		Di	mensiones (mm)					Índices Básico		kgf}	Velocidade (rpn	
d	D	T	В	С	Cono	Copa <i>Y</i> mín.	$C_{\rm r}$	C_{0r}	$C_{ m r}$	C_{0r}	Grasa	Aceite
40	62 68 68	15 19 22	15 19 22	12 14.5 18	0.6 1 1	0.6 1 1	34 000 53 000 59 000	47 000 71 000 81 500	3 450 5 400 6 000	4 800 7 250 8 300	5 600 5 300 5 300	7 500 7 100 7 100
	75 80 80	26 19.75 24.75	26 18 23	20.5 16 19	1.5 1.5 1.5	1.5 1.5 1.5	78 500 63 500 77 000	101 000 70 000 90 500	8 000 6 450 7 900	10 300 7 150 9 200	4 800 4 800 4 800	6 700 6 300 6 300
	80 80 90	24.75 32 25.25	23 32 23	19 25 20	1.5 1.5 2	1.5 1.5 1.5	74 000 107 000 90 500	90 500 137 000 101 000	7 550 10 900 9 250	9 200 14 000 10 300	4 500 4 800 4 300	6 300 6 300 5 600
	90 90 90 90	25.25 25.25 25.25 35.25	23 23 23 33	18 17 17 27	2 2 2 2	1.5 1.5 1.5 1.5	84 500 80 000 80 000 120 000	93 500 89 500 89 500 145 000	8 600 8 150 8 150 12 200	9 500 9 150 9 150 14 800	4 300 3 800 3 800 4 300	5 600 5 300 5 300 6 000
45	68 75 75	15 20 24	15 20 24	12 15.5 19	0.6 1 1	0.6 1 1	34 500 60 000 69 000	50 500 83 000 99 000	3 550 6 150 7 050	5 150 8 450 10 100	5 000 4 500 4 800	6 700 6 300 6 300
	80 85 85	26 20.75 24.75	26 19 23	20.5 16 19	1.5 1.5 1.5	1.5 1.5 1.5	84 000 68 500 83 000	113 000 79 500 102 000	6 950	11 600 8 100 10 400	4 500 4 300 4 300	6 000 6 000 6 000
	85 85 95	24.75 32 29	23 32 26.5	19 25 20	1.5 1.5 2.5	1.5 1.5 2.5	75 500 111 000 88 500	95 500 147 000 109 000		9 750 15 000 11 100	4 300 4 300 3 600	5 600 6 000 5 000
	95 100 100	36 27.25 27.25	35 25 25	30 22 18	2.5 2 2	2.5 1.5 1.5	139 000 112 000 95 500	174 000 127 000 109 000	11 400	17 800 12 900 11 100	4 000 3 800 3 400	5 300 5 300 4 800
	100 100	27.25 38.25	25 36	18 30	2	1.5 1.5	95 500 144 000	109 000 177 000		11 100 18 000	3 400 3 800	4 800 5 300
50	100 72 80	36 15 20	35 15 20	30 12 15.5	2.5 0.6 1	2.5 0.6 1	144 000 36 000 61 000	185 000 54 000 87 000	14 600 3 650 6 250	18 800 5 500 8 900	3 800 4 500 4 300	5 000 6 300 6 000
	80 85 90	24 26 21.75	24 26 20	19 20 17	1 1.5 1.5	1 1.5 1.5	70 500 89 000 76 000	104 000 126 000 91 500		10 600 12 800 9 300	4 300 4 300 4 000	6 000 5 600 5 300
	90 90 90	24.75 24.75 32	23 23 32	19 18 24.5	1.5 1.5 1.5	1.5 1.5 1.5	87 500 77 500 118 000	109 000 102 000 165 000	7 900 - 1	11 100 10 400 16 800	4 000 3 800 4 000	5 300 5 300 5 300
	105 110 110	32 29.25 29.25	29 27 27	22 23 19	3 2.5 2.5	3 2 2	109 000 130 000 114 000	133 000 148 000 132 000	13 300	13 600 15 100 13 400	3 200 3 400 3 200	4 500 4 800 4 300
	110 110 110	29.25 42.25 42.25	27 40 40	19 33 33	2.5 2.5 2.5	2 2 2	114 000 176 000 164 000	132 000 220 000 218 000	17 900 2	13 400 22 400 22 200	3 200 3 600 3 400	4 300 4 800 4 800

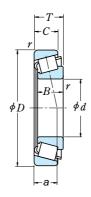
Observaciones

El sufijo C representa rodamientos de rodillos cónicos de ángulo medio. Puesto que están diseñados para aplicaciones específicas, consulte con NSK cuando use rodamientos con el sufijo C.

Carga Dinámica Equivalente

 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/F_{\rm r}{>}e$					
X	Y	X	Y				
1	0	0.4	Y ₁				

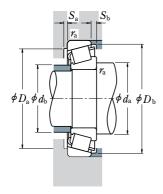

Carga Estática Equivalente

 $P_0 = 0.5F_r + Y_0 F_a$

Cuando $F_{\rm r}>$ 0.5 $F_{\rm r}$ + $Y_0F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de	Serie Dimen- sional			Dimer	nsiones	s de Top (mm)	e y Cha	ıflán	Cono	Copa	Centros Efectivos de Carga	Cons- tante		res de Axial	Masa (kg)
Rodamientos	ISO355 aprox.	$d_{ m a}$ mín.	$d_{ m b}$ máx.	$\it L$ máx.) _a mín.	$D_{ m b}$ mín.	$S_{ m a}$ mín.	$S_{ m b}$ mín.		$\emph{\textbf{r}}_{a}$ máx.	(mm) a	e	Y_1	Y_0	aprox.
HR 32908 J	2BC	48	44	57	57	59	3	3	0.6	0.6	11.5	0.29	2.1	1.1	0.161
HR 32008 XJ	3CD	49	45	62	60	65.5	4	4.5	1	1	15.0	0.38	1.6	0.87	0.28
HR 33008 J	2BE	49	45	62	61	65	4	4	1	1	14.6	0.28	2.1	1.2	0.322
HR 33108 J	2CE	51	46	66	65	71	4	5.5	1.5	1.5	18.0	0.36	1.7	0.93	0.503
HR 30208 J	3DB	51	48	71	69	75	3	3.5	1.5	1.5	16.6	0.38	1.6	0.88	0.437
HR 32208 J	3DC	51	48	71	68	75	3	5.5	1.5	1.5	18.9	0.38	1.6	0.88	0.548
HR 32208 CJ	5DC	51	47	71	65	76	3	5.5	1.5	1.5	21.9	0.55	1.1	0.60	0.558
HR 33208 J	2DE	51	46	71	67	76	5	7	1.5	1.5	20.8	0.36	1.7	0.92	0.744
HR 30308 J	2FB	52	52	81	76	82	3	5	2	1.5	19.5	0.35	1.7	0.96	0.758
HR 30308 C HR 30308 DJ HR 31308 J HR 32308 J	7FB 7FB 2FD	52 56 56 54	50 50 50 50	81 81 81 81	72 70 70 73	84 87 87 82	3 3 3	7 8 8 8	2 2 2 2	1.5 1.5 1.5 1.5	22.7 28.7 28.7 23.4	0.53 0.83 0.83 0.35	1.1 0.73 0.73 1.7	0.62 0.40 0.40 0.96	0.735 0.728 0.728 1.05
HR 32909 J	2BC	53	50	63	62	64	3	3	0.6	0.6	12.3	0.32	1.9	1.0	0.187
HR 32009 XJ	3CC	54	51	69	67	72	4	4.5	1	1	16.6	0.39	1.5	0.84	0.354
HR 33009 J	2CE	54	51	69	67	71	4	5	1	1	16.3	0.29	2.0	1.1	0.414
HR 33109 J	3CE	56	51	71	69	77	4	5.5	1.5	1.5	19.1	0.38	1.6	0.86	0.552
HR 30209 J	3DB	56	53	76	74	80	3	4.5	1.5	1.5	18.3	0.41	1.5	0.81	0.488
HR 32209 J	3DC	56	53	76	73	81	3	5.5	1.5	1.5	20.1	0.41	1.5	0.81	0.602
HR 32209 CJ	5DC	56	52	76	70	82	3	5.5	1.5	1.5	23.6	0.59	1.0	0.56	0.603
HR 33209 J	3DE	56	51	76	72	81	5	7	1.5	1.5	22.0	0.39	1.6	0.86	0.817
T 7 FC045	7FC	60	53	83	71	91	3	9	2	2	32.1	0.87	0.69	0.38	0.918
T 2 ED045	2ED	60	54	83	79	89	5	6	2	2	23.5	0.32	1.9	1.02	1.22
HR 30309 J	2FB	57	58	91	86	93	3	5	2	1.5	21.1	0.35	1.7	0.96	1.01
HR 30309 DJ	7FB	61	57	91	79	96	3	9	2	1.5	31.5	0.83	0.73	0.40	0.957
HR 31309 J	7FB	61	57	91	79	96	3	9	2	1.5	31.5	0.83	0.73	0.40	0.947
HR 32309 J	2FD	59	56	91	82	93	3	8		1.5	25.0	0.35	1.7	0.96	1.42
T 2 ED050	2ED	65	59	88	83	94	6	6	2	2	24.2	0.34	1.8	0.96	1.3
HR 32910 J	2BC	58	54	67	66	69	3	3	0.6	0.6	13.5	0.34	1.8	0.97	0.193
HR 32010 XJ	3CC	59	56	74	71	77	4	4.5	1	1	17.9	0.42	1.4	0.78	0.38
HR 33010 J	2CE	59	55	74	71	76	4	5	1	1	17.4	0.32	1.9	1.0	0.452
HR 33110 J	3CE	61	56	76	74	82	4	6	1.5	1.5	20.3	0.41	1.5	0.8	0.597
HR 30210 J	3DB	61	58	81	79	85	3	4.5	1.5	1.5	19.6	0.42	1.4	0.79	0.557
HR 32210 J	3DC	61	57	81	78	86	3	5.5	1.5	1.5	21.0	0.42	1.4	0.79	0.642
HR 32210 CJ	5DC	61	58	81	76	87	3	6.5	1.5	1.5	24.6	0.59	1.0	0.56	0.655
HR 33210 J	3DE	61	56	81	76	87	5	7.5	1.5	1.5	23.2	0.41	1.5	0.80	0.867
T 7 FC050	7FC	74	59	91	78	100	5	10	2.5	2.5	36.4	0.87	0.69	0.38	1.22
HR 30310 J	2FB	65	65	100	95	102	3	6	2	2	23.1	0.35	1.7	0.96	1.28
HR 30310 DJ	7FB	70	62	100	87	105	3	10	2	2	34.2	0.83	0.73	0.40	1.26
HR 31310 J	7FB	70	62	100	87	105	3	10	2	2	34.2	0.83	0.73	0.40	1.26
HR 32310 J	2FD	68	62	100	91	102	3	9	2	2	27.9	0.35	1.7	0.96	1.88
HR 32310 CJ	5FD	68	59	100	82	103	3	9	2	2	32.8	0.55	1.1	0.60	1.93

Diámetro Interior 55~65 mm



		Dii	mensiones (mm)		0	0			Índices Básicos de Carga (N)				
d	D	T	В	С	Cono	Copa <i>Y</i> mín.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite	
55	80	17	17	14	1	1	45 500	74 500	4 600	7 600	4 300	5 600	
	90	23	23	17.5	1.5	1.5	81 500	117 000	8 300	11 900	3 800	5 300	
	90	27	27	21	1.5	1.5	91 500	138 000	9 300	14 000	3 800	5 300	
	95	30	30	23	1.5	1.5	112 000	158 000	11 500	16 100	3 800	5 000	
	100	22.75	21	18	2	1.5	94 500	113 000	9 650	11 500	3 600	5 000	
	100	26.75	25	21	2	1.5	110 000	137 000	11 200	14 000	3 600	5 000	
	100	35	35	27	2	1.5	141 000	193 000	14 400	19 700	3 600	5 000	
	115	34	31	23.5	3	3	126 000	164 000	12 800	16 700	3 000	4 300	
	120	31.5	29	25	2.5	2	150 000	171 000	15 200	17 500	3 200	4 300	
	120	31.5	29	21	2.5	2	131 000	153 000	13 400	15 600	2 800	4 000	
	120	31.5	29	21	2.5	2	131 000	153 000	13 400	15 600	2 800	4 000	
	120	45.5	43	35	2.5	2	204 000	258 000	20 800	26 300	3 200	4 300	
	120	45.5	43	35	2.5	2	195 000	262 000	19 900	26 700	3 200	4 300	
60	85	17	17	14	1	1	49 000	84 500	5 000	8 650	3 800	5 300	
	95	23	23	17.5	1.5	1.5	85 500	127 000	8 700	12 900	3 600	5 000	
	95	27	27	21	1.5	1.5	96 000	150 000	9 800	15 300	3 600	5 000	
	100	30	30	23	1.5	1.5	115 000	166 000	11 700	16 900	3 400	4 800	
	110	23.75	22	19	2	1.5	104 000	123 000	10 600	12 500	3 400	4 500	
	110	29.75	28	24	2	1.5	131 000	167 000	13 400	17 000	3 400	4 500	
	110	38	38	29	2	1.5	166 000	231 000	16 900	23 600	3 400	4 500	
	125	37	33.5	26	3	3	151 000	197 000	15 400	20 100	2 800	3 800	
	130	33.5	31	26	3	2.5	174 000	201 000	17 700	20 500	3 000	4 000	
	130	33.5	31	22	3	2.5	151 000	177 000	15 400	18 100	2 600	3 800	
	130	33.5	31	22	3	2.5	151 000	177 000	15 400	18 100	2 600	3 800	
	130	48.5	46	37	3	2.5	233 000	295 000	23 700	30 000	3 000	4 000	
	130	48.5	46	35	3	2.5	196 000	249 000	20 000	25 400	2 800	3 800	
65	90	17	17	14	1	1	49 000	86 500	5 000	8 800	3 600	5 000	
	100	23	23	17.5	1.5	1.5	86 500	132 000	8 800	13 500	3 400	4 500	
	100	27	27	21	1.5	1.5	97 500	156 000	9 950	15 900	3 400	4 500	
	110	34	34	26.5	1.5	1.5	148 000	218 000	15 100	22 200	3 200	4 300	
	120	24.75	23	20	2	1.5	122 000	151 000	12 500	15 400	3 000	4 000	
	120	32.75	31	27	2	1.5	157 000	202 000	16 000	20 600	3 000	4 000	
	120	41	41	32	2	1.5	202 000	282 000	20 600	28 800	3 000	4 000	
	140	36	33	28	3	2.5	200 000	233 000	20 400	23 800	2 600	3 600	
	140	36	33	23	3	2.5	173 000	205 000	17 700	20 900	2 400	3 400	
	140	36	33	23	3	2.5	173 000	205 000	17 700	20 900	2 400	3 400	
	140	51	48	39	3	2.5	267 000	340 000	27 300	35 000	2 800	3 800	

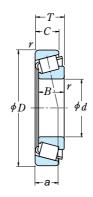
Observaciones

El sufijo C representa rodamientos de rodillos cónicos de ángulo medio. Puesto que están diseñados para aplicaciones específicas, consulte con NSK cuando use rodamientos con el sufijo C.

Carga Dinámica Equivalente

 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/F_{\rm r}{>}e$					
X	Y	X	Y				
1	0	0.4	<i>Y</i> ₁				

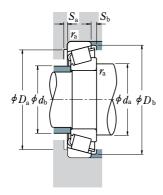

Carga Estática Equivalente

 $P_0 = 0.5F_r + Y_0 F_a$

Cuando $F_{\rm r}$ > $0.5F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de Rodamientos	Serie Dimen- sional			Dime	nsione	s de To (mm)	pe y Cha	ıflán	Cono	Copa	l ac ca. aa	Cons- tante		res de Axial	Masa (kg)
nouaillielitos	ISO355 aprox.	$d_{ m a}$ mín.	$d_{ m b}$ máx.	1 máx.	D _a mín.	$D_{ m b}$ mín.	$S_{ m a}$ mín.	$S_{ m b}$ mín.		$m{r}_{ m a}$ máx.	(mm) a	e	Y_1	Y_0	aprox.
HR 32911 J	2BC	64	60	74	73	76	4	3	1	1	14.6	0.31	1.9	1.1	0.282
HR 32011 XJ	3CC	66	62	81	80	86	4	5.5	1.5	1.5	19.7	0.41	1.5	0.81	0.568
HR 33011 J	2CE	66	62	81	80	86	5	6	1.5	1.5	19.2	0.31	1.9	1.1	0.657
HR 33111 J	3CE	66	62	86	82	91	5	7	1.5	1.5	22.4	0.37	1.6	0.88	0.877
HR 30211 J	3DB	67	64	91	89	94	4	4.5	2	1.5	20.9	0.41	1.5	0.81	0.736
HR 32211 J	3DC	67	63	91	87	95	4	5.5	2	1.5	22.7	0.41	1.5	0.81	0.859
HR 33211 J	3DE	67	62	91	86	96	6	8	2	1.5	25.2	0.40	1.5	0.83	1.18
T 7 FC055	7FC	73	66	101	86	109	4	10.5	2.5	2.5	39.0	0.87	0.69	0.38	1.58
HR 30311 J	2FB	70	71	110	104	111	4	6.5	2	2	24.6	0.35	1.7	0.96	1.63
HR 30311 DJ	7FB	75	67	110	94	114	4	10.5	2	2	37.0	0.83	0.73	0.40	1.58
HR 31311 J	7FB	75	67	110	94	114	4	10.5	2	2	37.0	0.83	0.73	0.40	1.58
HR 32311 J	2FD	73	67	110	99	111	4	10.5	2	2	29.9	0.35	1.7	0.96	2.39
HR 32311 CJ	5FD	73	65	110	91	112	4	10.5	2	2	35.8	0.55	1.1	0.60	2.47
HR 32912 J	2BC	69	65	79	78	81	4	3	1	1	15.5	0.33	1.8	1.0	0.306
HR 32012 XJ	4CC	71	66	86	85	91	4	5.5	1.5	1.5	20.9	0.43	1.4	0.77	0.608
HR 33012 J	2CE	71	66	86	85	90	5	6	1.5	1.5	20.0	0.33	1.8	1.0	0.713
HR 33112 J	3CE	71	68	91	88	96	5	7	1.5	1.5	23.6	0.40	1.5	0.83	0.91
HR 30212 J	3EB	72	69	101	96	103	4	4.5	2	1.5	22.0	0.41	1.5	0.81	0.930
HR 32212 J	3EC	72	68	101	95	104	4	5.5	2	1.5	24.1	0.41	1.5	0.81	1.18
HR 33212 J	3EE	72	68	101	94	105	6	9	2	1.5	27.6	0.40	1.5	0.82	1.56
T 7 FC060	7FC	78	72	111	94	119	4	11	2.5	2.5	41.3	0.82	0.73	0.40	2.03
HR 30312 J	2FB	78	77	118	112	120	4	7.5	2.5	2	26.0	0.35	1.7	0.96	2.03
HR 30312 DJ HR 31312 J HR 32312 J 32312 C	7FB 7FB 2FD	84 84 81 81	74 74 74 74	118 118 118 116	103 103 107 102	125 125 120 125	4 4 4 4	11.5 11.5 11.5 13.5	2.5 2.5 2.5 2.5	2 2 2 2	40.3 40.3 31.4 39.9	0.83 0.83 0.35 0.58	0.73 0.73 1.7 1.0	0.40 0.40 0.96 0.57	1.98 1.98 2.96 2.86
HR 32913 J	2BC	74	70	84	82	86	4	3	1	1	16.8	0.35	1.7	0.93	0.323
HR 32013 XJ	4CC	76	71	91	90	97	4	5.5	1.5	1.5	22.4	0.46	1.3	0.72	0.646
HR 33013 J	2CE	76	71	91	90	96	5	6	1.5	1.5	21.1	0.35	1.7	0.95	0.76
HR 33113 J	3DE	76	73	101	96	106	6	7.5	1.5	1.5	26.0	0.39	1.5	0.85	1.32
HR 30213 J	3EB	77	78	111	106	113	4	4.5	2	1.5	23.8	0.41	1.5	0.81	1.18
HR 32213 J	3EC	77	75	111	104	115	4	5.5	2	1.5	27.1	0.41	1.5	0.81	1.55
HR 33213 J	3EE	77	74	111	102	115	6	9	2	1.5	29.2	0.39	1.5	0.85	2.04
HR 30313 J	2GB	83	83	128	121	130	4	8	2.5	2	27.9	0.35	1.7	0.96	2.51
HR 30313 DJ	7GB	89	80	128	111	133	4	13	2.5	2	43.2	0.83	0.73	0.40	2.43
HR 31313 J	7GB	89	80	128	111	133	4	13	2.5	2	43.2	0.83	0.73	0.40	2.43
HR 32313 J	2GD	86	80	128	116	130	4	12	2.5		34.0	0.35	1.7	0.96	3.6

Diámetro Interior 70∼80 mm



		Di	mensiones (mm)					Índices Básic	os de Carga	{kgf}	Velocidades Límit (rpm)		
d	D	T	В	C	Cono	Copa r mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Grasa	Aceite	
70	100 110 110	20 25 31	20 25 31	16 19 25.5	1 1.5 1.5	1 1.5 1.5	70 000 104 000 127 000	113 000 158 000 204 000	10 600	11 500 16 100 20 800	3 200 3 200 3 000	4 500 4 300 4 300	
	120 125 125	37 26.25 33.25	37 24 31	29 21 27	2 2 2	1.5 1.5 1.5	177 000 132 000 157 000	262 000 163 000 205 000	13 500	26 700 16 700 20 900	3 000 2 800 2 800	4 000 4 000 4 000	
	125 140 150	41 39 38	41 35.5 35	32 27 30	2 3 3	1.5 3 2.5	209 000 177 000 227 000	299 000 229 000 268 000	18 000	30 500 23 400 27 400	2 800 2 400 2 400	4 000 3 400 3 400	
	150 150 150 150	38 38 54 54	35 35 51 51	25 25 42 42	3 3 3	2.5 2.5 2.5 2.5	192 000 192 000 300 000 280 000	229 000 229 000 390 000 390 000	30 500	23 300 23 300 39 500 39 500	2 200 2 200 2 600 2 400	3 200 3 200 3 400 3 400	
75	105 115 115	20 25 31	20 25 31	16 19 25.5	1 1.5 1.5	1 1.5 1.5	72 500 109 000 133 000	120 000 171 000 220 000	11 100	12 300 17 400 22 500	3 200 3 000 3 000	4 300 4 000 4 000	
	125 130 130	37 27.25 33.25	37 25 31	29 22 27	2 2 2	2 1.5 1.5	182 000 143 000 165 000	275 000 182 000 219 000	18 600 14 600 16 900	28 100 18 500 22 400	2 800 2 800 2 800	3 800 3 800 3 800	
	130 160 160	41 40 40	41 37 37	31 31 26	2 3 3	1.5 2.5 2.5	215 000 253 000 211 000	315 000 300 000 251 000	25 800	32 000 30 500 25 600	2 800 2 400 2 200	3 800 3 200 3 000	
	160 160 160	40 58 58	37 55 55	26 45 43	3 3 3	2.5 2.5 2.5	211 000 340 000 310 000	251 000 445 000 420 000	35 000	25 600 45 500 43 000	2 200 2 400 2 200	3 000 3 200 3 200	
80	110 125 125	20 29 36	20 29 36	16 22 29.5	1 1.5 1.5	1 1.5 1.5	75 000 140 000 172 000	128 000 222 000 282 000		13 100 22 700 28 800	3 000 2 800 2 800	4 000 3 600 3 600	
	130 140 140	37 28.25 28.25	37 26 26	29 22 20	2 2.5 2.5	1.5 2 2	186 000 157 000 147 000	289 000 195 000 190 000	19 000 16 000 15 000	29 400 19 900 19 400	2 600 2 600 2 400	3 600 3 400 3 400	
	140 140 170	35.25 46 42.5	33 46 39	28 35 33	2.5 2.5 3	2 2 2.5	192 000 256 000 276 000	254 000 385 000 330 000	26 200	25 900 39 000 33 500	2 600 2 600 2 200	3 400 3 400 3 000	
	170 170 170 170	42.5 42.5 61.5 61.5	39 39 58 58	27 27 48 48	3 3 3 3	2.5 2.5 2.5 2.5	235 000 235 000 385 000 365 000	283 000 283 000 505 000 530 000	24 000 39 000	28 900 28 900 51 500 54 000	2 000 2 000 2 200 2 200	2 800 2 800 3 000 3 000	

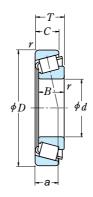
Observaciones

El sufijo CA representa rodamientos de rodillos cónicos de ángulo medio. Puesto que están diseñados para aplicaciones específicas, consulte con NSK cuando use rodamientos con el sufijo CA.

 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y_1

Carga Estática Equivalente

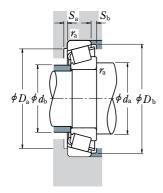

 $P_0 = 0.5F_r + Y_0 F_a$

Cuando $F_{\rm r}>$ 0.5 $F_{\rm r}+Y_0F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de Rodamientos	Serie Dimen- sional			Dime	nsione	s de To (mm)	pe y Cha	ıflán	Cono	Copa	Centros Efectivos de Carga	Cons- tante		res de a Axial	Masa (kg)
noualillelilos	ISO355 aprox.	$d_{ m a}$ mín.	$d_{ m b}$ máx.	<i>I</i> máx.	D _a mín.	$D_{ m b}$ mín.	$S_{ m a}$ mín.	$S_{ m b}$ mín.		$\emph{\textbf{r}}_{a}$ máx.	(mm) a	e	Y_1	Y_0	aprox.
HR 32914 J	2BC	79	76	94	93	96	4	4	1	1	17.6	0.32	1.9	1.1	0.494
HR 32014 XJ	4CC	81	77	101	98	105	5	6	1.5	1.5	23.7	0.43	1.4	0.76	0.869
HR 33014 J	2CE	81	78	101	100	105	5	5.5	1.5	1.5	22.2	0.28	2.1	1.2	1.11
HR 33114 J	3DE	82	79	111	104	115	6	8	2	1.5	27.9	0.38	1.6	0.87	1.71
HR 30214 J	3EB	82	81	116	110	118	4	5	2	1.5	25.7	0.42	1.4	0.79	1.3
HR 32214 J	3EC	82	80	116	108	119	4	6	2	1.5	28.6	0.42	1.4	0.79	1.66
HR 33214 J	3EE	82	78	116	107	120	7	9	2	1.5	30.4	0.41	1.5	0.81	2.15
T 7 FC070	7FC	88	79	126	106	133	5	12	2.5	2.5	45.7	0.87	0.69	0.38	2.55
HR 30314 J	2GB	88	89	138	132	140	4	8	2.5	2	29.7	0.35	1.7	0.96	3.03
HR 30314 DJ	7GB	94	85	138	118	142	4	13	2.5	2	45.7	0.83	0.73	0.40	2.94
HR 31314 J	7GB	94	85	138	118	142	4	13	2.5	2	45.7	0.83	0.73	0.40	2.94
HR 32314 J	2GD	91	86	138	124	140	4	12	2.5	2	36.0	0.35	1.7	0.96	4.35
HR 32314 CJ	5GD	91	84	138	115	141	4	12	2.5	2	43.3	0.55	1.1	0.60	4.47
HR 32915 J	2BC	84	81	99	98	101	4	4	1	1	18.7	0.33	1.8	0.99	0.53
HR 32015 XJ	4CC	86	82	106	103	110	5	6	1.5	1.5	25.1	0.46	1.3	0.72	0.925
HR 33015 J	2CE	86	83	106	104	110	6	5.5	1.5	1.5	23.0	0.30	2.0	1.1	1.18
HR 33115 J	3DE	87	83	115	109	120	6	8	2	2	29.1	0.40	1.5	0.83	1.8
HR 30215 J	4DB	87	85	121	115	124	4	5	2	1.5	27.0	0.44	1.4	0.76	1.43
HR 32215 J	4DC	87	84	121	113	125	4	6	2	1.5	29.8	0.44	1.4	0.76	1.72
HR 33215 J	3EE	87	83	121	111	125	7	10	2	1.5	31.6	0.43	1.4	0.77	2.25
HR 30315 J	2GB	93	95	148	141	149	4	9	2.5	2	31.8	0.35	1.7	0.96	3.63
HR 30315 DJ	7GB	99	91	148	129	152	6	14	2.5	2	48.7	0.83	0.73	0.40	3.47
HR 31315 J HR 32315 J 32315 CA	7GB 2GD	99 96 96	91 91 90	148 148 148	129 134 124	152 149 153	6 4 4	14 13 15	2.5 2.5 2.5	2 2 2	48.7 38.9 47.7	0.83 0.35 0.58	0.73 1.7 1.0	0.40 0.96 0.57	3.47 5.31 5.3
HR 32916 J	2BC	89	85	104	102	106	4	4	1	1	19.8	0.35	1.7	0.94	0.56
HR 32016 XJ	3CC	91	89	116	112	120	6	7	1.5	1.5	26.9	0.42	1.4	0.78	1.32
HR 33016 J	2CE	91	88	116	112	119	6	6.5	1.5	1.5	25.5	0.28	2.2	1.2	1.66
HR 33116 J HR 30216 J 30216 CA	3DE 3EB	82 95 95	88 91 92	121 130 130	113 124 122	126 132 133	6 4 4	8 6 8	2 2 2	1.5 2 2	30.4 28.1 33.7	0.42 0.42 0.58	1.4 1.4 1.0	0.79 0.79 0.57	1.88 1.68 1.66
HR 32216 J	3EC	95	90	130	122	134	4	7	2	2	30.6	0.42	1.4	0.79	2.13
HR 33216 J	3EE	95	89	130	119	135	7	11	2	2	34.8	0.43	1.4	0.78	2.93
HR 30316 J	2GB	98	102	158	150	159	4	9.5	2.5	2	34.0	0.35	1.7	0.96	4.27
HR 30316 DJ	7GB	104	97	158	136	159	6	15.5	2.5	2	51.8	0.83	0.73	0.40	4.07
HR 31316 J	7GB	104	97	158	136	159	6	15.5	2.5	2	51.8	0.83	0.73	0.40	4.07
HR 32316 J	2GD	101	98	158	143	159	4	13.5	2.5	2	41.3	0.35	1.7	0.96	6.35
HR 32316 CJ	5GD	101	95	158	132	160	4	13.5	2.5	2	49.2	0.55	1.1	0.60	6.59

RODAMIENTOS DE RODILLOS CÓNICOS DE UNA SOLA HILERA

Diámetro Interior 85~100 mm



		D	imensiones (mm)				1)	Índices Básico	os de Carga	{kgf}	Velocidade (rpn	
d	D	T	В	C	Cono	Copa	$C_{\rm r}$	C_{0r}	$C_{\rm r}$	C_{0r}	Grasa	Aceite
85	120	23	23	18	1.5	1.5	93 500	157 000	9 550	16 000	2 800	3 800
	130	29	29	22	1.5	1.5	143 000	231 000	14 600	23 600	2 600	3 600
	130	36	36	29.5	1.5	1.5	180 000	305 000	18 400	31 000	2 600	3 600
	140	41	41	32	2.5	2	230 000	365 000	23 500	37 000	2 400	3 400
	150	30.5	28	24	2.5	2	184 000	233 000	18 700	23 800	2 400	3 200
	150	30.5	28	22	2.5	2	171 000	226 000	17 500	23 000	2 200	3 200
	150	38.5	36	30	2.5	2	210 000	277 000	21 400	28 200	2 200	3 200
	150	49	49	37	2.5	2	281 000	415 000	28 700	42 500	2 400	3 200
	180	44.5	41	34	4	3	310 000	375 000	31 500	38 000	2 000	2 800
00	180 180 180	44.5 44.5 63.5 23	41 41 60 23	28 28 49	4 4 4	3 3 3	261 000 261 000 410 000 97 000	315 000 315 000 535 000	26 600 26 600 42 000	32 000 32 000 54 500	1 900 1 900 2 000 2 600	2 600 2 600 2 800 3 600
90	125 140 140 150	32 39 45	32 39 45	18 24 32.5 35	1.5 2 2 2.5	1.5 1.5 1.5 2	170 000 220 000 259 000	167 000 273 000 360 000 405 000	9 850 17 300 22 400 26 500	17 000 27 800 37 000 41 500	2 400 2 400 2 400 2 400	3 200 3 200 3 200 3 200
	160 160 160	32.5 42.5 46.5	30 40 43	26 34 36	2.5 2.5 2.5 4	2 2 3	201 000 256 000 345 000	256 000 350 000 425 000	20 500 20 500 26 100 35 500	26 100 35 500 43 000	2 200 2 200 2 200 1 900	3 000 3 000 2 600
	190 190 190	46.5 46.5 67.5	43 43 64	30 30 53	4 4 4	333	264 000 264 000 450 000	315 000 315 000 590 000	26 900 26 900 46 000	32 000 32 000 60 500	1 800 1 800 2 000	2 400 2 400 2 600
95	130	23	23	18	1.5	1.5	98 000	172 000	10 000	17 500	2 400	3 400
	145	32	32	24	2	1.5	173 000	283 000	17 600	28 900	2 400	3 200
	145	39	39	32.5	2	1.5	231 000	390 000	23 500	39 500	2 400	3 200
	160	46	46	38	3	3	283 000	445 000	28 800	45 500	2 200	3 000
	170	34.5	32	27	3	2.5	223 000	286 000	22 800	29 200	2 200	2 800
	170	45.5	43	37	3	2.5	289 000	400 000	29 500	40 500	2 200	2 800
	200 200 200	49.5 49.5 49.5	45 45 45	38 36 32	4 4 4	3 3 3	370 000 350 000 310 000	455 000 430 000 375 000	38 000 35 500 31 500	46 500 44 000 38 500	1 900 1 800 1 700	2 600 2 400 2 400
100	200	49.5	45	32	4	3	310 000	375 000	31 500	38 500	1 700	2 400
	200	71.5	67	55	4	3	525 000	710 000	53 500	72 500	1 900	2 600
	140	25	25	20	1.5	1.5	117 000	205 000	12 000	20 900	2 200	3 200
	145	24	22.5	17.5	3	3	113 000	163 000	11 500	16 600	2 200	3 000
	150	32	32	24	2	1.5	176 000	294 000	17 900	30 000	2 200	3 000
	150	39	39	32.5	2	1.5	235 000	405 000	24 000	41 500	2 200	3 000
	165	52	52	40	2.5	2	315 000	515 000	32 500	52 500	2 000	2 800
	180	37	34	29	3	2.5	255 000	330 000	26 000	34 000	2 000	2 600
	180	49	46	39	3	2.5	325 000	450 000	33 000	46 000	2 000	2 600
	180	63	63	48	3	2.5	410 000	635 000	42 000	65 000	2 000	2 600
	215	51.5	47	39	4	3	425 000	525 000	43 000	53 500	1 700	2 400
	215	56.5	51	35	4	3	385 000	505 000	39 000	51 500	1 500	2 200
	215	77.5	73	60	4	3	565 000	755 000	57 500	77 000	1 700	2 400

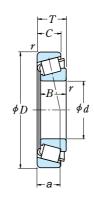
Observaciones

El sufijo CA representa rodamientos de rodillos cónicos de ángulo medio. Puesto que están diseñados para aplicaciones específicas, consulte con NSK cuando use rodamientos con el sufijo CA.

 $P = XF_r + YF_a$

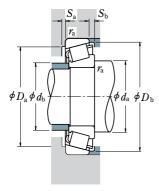
$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y_1

Carga Estática Equivalente


 $P_0 = 0.5F_r + Y_0 F_a$

Cuando $F_{\rm r}$ > $0.5F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de	Serie Dimen-			Dime	nsione	s de To (mm)	pe y Cha	aflán	Cono	Copa	Centros Efectivos	Cons- tante		res de ı Axial	Masa (kg)
Rodamientos	sional ISO355	$d_{\scriptscriptstyle a}$	$d_{ m b}$	1) _a	$D_{ m b}$	$S_{\rm a}$	$S_{ m b}$	COHO	r_a	de Carga (mm)		Y_1	Y_0	
	aprox.	mín.	máx.	máx.	∕a mín.	Dь mín.	mín.	ы mín.		náx.	а	e	11	10	aprox.
HR 32917 J	2BC	96	92	111	111	115	5	5	1.5	1.5	20.9	0.33	1.8	1.0	0.8
HR 32017 XJ	4CC	96	94	121	116	125	6	7	1.5	1.5	28.2	0.44	1.4	0.75	1.38
HR 33017 J	2CE	96	94	121	117	125	6	6.5	1.5	1.5	26.5	0.29	2.1	1.1	1.75
HR 33117 J HR 30217 J 30217 CA	3DE 3EB	100 100 100	94 97 98	130 140 140	122 133 131	135 141 142	7 5 5	9 6.5 8.5	2 2 2	2 2 2	32.7 30.3 36.2	0.41 0.42 0.58	1.5 1.4 1.0	0.81 0.79 0.57	2.51 2.12 2.07
HR 32217 J	3EC	100	96	140	131	142	5	8.5	2	2	33.8	0.42	1.4	0.79	2.64
HR 33217 J	3EE	100	95	140	129	144	7	12	2	2	37.3	0.42	1.4	0.79	3.57
HR 30317 J	2GB	106	108	166	157	167	5	10.5	3	2.5	35.7	0.35	1.7	0.96	5.08
HR 30317 DJ	7GB	113	103	166	144	169	6	16.5	3	2.5	55.3	0.83	0.73	0.40	4.88
HR 31317 J	7GB	113	103	166	144	169	6	16.5	3	2.5	55.3	0.83	0.73	0.40	4.88
HR 32317 J	2GD	110	104	166	151	167	5	14.5	3	2.5	43.5	0.35	1.7	0.96	7.31
HR 32918 J	2BC	101	97	116	116	120	5	5	1.5	1.5	22.0	0.34	1.8	0.96	0.838
HR 32018 XJ	3CC	102	99	131	124	134	6	8	2	1.5	29.7	0.42	1.4	0.78	1.78
HR 33018 J	2CE	102	99	131	129	135	7	6.5	2	1.5	27.9	0.27	2.2	1.2	2.21
HR 33118 J	3DE	105	100	140	132	144	7	10	2	2	35.2	0.40	1.5	0.83	3.14
HR 30218 J	3FB	105	103	150	141	150	5	6.5	2	2	31.7	0.42	1.4	0.79	2.6
HR 32218 J	3FC	105	102	150	139	152	5	8.5	2	2	36.1	0.42	1.4	0.79	3.41
HR 30318 J HR 30318 DJ HR 31318 J HR 32318 J	2GB 7GB 7GB 2GD	111 118 118 115	114 110 110 109	176 176 176 176	176 152 152 158	176 179 179 177	5 6 6 5	10.5 16.5 16.5 14.5	3 3 3	2.5 2.5 2.5 2.5	37.3 58.6 58.6 46.5	0.35 0.83 0.83 0.35	1.7 0.73 0.73 1.7	0.96 0.40 0.40 0.96	5.91 5.52 5.52 8.6
HR 32919 J	2BC	106	102	121	121	125	5	5	1.5	1.5	23.2	0.36	1.7	0.92	0.877
HR 32019 XJ	4CC	107	104	136	131	140	6	8	2	1.5	31.2	0.44	1.4	0.75	1.88
HR 33019 J	2CE	107	103	136	133	139	7	6.5	2	1.5	28.6	0.28	2.2	1.2	2.3
T 2 ED095	2ED	113	108	146	141	152	6	8	2.5	2.5	34.5	0.34	1.8	0.97	3.74
HR 30219 J	3FB	113	110	158	150	159	5	7.5	2.5		33.7	0.42	1.4	0.79	3.13
HR 32219 J	3FC	113	108	158	147	161	5	8.5	2.5		39.3	0.42	1.4	0.79	4.22
HR 30319 J	2GB	116	119	186	172	184	5	11.5	3 3	2.5	38.6	0.35	1.7	0.96	6.92
30319 CA	—	116	119	186	168	188	5	13.5		2.5	48.6	0.54	1.1	0.61	6.71
HR 30319 DJ	7GB	123	115	186	158	187	6	17.5		2.5	61.9	0.83	0.73	0.40	6.64
HR 31319 J	7GB	123	115	186	158	187	6	17.5	3	2.5	61.9	0.83	0.73	0.40	6.64
HR 32319 J	2GD	120	115	186	167	186	5	16.5	3	2.5	48.6	0.35	1.7	0.96	10.4
HR 32920 J	2CC	111	109	132	132	134	5	5	1.5	1.5	24.2	0.33	1.8	1.0	1.18
T 4 CB100	4CB	118	108	135	135	142	6	6.5	2.5	2.5	30.1	0.47	1.3	0.70	1.18
HR 32020 XJ HR 33020 J HR 33120 J	4CB 4CC 2CE 3EE	112 112 115	108 109 107 110	141 141 155	135 136 137 144	144 143 159	6 7 8	6.5	2.5 2 2 2	1.5 1.5	30.1 32.5 29.3 40.5	0.47 0.46 0.29 0.41	1.3 1.3 2.1 1.5	0.70 0.72 1.2 0.81	1.18 1.95 2.38 4.32
HR 30220 J HR 32220 J	3FB 3FC	118 118	116 115	168 168	158 155	168 171	5 5	12 8 10	2.5 2.5	2 2 2	36.1 41.5	0.42	1.4	0.79 0.79	3.78 5.05
HR 33220 J	3FE	118	113	168	152	172	10	15	2.5	2	45.9	0.40	1.5	0.82	6.76
HR 30320 J	2GB	121	128	201	185	197	5	12.5	3	2.5	41.1	0.35	1.7	0.96	8.41
HR 31320 J	7GB	136	125	201	169	202	7	21.5	3	2.5	67.7	0.83	0.73	0.40	9.02
HR 32320 J	2GD	125	125	201	178	200	5	17.5	3	2.5	53.2	0.35	1.7	0.96	12.7


RODAMIENTOS DE RODILLOS CÓNICOS DE UNA SOLA HILERA

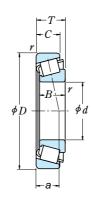
Diámetro Interior 105 \sim 130 mm

		D	imensione: (mm)	S	0	0	(Índices Básicos N)	de Carga	{kgf}	Velocidade (rpr	
d	D	T	В	С	Cono	Copa <i>Y</i> mín.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite
105	145	25	25	20	1.5	1.5	119 000	212 000	12 100	21 600	2 200	3 000
	160	35	35	26	2.5	2	204 000	340 000	20 800	34 500	2 000	2 800
	160	43	43	34	2.5	2	256 000	435 000	26 100	44 000	2 000	2 800
	190	39	36	30	3	2.5	280 000	365 000	28 500	37 500	1 900	2 600
	190	53	50	43	3	2.5	360 000	510 000	37 000	52 000	1 900	2 600
	225	53.5	49	41	4	3	455 000	565 000	46 500	57 500	1 600	2 200
	225	58	53	36	4	3	415 000	540 000	42 000	55 000	1 500	2 000
	225	81.5	77	63	4	3	670 000	925 000	68 000	94 500	1 700	2 200
110	150	25	25	20	1.5	1.5	123 000	224 000	12 500	22 800	2 200	2 800
	170	38	38	29	2.5	2	236 000	390 000	24 000	40 000	2 000	2 600
	170	47	47	37	2.5	2	294 000	515 000	30 000	52 500	2 000	2 600
	180	56	56	43	2.5	2	365 000	610 000	37 500	62 000	1 900	2 600
	200	41	38	32	3	2.5	315 000	420 000	32 000	43 000	1 800	2 400
	200	56	53	46	3	2.5	400 000	565 000	40 500	57 500	1 800	2 400
	240	54.5	50	42	4	3	485 000	595 000	49 500	60 500	1 500	2 000
	240	63	57	38	4	3	470 000	605 000	48 000	62 000	1 400	1 900
	240	84.5	80	65	4	3	675 000	910 000	68 500	93 000	1 500	2 000
120	165	29	29	23	1.5	1.5	161 000	291 000	16 400	29 700	1 900	2 600
	170	27	25	19.5	3	3	153 000	243 000	51 600	24 800	1 800	2 600
	180	38	38	29	2.5	2	242 000	405 000	24 600	41 000	1 800	2 400
	180	48	48	38	2.5	2	300 000	540 000	30 500	55 000	1 800	2 600
	200	62	62	48	2.5	2	460 000	755 000	46 500	77 000	1 700	2 400
	215	43.5	40	34	3	2.5	335 000	450 000	34 000	46 000	1 600	2 200
	215	61.5	58	50	3	2.5	440 000	635 000	44 500	65 000	1 600	2 200
	260	59.5	55	46	4	3	535 000	655 000	54 500	67 000	1 400	1 900
	260	68	62	42	4	3	560 000	730 000	57 000	74 500	1 300	1 800
	260	90.5	86	69	4	3	770 000	1 060 000	78 500	108 000	1 400	1 900
130	180	32	30	26	2	1.5	167 000	281 000	17 000	28 600	1 800	2 400
	180	32	32	25	2	1.5	200 000	365 000	20 400	37 500	1 800	2 400
	185	29	27	21	3	3	183 000	296 000	18 600	30 000	1 700	2 400
	200	45	45	34	2.5	2	320 000	535 000	32 500	54 500	1 600	2 200
	200	55	55	43	2.5	2	395 000	715 000	40 500	73 000	1 700	2 200
	230	43.75	40	34	4	3	375 000	505 000	38 000	51 500	1 500	2 000
	230	67.75	64	54	4	3	530 000	790 000	54 000	80 500	1 500	2 000
	280	63.75	58	49	5	4	545 000	675 000	56 000	68 500	1 300	1 800
	280	63.75	58	49	5	4	650 000	820 000	66 000	83 500	1 300	1 800
	280	72	66	44	5	4	625 000	820 000	63 500	83 500	1 200	1 700
	280	98.75	93	78	5	4	830 000	1 150 000	84 500	117 000	1 300	1 800

 $P = XF_r + YF_a$

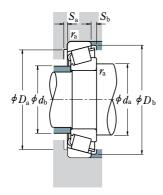
Ξ	$F_{\rm a}/I$	$T_{\rm r} \leq e$	$F_{\rm a}/I$	r > e
	X	Y	X	Y
	1	0	0.4	Y_1

Carga Estática Equivalente


 $P_0 = 0.5F_r + Y_0 F_a$

Cuando $F_r>0.5F_r+Y_0F_a$, use $P_0=F_r$ Los valores de $e,\ Y_1$, y Y_0 se muestran en la tabla siguiente.

Números de	Serie Dimen- sional			Dime	nsione	s de To (mm)	pe y Cha	ıflán	Cono	Copa	Centros Efectivos de Carga	Cons- tante	Facto Carga	res de Axial	Masa (kg)
Rodamientos	ISO355 aprox.	$d_{ m a}$ mín.	$d_{ m b}$ máx.	<i>1</i> máx.	D _a mín.	$D_{ m b}$ mín.	$S_{ m a}$ mín.	$S_{ m b}$ mín.		$oldsymbol{r}_{ m a}$ máx.	(mm) a	e	Y_1	Y_0	aprox.
HR 32921 J	2CC	116	114	137	137	140	5	5	1.5	1.5	25.3	0.34	1.8	0.96	1.23
HR 32021 XJ	4DC	120	115	150	144	154	6	9	2	2	34.3	0.44	1.4	0.74	2.48
HR 33021 J	2DE	120	115	150	146	153	7	9	2	2	30.9	0.28	2.1	1.2	3.03
HR 30221 J	3FB	123	123	178	166	177	6	9	2.5	2	38.1	0.42	1.4	0.79	4.51
HR 32221 J	3FC	123	120	178	162	180	5	10	2.5	2	44.8	0.42	1.4	0.79	6.25
HR 30321 J	2GB	126	133	211	195	206	6	12.5	3	2.5	43.2	0.35	1.7	0.96	9.52
HR 31321 J	7GB	141	130	211	177	211	7	22	3	2.5	70.2	0.83	0.73	0.40	10
HR 32321 J	2GD	130	129	211	186	209	6	18.5	3	2.5	55.2	0.35	1.7	0.96	14.9
HR 32922 J	2CC	121	119	142	142	145	5	5	1.5	1.5	26.5	0.36	1.7	0.93	1.29
HR 32022 XJ	4DC	125	121	160	153	163	7	9	2	2	35.9	0.43	1.4	0.77	3.09
HR 33022 J	2DE	125	121	160	153	161	7	10	2	2	33.7	0.29	2.1	1.2	3.84
HR 33122 J	3EE	125	121	170	156	174	9	13	2	2	44.1	0.42	1.4	0.79	5.54
HR 30222 J	3FB	128	129	188	175	187	6	9	2.5	2	40.1	0.42	1.4	0.79	5.28
HR 32222 J	3FC	128	127	188	171	190	5	10	2.5	2	47.2	0.42	1.4	0.79	7.35
HR 30322 J	2GB	131	143	226	208	220	6	12.5	3	2.5	45.1	0.35	1.7	0.96	11
HR 31322 J	7GB	146	136	226	191	224	7	25	3	2.5	74.7	0.83	0.73	0.40	12.3
HR 32322 J	2GD	135	139	226	201	222	6	19.5	3	2.5	58.5	0.35	1.7	0.96	17.1
HR 32924 J	2CC	131	129	156	155	160	6	6	1.5	1.5	29.2	0.35	1.7	0.95	1.8
T 4 CB120	4CB	138	129	158	158	164	7	7.5	2.5	2.5	35.0	0.47	1.3	0.70	1.78
HR 32024 XJ	4DC	135	131	170	162	173	7	9	2	2	39.7	0.46	1.3	0.72	3.27
HR 33024 J	2DE	135	130	168	161	171	6	10	2	2	36.0	0.31	2.0	1.1	4.2
HR 33124 J	3FE	135	133	190	173	192	9	14	2	2	47.9	0.40	1.5	0.83	7.67
HR 30224 J	4FB	138	141	203	190	201	6	9.5	2.5	2	44.4	0.44	1.4	0.76	6.28
HR 32224 J	4FD	138	137	203	181	204	6	11.5	2.5	2	52.0	0.44	1.4	0.76	9.0
HR 30324 J	2GB	141	154	246	223	237	6	13.5	3	2.5	50.0	0.35	1.7	0.96	13.9
HR 31324 J	7GB	156	148	246	206	244	9	26	3	2.5	81.6	0.83	0.73	0.40	15.6
HR 32324 J	2GD	145	149	246	216	239	6	21.5	3	2.5	62.4	0.35	1.7	0.96	21.8
32926 HR 32926 J T 4 CB130	2CC 4CB	142 142 148	141 140 141	171 170 171	168 168 171	175 173 179	6 6 8	6 7 8	2 2 2.5	1.5 1.5 2.5	34.7 31.4 37.5	0.36 0.34 0.47	1.7 1.8 1.3	0.92 0.97 0.70	2.25 2.46 2.32
HR 32026 XJ	4EC	145	144	190	179	192	8	11	2	2	43.9	0.43	1.4	0.76	5.06
HR 33026 J	2EE	145	144	188	179	192	8	12	2	2	42.4	0.34	1.8	0.97	6.25
HR 30226 J	4FB	151	151	216	205	217	7	9.5	3	2.5	45.8	0.44	1.4	0.76	7.25
HR 32226 J	4FD	151	147	216	196	219	7	13.5	3	2.5	56.9	0.44	1.4	0.76	11.3
30326	—	157	168	262	239	255	8	14.5	4	3	53.9	0.36	1.7	0.92	16.6
HR 30326 J	2GB	157	166	262	241	255	8	14.5	4	3	52.7	0.35	1.7	0.96	17.2
HR 31326 J	7GB	174	159	262	220	261	9	28	4	3	87.1	0.83	0.73	0.40	18.8
32326	—	162	165	262	233	263	8	20.5	4		69.2	0.36	1.7	0.92	26.6


RODAMIENTOS DE RODILLOS CÓNICOS DE UNA SOLA HILERA

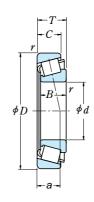
Diámetro Interior 140 \sim 170 mm

		D	imensione (mm)	S				ndices Básicos N)	de Carga	{kgf}	Velocidade (rpr	
d	D	T	В	С	Cono	Copa r mín.	$C_{ m r}$	$C_{0\mathrm{r}}$	C_{r}	C_{0r}	Grasa	Aceite
140	190	32	32	25	2	1.5	206 000	390 000	21 000	39 500	1 700	2 200
	210	45	45	34	2.5	2	325 000	555 000	33 000	57 000	1 600	2 200
	210	56	56	44	2.5	2	410 000	770 000	42 000	78 500	1 600	2 200
	250	45.75	42	36	4	3	390 000	515 000	40 000	52 500	1 400	1 900
	250	71.75	68	58	4	3	610 000	915 000	62 000	93 500	1 400	1 900
	300	67.75	62	53	5	4	740 000	945 000	75 500	96 500	1 200	1 700
	300	77	70	47	5	4	695 000	955 000	71 000	97 500	1 100	1 500
	300	107.75	102	85	5	4	985 000	1 440 000	101 000	147 000	1 200	1 600
150	210	38	36	31	2.5	2	247 000	440 000	25 200	45 000	1 500	2 000
	210	38	38	30	2.5	2	281 000	520 000	28 600	53 000	1 500	2 000
	225	48	48	36	3	2.5	375 000	650 000	38 000	66 500	1 400	2 000
	225	59	59	46	3	2.5	435 000	805 000	44 000	82 000	1 400	2 000
	270	49	45	38	4	3	485 000	665 000	49 000	67 500	1 300	1 800
	270	77	73	60	4	3	705 000	1 080 000	71 500	110 000	1 300	1 800
	320 320 320 320	72 72 82 114	65 65 75 108	55 55 50 90	5 5 5 5	4 4 4 4	690 000 825 000 790 000 1 120 000	860 000 1 060 000 1 100 000 1 700 000		87 500 108 000 112 000 174 000	1 100 1 100 1 000 1 100	1 500 1 600 1 400 1 500
160	220	38	38	30	2.5	2	296 000	570 000	30 000	58 000	1 400	1 900
	240	51	51	38	3	2.5	425 000	750 000	43 500	76 500	1 300	1 800
	290	52	48	40	4	3	530 000	730 000	54 000	74 500	1 200	1 600
	290 340 340	84 75 75	80 68 68	67 58 58	4 5 5	3 4 4	795 000 765 000 870 000	1 120 000 960 000 1 110 000	78 000	125 000 98 000 113 000	1 200 1 000 1 100	1 600 1 400 1 400
	340	75	68	48	5	4	675 000	875 000	69 000	89 000	950	1 300
	340	121	114	95	5	4	1 210 000	1 770 000	123 000	181 000	1 000	1 400
170	230	38	36	31	2.5	2.5	258 000	485 000	26 300	49 500	1 300	1 800
	230	38	38	30	2.5	2	294 000	560 000	30 000	57 000	1 400	1 800
	260	57	57	43	3	2.5	505 000	890 000	51 500	90 500	1 200	1 700
	310 310 360	57 91 80	52 86 72	43 71 62	5 5 5	4 4 4	630 000 930 000 845 000	885 000 1 450 000 1 080 000		90 000 148 000 110 000	1 100 1 100 950	1 500 1 500 1 300
	360 360 360	80 80 127	72 72 120	62 50 100	5 5 5	4 4 4	960 000 760 000 1 370 000	1 230 000 1 040 000 2 050 000		125 000 106 000 209 000	1 000 900 1 000	1 300 1 200 1 300

 $P = XF_r + YF_a$

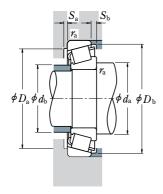
$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y_1

Carga Estática Equivalente


 $P_0 = 0.5F_r + Y_0 F_a$

Cuando $F_{\rm r}$ > $0.5F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de	Serie Dimen-			Dime	nsione	s de To _l (mm)	pe y Cha	ıflán	Cono	Сора	Centros Efectivos de Carga	Cons- tante		res de ı Axial	Masa (kg)
Rodamientos	sional ISO355 aprox.	$d_{ m a}$ mín.	$d_{ m b}$ máx.	<i>I</i> máx.	D _a mín.	$D_{ m b}$ mín.	$S_{ m a}$ mín.	$S_{ m b}$ mín.	00110	$r_{\rm a}$ máx.	(mm)	e	Y_1	Y_0	aprox.
HR 32928 J	2CC	152	150	180	178	184	6	7	2	1.5	33.6	0.36	1.7	0.92	2.64
HR 32028 XJ	4DC	155	152	200	189	202	8	11	2	2	46.6	0.46	1.3	0.72	5.32
HR 33028 J	2DE	155	153	198	189	202	7	12	2	2	45.5	0.36	1.7	0.92	6.74
HR 30228 J	4FB	161	164	236	221	234	7	9.5	3	2.5	48.9	0.44	1.4	0.76	8.74
HR 32228 J	4FD	161	159	236	213	238	9	13.5	3	2.5	60.5	0.44	1.4	0.76	14.3
HR 30328 J	2GB	167	177	282	256	273	9	14.5	4	3	55.7	0.35	1.7	0.96	21.1
HR 31328 J	7GB	184	174	282	236	280	9	30	4	3	92.8	0.83	0.73	0.40	28.5
32328	—	172	177	282	246	281	9	22.5	4		76.4	0.37	1.6	0.88	33.9
32930 HR 32930 J HR 32030 XJ	2DC 4EC	165 165 168	162 163 164	200 198 213	195 196 202	201 202 216	7 7 8	7 8 12	2 2 2.5	2 2 2	36.7 36.5 49.8	0.33 0.33 0.46	1.8 1.8 1.3	1.0 1.0 0.72	3.8 4.05 6.6
HR 33030 J	2EE	168	165	213	203	217	8	13	2.5	2	48.7	0.36	1.7	0.90	8.07
HR 30230 J	2GB	171	175	256	236	250	7	11	3	2.5	51.3	0.44	1.4	0.76	11.2
HR 32230 J	4GD	171	171	256	228	254	8	17	3	2.5	64.7	0.44	1.4	0.76	17.8
30330 HR 30330 J HR 31330 J 32330	 2GB 7GB 	177 177 194 182	193 190 187 191	302 302 302 302	275 276 253 262	292 292 300 297	8 8 9 8	17 17 32 24	4 4 4	3 3 3 3	61.4 60.0 99.3 81.5	0.36 0.35 0.83 0.37	1.7 1.7 0.73 1.6	0.92 0.96 0.40 0.88	24.2 25 28.5 41.4
HR 32932 J	2DC	175	173	208	206	212	7	8	2	2	38.7	0.35	1.7	0.95	4.32
HR 32032 XJ	4EC	178	175	228	216	231	8	13	2.5	2	53.0	0.46	1.3	0.72	7.93
HR 30232 J	4GB	181	189	276	253	269	8	12	3	2.5	55.0	0.44	1.4	0.76	13.7
HR 32232 J	4GD	181	184	276	243	274	10	17	3	2.5	70.5	0.44	1.4	0.76	22.7
30332	—	187	205	322	293	311	10	17	4	3	64.6	0.36	1.7	0.92	28.4
HR 30332 J	2GB	187	201	322	293	310	10	17	4	3	62.9	0.35	1.7	0.96	29.2
30332 D 32332	=	196 192	198 202	322 322	270 281	313 319	9 10	27 26	4 4	3	99.3 87.1	0.81 0.37	0.74 1.6	0.41 0.88	27.5 48.3
32934 HR 32934 J HR 32034 XJ	3DC 4EC	185 185 188	183 180 187	220 218 248	216 215 232	223 222 249	7 7 10	7 8 14	2 2 2.5	2 2 2	41.6 41.7 56.6	0.36 0.38 0.44	1.7 1.6 1.4	0.90 0.86 0.74	4.3 4.44 10.6
HR 30234 J	4GB	197	202	292	273	288	8	14	4	3	59.4	0.44	1.4	0.76	17.1
HR 32234 J	4GD	197	197	292	262	294	10	20	4	3	76.4	0.44	1.4	0.76	28
30334	—	197	221	342	312	332	10	18	4	3	70.1	0.37	1.6	0.90	33.5
HR 30334 J	2GB	197	214	342	310	329	10	18	4	3	67.3	0.35	1.7	0.96	34.5
30334 D	—	206	215	342	288	332	10	30	4	3	107.3	0.81	0.74	0.41	33.4
32334	—	202	213	342	297	337	10	27	4	3	91.3	0.37	1.6	0.88	57


RODAMIENTOS DE RODILLOS CÓNICOS DE UNA SOLA HILERA

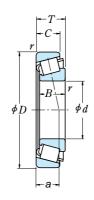
Diámetro Interior 180∼240 mm

			Dimensione (mm)	S	_	_		ndices Básicos N)	de Carga	{kgf}	Velocidade (rpr	
d	D	T	B	С	Cono	Copa <i>Y</i> mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Grasa	Aceite
180	250 280 320	45 64 57	45 64 52	34 48 43	2.5 3 5	2 2.5 4	350 000 640 000 650 000	685 000 1 130 000 930 000	36 000 65 000 66 000	69 500 115 000 95 000	1 300 1 200 1 100	1 700 1 600 1 400
	320 380 380 380	91 83 83 134	86 75 75 126	71 64 53 106	5 5 5 5	4 4 4 4	960 000 935 000 820 000 1 520 000	1 540 000 1 230 000 1 120 000 2 290 000	95 500 83 500	157 000 126 000 114 000 234 000	1 100 900 850 950	1 400 1 300 1 200 1 300
190	260 290 340	45 64 60	45 64 55	34 48 46	2.5 3 5	2 2.5 4	365 000 650 000 760 000	715 000 1 170 000 1 080 000		73 000 119 000 111 000	1 200 1 100 1 000	1 600 1 500 1 300
	340 400 400	97 86 140	92 78 132	75 65 109	5 6 6	4 5 5	1 110 000 1 010 000 1 660 000	1 770 000 1 340 000 2 580 000	103 000	181 000 136 000 263 000	1 000 850 850	1 400 1 200 1 200
200	280 280 310	51 51 70	48 51 70	41 39 53	3 3 3	2.5 2.5 2.5	410 000 480 000 760 000	780 000 935 000 1 370 000	42 000 48 500 77 500	80 000 95 000 139 000	1 100 1 100 1 000	1 500 1 500 1 400
	360 360 420	64 104 89	58 98 80	48 82 67	5 5 6	4 4 5	825 000 1 210 000 1 030 000	1 180 000 1 920 000 1 390 000	123 000	121 000 196 000 142 000	950 950 850	1 300 1 300 1 200
	420 420	89 146	80 138	56 115	6 6	5 5	965 000 1 820 000	1 330 000 2 870 000		136 000 292 000	750 800	1 000 1 100
220	300 340 400	51 76 72	51 76 65	39 57 54	3 4 5	2.5 3 4	490 000 885 000 810 000	990 000 1 610 000 1 150 000	90 500	101 000 164 000 117 000	1 000 950 850	1 400 1 300 1 100
	400 460 460	114 97 154	108 88 145	90 73 122	5 6 6	4 5 5	1 340 000 1 430 000 2 020 000	2 210 000 1 990 000 3 200 000	146 000	225 000 203 000 325 000	850 750 750	1 100 1 000 1 000
240	320 360 440	51 76 79	51 76 72	39 57 60	3 4 5	2.5 3 4	500 000 920 000 990 000	1 040 000 1 730 000 1 400 000	94 000	107 000 177 000 142 000	950 850 750	1 300 1 200 1 000
	440 500 500	127 105 165	120 95 155	100 80 132	5 6 6	4 5 5	1 630 000 1 660 000 2 520 000	2 730 000 2 340 000 4 100 000	169 000	278 000 238 000 415 000	750 670 670	1 000 950 900

 $P = XF_r + YF_a$

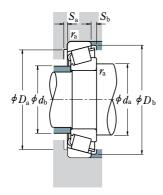
$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y_1

Carga Estática Equivalente


 $P_0 = 0.5F_r + Y_0 F_a$

Cuando $F_{\rm r}>$ 0.5 $F_{\rm r}+Y_0F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de Rodamientos	Serie Dimen- sional	_	_			(mm)	pe y Cha		Cono	Copa		Cons- tante	Carga	res de Axial	Masa (kg)
Hodaillicitios	ISO355 aprox.	$d_{ m a}$ mín.	$d_{ m b}$ máx.	<i>I</i> máx.	D _a mín.	$D_{ m b}$ mín.	$S_{ m a}$ mín.	$S_{ m b}$ mín.		$oldsymbol{r}_{ m a}$ máx.	(mm) a	e	Y_1	Y_0	aprox.
HR 32936 J	4DC	195	192	240	227	241	8	11	2	2	53.9	0.48	1.3	0.69	6.56
HR 32036 XJ	3FD	198	199	268	248	267	10	16	2.5	2	60.4	0.42	1.4	0.78	14.3
HR 30236 J	4GB	207	210	302	281	297	9	14	4	3	61.8	0.45	1.3	0.73	17.8
HR 32236 J	4GD	207	205	302	270	303	10	20	4	3 3 3	78.8	0.45	1.3	0.73	29.8
30336	—	207	233	362	324	345	10	19	4		72.4	0.36	1.7	0.92	39.3
30336 D	—	216	229	362	304	352	10	30	4		113.1	0.81	0.74	0.41	38.5
32336	—	212	225	362	310	353	10	28	4		96.6	0.37	1.6	0.88	66.8
HR 32938 J	4DC	205	201	250	237	251	8	11	2	2	55.3	0.48	1.3	0.69	6.83
HR 32038 XJ	4FD	208	209	278	258	279	10	16	2.5	2	63.3	0.44	1.4	0.75	14.9
HR 30238 J	4GB	217	223	322	302	318	9	14	4	3	64.4	0.44	1.4	0.76	21.4
HR 32238 J	4GD	217	216	322	290	323	10	22	4	3	80.5	0.44	1.4	0.76	35.2
30338	—	223	248	378	346	366	11	21	5	4	76.1	0.36	1.7	0.92	46
32338	—	229	243	378	332	375	11	31	5	4	102.7	0.37	1.6	0.88	78.9
32940 HR 32940 J HR 32040 XJ	3EC 4FD	218 218 218	217 216 221	268 268 298	256 258 277	269 271 297	9 9 11	10 12 17	2.5 2.5 2.5	2 2 2	53.4 54.2 67.4	0.37 0.39 0.43	1.6 1.5 1.4	0.88 0.84 0.77	9.26 9.65 18.9
HR 30240 J HR 32240 J 30340	4GB 3GD	227 227 233	236 230 253	342 342 398	318 305 346	336 340 368	10 11 11	16 22 22	4 4 5	3 3 4	68.7 85.1 81.4	0.44 0.41 0.37	1.4 1.5 1.6	0.76 0.81 0.88	25.1 42.6 52.3
30340 D 32340	Ξ	244 239	253 253	398 398	336 346	385 392	11 11	33 31	5 5	4	122.8 106.7	0.81 0.37	0.74 1.6	0.41 0.88	49.6 90.9
HR 32944 J	3EC	238	235	288	278	293	9	12	2.5	2	59.2	0.43	1.4	0.78	10.3
HR 32044 XJ	4FD	241	244	326	303	326	12	19	3	2.5	73.6	0.43	1.4	0.77	24.4
30244	—	247	267	382	350	367	11	18	4	3	74.6	0.40	1.5	0.82	33.6
32244	Ξ	247	260	382	340	377	12	24	4	3	93.0	0.40	1.5	0.82	57.4
30344		253	283	438	390	414	12	24	5	4	85.3	0.36	1.7	0.92	72.4
32344		259	274	438	372	421	12	32	5	4	114.9	0.37	1.6	0.88	114
HR 32948 J	4EC	258	255	308	297	314	9	12	2.5	2	65.1	0.46	1.3	0.72	11.1
HR 32048 XJ	4FD	261	262	346	321	346	12	19	3	2.5	79.1	0.46	1.3	0.72	26.2
30248	—	267	288	422	384	408	11	19	4	3	85.1	0.44	1.4	0.74	45.2
32248	=	267	285	422	374	416	12	27	4	3	102.5	0.40	1.5	0.82	78
30348		273	308	478	422	447	12	25	5	4	92.8	0.36	1.7	0.92	92.6
32348		279	301	478	410	464	12	33	5	4	123.2	0.37	1.6	0.88	145

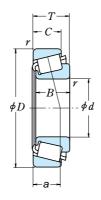

RODAMIENTOS DE RODILLOS CÓNICOS DE UNA SOLA HILERA

Diámetro Interior 260~440 mm

		[Dimensiones (mm)	3	0	0	(1	Índices Básicos N)	de Carga	{kgf}	Velocidade (rpn	
d	D	T	B	C	Cono	Copa r mín.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Grasa	Aceite
260	360 400 480	63.5 87 89	63.5 87 80	48 65 67	3 5 6	2.5 4 5	730 000 1 160 000 1 190 000	1 450 000 2 160 000 1 700 000	74 500 118 000 121 000		850 800 670	1 100 1 100 900
	480 540 540	137 113 176	130 102 165	106 85 136	6 6 6	5 6 6	1 900 000 1 870 000 2 910 000	3 300 000 2 640 000 4 800 000	194 000 190 000 297 000	269 000	670 630 630	950 850 850
280	380 420 500	63.5 87 89	63.5 87 80	48 65 67	3 5 6	2.5 4 5	765 000 1 180 000 1 240 000	1 580 000 2 240 000 1 900 000	78 000 120 000 127 000		800 710 630	1 100 1 000 850
	500 580	137 187	130 175	106 145	6 6	5 6	1 950 000 3 300 000	3 450 000 5 400 000	199 000 335 000		630 560	850 800
300	420 420 460	76 76 100	72 76 100	62 57 74	4 4 5	3 3 4	895 000 1 010 000 1 440 000	1 820 000 2 100 000 2 700 000	91 000 103 000 147 000		710 710 670	950 950 900
	540 540	96 149	85 140	71 115	6 6	5 5	1 440 000 2 220 000	2 100 000 3 700 000	147 000 226 000		600 600	800 800
320	440 440 480	76 76 100	72 76 100	63 57 74	4 4 5	3 3 4	900 000 1 040 000 1 510 000	1 880 000 2 220 000 2 910 000	92 000 106 000 153 000		970 670 630	900 900 850
	580 580 670	104 159 210	92 150 200	75 125 170	6 6 7.5	5 5 7.5	1 640 000 2 860 000 4 200 000	2 420 000 5 050 000 7 100 000	168 000 292 000 430 000	515 000	530 530 480	750 750 670
340	460 460 520	76 76 112	72 76 106	63 57 92	4 4 6	3 3 5	910 000 1 050 000 1 650 000	1 940 000 2 220 000 3 400 000	93 000 107 000 168 000		630 630 560	850 850 750
360	480 480 540	76 76 112	72 76 106	62 57 92	4 4 6	3 3 5	945 000 1 080 000 1 680 000	2 100 000 2 340 000 3 500 000	965 000 110 000 171 000	239 000	600 560 530	800 800 750
380	520	87	82	71	5	4	1 210 000	2 550 000	124 000	260 000	560	750
400	540 600	87 125	82 118	71 100	5 6	4 5	1 250 000 1 960 000	2 700 000 4 050 000	128 000 200 000		530 480	710 670
420	560 620	87 125	82 118	72 100	5 6	4 5	1 300 000 2 000 000	2 810 000 4 200 000	132 000 204 000		500 450	670 630
440	650	130	122	104	6	6	2 230 000	4 600 000	227 000	470 000	430	600

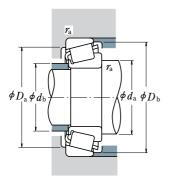
 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y_1


Carga Estática Equivalente

 $P_0 = 0.5F_r + Y_0 F_a$

Cuando $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.


Números de	Serie Dimen- sional			Dime	nsiones	s de Top (mm)	oe y Cha	ıflán	Cono	Copa	Centros Efectivos de Carga	Cons- tante		res de ı Axial	Masa (kg)
Rodamientos	ISO355 aprox.	$d_{ m a}$ mín.	$d_{ m b}$ máx.	<i>I</i> máx.	O _a mín.	$D_{ m b}$ mín.	$S_{ m a}$ mín.	$S_{ m b}$ mín.		$oldsymbol{r}_{ m a}$ máx.	(mm) a	e	Y_1	Y_0	aprox.
HR 32952 J HR 32052 XJ 30252	3EC 4FC —	278 287 293	278 287 316	348 382 458	333 357 421	347 383 447	11 14 12	15.5 22 22	2.5 4 5	2 3 4	69.8 86.3 94.5	0.41 0.43 0.44	1.5 1.4 1.4	0.81 0.76 0.74	18.6 38.5 60.7
32252 30352 32352	=	293 293 293	305 336 328	458 512 512	394 460 441	446 487 495	14 16 13	31 28 40	5 5 5	4 5 5	116.0 101.6 130.5	0.45 0.36 0.37	1.3 1.7 1.6	0.73 0.92 0.88	103 114 188
HR 32956 J HR 32056 XJ 30256	4EC 4FC —	298 307 313	297 305 339	368 402 478	352 374 436	368 402 462	12 14 12	15.5 22 22	2.5 4 5	2 3 4	75.3 91.6 98.5	0.43 0.46 0.44	1.4 1.3 1.4	0.76 0.72 0.74	20 40.6 66.3
32256 32356	=	313 319	325 353	478 552	412 475	467 532	14 14	31 42	5 5	4 5	123.0 139.6	0.47 0.37	1.3 1.6	0.70 0.89	109 224
32960 HR 32960 J HR 32060 XJ	— 3FD 4GD	321 321 327	326 324 330	406 406 442	386 387 408	405 405 439	13 13 15	14 19 26	3 3 4	2.5 2.5 3	79.3 79.9 98.4	0.37 0.39 0.43	1.6 1.5 1.4	0.88 0.84 0.76	30.5 31.4 56.6
30260 32260	=	333 333	355 352	518 518	470 458	499 514	14 15	25 34	5 5	4	105.1 131.6	0.44 0.46	1.4 1.3	0.74 0.72	80.6 132
32964 HR 32964 J HR 32064 XJ	— 3FD 4GD	341 341 347	345 344 350	426 426 462	404 406 430	425 426 461	13 13 15	13 19 26	3 3 4	2.5 2.5 3	84.3 85.0 104.5	0.39 0.42 0.46	1.5 1.4 1.3	0.84 0.79 0.72	32 33.3 60
30264 32264 32364	=	353 353 383	381 383 412	558 558 634	503 487 547	533 550 616	14 15 14	29 34 42	5 5 6	4 4 6	113.7 141.6 157.5	0.44 0.46 0.37	1.4 1.3 1.6	0.74 0.72 0.88	99.3 175 343
32968 HR 32968 J 32068	— 4FD —	361 361 373	364 362 386	446 446 498	426 427 464	446 446 496	13 13 3.5	13 19 22	3 3 5	2.5 2.5 4	89.2 91.0 104.4	0.41 0.44 0.37	1.5 1.4 1.6	0.80 0.75 0.89	33.6 34.3 83.7
32972 HR 32972 J 32072	— 4FD —	381 381 393	386 381 402	466 466 518	445 445 480	465 466 514	14 13 5.5	14 19 22	3 3 5	2.5 2.5 4	91.4 96.8 108.5	0.40 0.46 0.38	1.5 1.3 1.6	0.82 0.72 0.86	35.8 36.1 86.5
32976	_	407	406	502	478	501	16	16	4	3	95.2	0.39	1.6	0.86	49.5
32980 32080	=	427 433	428 443	522 578	499 533	524 565	16 5	16 25	4 5	3 4	100.8 115.3	0.40 0.36	1.5 1.7	0.82 0.92	52.7 116
32984 32084	=	447 453	448 463	542 598	521 552	544 586	3.5 6.5	15 25	4 5	3 4	106.1 120.0	0.41 0.37	1.5 1.6	0.81 0.88	54.8 121
32088	_	473	487	622	582	616	5	26	5	5	126.3	0.36	1.7	0.92	136

Diámetro Interior 12.000~22.225 mm

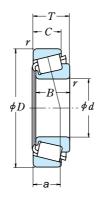
			nsiones nm)					ndices Básio N)	cos de Carga	{kgf}	Veloci Límite	
d	D	T	В	С	Cono	Copa Y mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Grasa	Aceite
12.000	31.991	10.008	10.785	7.938	0.8	1.3	10 300	8 900	1 050	905	13 000	18 000
12.700	34.988	10.998	10.988	8.730	1.3	1.3	11 700	10 900	1 200	1 110	12 000	16 000
15.000	34.988	10.998	10.988	8.730	0.8	1.3	11 700	10 900	1 200	1 110	12 000	16 000
15.875	34.988	10.998	10.998	8.712	1.3	1.3	13 800	13 400	1 410	1 360	11 000	15 000
	39.992	12.014	11.153	9.525	1.3	1.3	14 900	15 700	1 520	1 600	9 500	13 000
	41.275	14.288	14.681	11.112	1.3	2.0	21 300	19 900	2 170	2 030	10 000	13 000
	42.862	14.288	14.288	9.525	1.5	1.5	17 300	17 200	1 770	1 750	8 500	12 000
	42.862	16.670	16.670	13.495	1.5	1.5	26 900	26 300	2 750	2 680	9 500	13 000
	44.450	15.494	14.381	11.430	1.5	1.5	23 800	23 900	2 430	2 440	8 500	11 000
	49.225	19.845	21.539	14.288	0.8	1.3	37 500	37 000	3 800	3 800	8 500	11 000
16.000	47.000	21.000	21.000	16.000	1.0	2.0	35 000	36 500	3 600	3 750	9 000	12 000
16.993	39.992	12.014	11.153	9.525	0.8	1.3	14 900	15 700	1 520	1 600	9 500	13 000
17.455	36.525	11.112	11.112	7.938	1.5	1.5	11 600	11 000	1 190	1 120	10 000	14 000
17.462	39.878	13.843	14.605	10.668	1.3	1.3	22 500	22 500	2 290	2 290	10 000	13 000
	47.000	14.381	14.381	11.112	0.8	1.3	23 800	23 900	2 430	2 440	8 500	11 000
19.050	39.992	12.014	11.153	9.525	1.0	1.3	14 900	15 700	1 520	1 600	9 500	13 000
	45.237	15.494	16.637	12.065	1.3	1.3	28 500	28 900	2 910	2 950	9 000	12 000
	47.000	14.381	14.381	11.112	1.3	1.3	23 800	23 900	2 430	2 440	8 500	11 000
	49.225	18.034	19.050	14.288	1.3	1.3	37 500	37 000	3 800	3 800	8 500	11 000
	49.225	19.845	21.539	14.288	1.2	1.3	37 500	37 000	3 800	3 800	8 500	11 000
	49.225	21.209	19.050	17.462	1.3	1.5	37 500	37 000	3 800	3 800	8 500	11 000
	49.225	23.020	21.539	17.462	C1.5	3.5	37 500	37 000	3 800	3 800	8 500	11 000
	53.975	22.225	21.839	15.875	1.5	2.3	40 500	39 500	4 150	4 000	7 500	10 000
19.990	47.000	14.381	14.381	11.112	1.5	1.3	23 800	23 900	2 430	2 440	8 500	11 000
20.000	51.994	15.011	14.260	12.700	1.5	1.3	26 000	27 900	2 650	2 840	7 500	10 000
20.625	49.225	23.020	21.539	17.462	1.5	1.5	37 500	37 000	3 800	3 800	8 500	11 000
20.638	49.225	19.845	19.845	15.875	1.5	1.5	36 000	37 000	3 650	3 750	8 000	11 000
21.430	50.005	17.526	18.288	13.970	1.3	1.3	38 500	40 000	3 950	4 100	8 000	11 000
22.000	45.237	15.494	16.637	12.065	1.3	1.3	29 200	33 500	2 980	3 400	8 500	11 000
	45.975	15.494	16.637	12.065	1.3	1.3	29 200	33 500	2 980	3 400	8 500	11 000
22.225	50.005	13.495	14.260	9.525	1.3	1.0	26 000	27 900	2 650	2 840	7 500	10 000
	50.005	17.526	18.288	13.970	1.3	1.3	38 500	40 000	3 950	4 100	8 000	11 000
	52.388	19.368	20.168	14.288	1.5	1.5	40 500	43 000	4 100	4 400	7 500	10 000
	53.975	19.368	20.168	14.288	1.5	1.5	40 500	43 000	4 100	4 400	7 500	10 000
	56.896	19.368	19.837	15.875	1.3	1.3	38 000	40 500	3 900	4 150	7 100	9 500
	57.150	22.225	22.225	17.462	0.8	1.5	48 000	50 000	4 850	5 100	7 100	9 500

 $P = XF_r + YF_a$

$F_{\rm a}/I$	$T_{\rm r} \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y ₁

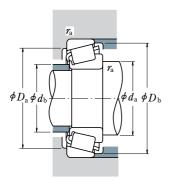
Carga Estática Equivalente

 $P_0 = 0.5F_r + Y_0 F_a$


Cuando $F_{\rm r}$ > 0.5 $F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de Ro	odamientos	Di	imensior	nes de To (mm)			Copa	Centros Efectivos de Carga	Cons- tante		res de ı Axial	Masa (kg)
CONO	COPA	$d_{\scriptscriptstyle m a}$	$d_{ m b}$	$D_{ m a}$	$D_{ ext{b}}$		$oldsymbol{\gamma}_{\mathrm{a}}$ máx.	(mm)	e	Y_1	Y_0	aprox. CONO COPA
*A 2047	A 2126	16.5	15.5	26	29	0.8	1.3	6.8	0.41	1.5	0.81	0.023 0.017
A 4050	A 4138	18.5	17	29	32	1.3	1.3	8.2	0.45	1.3	0.73	0.033 0.022
*A 4059	A 4138	19.5	19	29	32	0.8	1.3	8.2	0.45	1.3	0.73	0.029 0.022
L 21549	L 21511	21.5	19.5	29	32.5	1.3	1.3	7.7	0.32	1.9	1.0	0.031 0.018
A 6062	A 6157	22	20.5	34	37	1.3	1.3	10.3	0.53	1.1	0.63	0.044 0.031
03062	03162	21.5	20	34	37.5	1.3	2	9.1	0.31	1.9	1.1	0.061 0.035
11590	11520	24.5	22.5	34.5	39.5	1.5	1.5	13.0	0.70	0.85	0.47	0.061 0.040
17580	17520	23	21	36.5	39	1.5	1.5	10.6	0.33	1.8	1.0	0.075 0.048
05062	05175	23.5	21	38	42	1.5	1.5	11.2	0.36	1.7	0.93	0.081 0.039
09062	09195	22	21.5	42	44.5	0.8	1.3	10.7	0.27	2.3	1.2	0.139 0.065
*HM 81649	**HM 81610	27.5	23	37.5	43	1	2	14.9	0.55	1.1	0.60	0.115 0.082
A 6067	A 6157	22	21	34	37	0.8	1.3	10.3	0.53	1.1	0.63	0.042 0.031
A 5069	A 5144	23.5	21.5	30	33.5	1.5	1.5	8.9	0.49	1.2	0.68	0.030 0.020
† LM 11749	† LM 11710	23	21.5	34	37	1.3	1.3	8.7	0.29	2.1	1.2	0.055 0.028
05068	05185	23	22.5	40.5	42.5	0.8	1.3	10.1	0.36	1.7	0.93	0.082 0.047
A 6075	A 6157	24	23	34	37	1	1.3	10.3	0.53	1.1	0.63	0.037 0.031
† LM 11949	† LM 11910	25	23.5	39.5	41.5	1.3	1.3	9.5	0.30	2.0	1.1	0.081 0.044
05075	05185	25	23.5	40.5	42.5	1.3	1.3	10.1	0.36	1.7	0.93	0.077 0.047
09067	09195	25.5	24	42	44.5	1.3	1.3	10.7	0.27	2.3	1.2	0.115 0.065
09078	09195	25.5	24	42	44.5	1.2	1.3	10.7	0.27	2.3	1.2	0.124 0.065
09067	09196	25.5	24	41.5	44.5	1.3	1.5	13.8	0.27	2.3	1.2	0.115 0.085
09074	09194	26	24	39	44.5	1.5	3.5	13.8	0.27	2.3	1.2	0.124 0.082
21075	21212	31.5	26	43	50	1.5	2.3	16.3	0.59	1.0	0.56	0.156 0.097
05079	05185	26.5	24	40.5	42.5	1.5	1.3	10.1	0.36	1.7	0.93	0.073 0.047
07079	07204	27.5	27	45	48	1.5	1.3	12.1	0.40	1.5	0.82	0.105 0.061
09081	09196	27.5	25.5	41.5	44.5	1.5	1.5	13.8	0.27	2.3	1.2	0.115 0.085
12580	12520	28.5	26	42.5	45.5	1.5	1.5	12.9	0.32	1.9	1.0	0.114 0.067
† M 12649	† M 12610	27.5	25.5	44	46	1.3	1.3	10.9	0.28	2.2	1.2	0.115 0.059
*† LM 12749	† LM 12710	27.5	26	39.5	42.5	1.3	1.3	10.0	0.31	2.0	1.1	0.078
*† LM 12749	† LM 12711	27.5	26	40	42.5	1.3	1.3	10.0	0.31	2.0	1.1	
07087	07196	28.5	27	44.5	47	1.3	1	10.6	0.40	1.5	0.82	0.097 0.035
† M 12648	† M 12610	28.5	26.5	44	46	1.3	1.3	10.9	0.28	2.2	1.2	0.111 0.059
1380	1328	29.5	27	45	48.5	1.5	1.5	11.3	0.29	2.1	1.1	0.137 0.067
1380	1329	29.5	27	46	49	1.5	1.5	11.3	0.29	2.1	1.1	0.137 0.082
1755	1729	29	27.5	49	51	1.3	1.3	12.2	0.31	2.0	1.1	0.152 0.102
1280	1220	29.5	29	49	52	0.8	1.5	15.1	0.35	1.7	0.95	0.183 0.106

Notas


- * Está listado el diámetro interior máximo y su tolerancia es negativa (Consulte la Tabla 8.4.1 en la Página A68).
- ** Está listado el diámetro exterior máximo y su tolerancia es negativa (Consulte la Tabla 8.4.2 en las Páginas A68 y A69).
- † Las tolerancias para el diámetro interior y la anchura general del rodamiento difieren de las estándar (Consulte la Tabla 5 en la Página B110).
- * † La tolerancia para el diámetro interior es de 0 a $-20~\mu\mathrm{m}$, y para la anchura general del rodamiento es de +356 to 0 $\mu\mathrm{m}$.

Diámetro Interior 22.606~28.575 mm

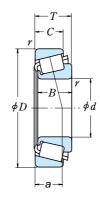
			nsiones nm)				(1	Índices Bás N)	sicos de Carga	{kgf}	Veloci Límite	
d	D	T	В	С	Cono	Copa γ mín.	$C_{\rm r}$	C_{0r}	$C_{ m r}$	C_{0r}	Grasa	Aceite
22.606	47.000	15.500	15.500	12.000	1.5	1.0	26 300	30 000	2 680	3 100	8 000	11 000
23.812	50.292	14.224	14.732	10.668	1.5	1.3	27 600	32 000	2 820	3 250	7 100	10 000
	56.896	19.368	19.837	15.875	0.8	1.3	38 000	40 500	3 900	4 150	7 100	9 500
24.000	55.000	25.000	25.000	21.000	2.0	2.0	49 500	55 000	5 050	5 650	7 100	9 500
24.981	51.994	15.011	14.260	12.700	1.5	1.3	26 000	27 900	2 650	2 840	7 500	10 000
	52.001	15.011	14.260	12.700	1.5	2.0	26 000	27 900	2 650	2 840	7 500	10 000
	62.000	16.002	16.566	14.288	1.5	1.5	37 000	39 500	3 750	4 000	6 300	8 500
25.000	50.005	13.495	14.260	9.525	1.5	1.0	26 000	27 900	2 650	2 840	7 500	10 000
	51.994	15.011	14.260	12.700	1.5	1.3	26 000	27 900	2 650	2 840	7 500	10 000
25.400	50.005	13.495	14.260	9.525	3.3	1.0	26 000	27 900	2 650	2 840	7 500	10 000
	50.005	13.495	14.260	9.525	1.0	1.0	26 000	27 900	2 650	2 840	7 500	10 000
	50.292	14.224	14.732	10.668	1.3	1.3	27 600	32 000	2 820	3 250	7 100	10 000
	57.150	17.462	17.462	13.495	1.3	1.5	39 500	45 500	4 050	4 650	6 700	9 000
	57.150	19.431	19.431	14.732	1.5	1.5	42 500	49 000	4 300	5 000	6 700	9 000
	59.530	23.368	23.114	18.288	0.8	1.5	50 000	58 000	5 100	5 900	6 300	9 000
	62.000	19.050	20.638	14.288	0.8	1.3	46 000	53 000	4 700	5 400	6 000	8 000
	63.500	20.638	20.638	15.875	3.5	1.5	46 000	53 000	4 700	5 400	6 000	8 000
	64.292	21.433	21.433	16.670	1.5	1.5	51 000	64 500	5 200	6 600	5 600	8 000
	65.088	22.225	21.463	15.875	1.5	1.5	45 000	47 500	4 600	4 850	5 600	8 000
	68.262	22.225	22.225	17.462	0.8	1.5	55 000	64 000	5 600	6 550	5 600	7 500
	72.233	25.400	25.400	19.842	0.8	2.3	63 500	83 500	6 500	8 500	5 000	7 100
	72.626	24.608	24.257	17.462	2.3	1.5	60 000	58 000	6 100	5 900	5 600	7 500
26.988	50.292	14.224	14.732	10.668	3.5	1.3	27 600	32 000	2 820	3 250	7 100	10 000
	57.150	19.845	19.355	15.875	3.3	1.5	40 000	44 500	4 100	4 500	6 700	9 000
	60.325	19.842	17.462	15.875	3.5	1.5	39 500	45 500	4 050	4 650	6 700	9 000
	62.000	19.050	20.638	14.288	0.8	1.3	46 000	53 000	4 700	5 400	6 000	8 000
28.575	57.150	19.845	19.355	15.875	3.5	1.5	40 000	44 500	4 100	4 500	6 700	9 000
	59.131	15.875	16.764	11.811	espec.	1.3	34 500	41 500	3 550	4 200	6 300	8 500
	62.000	19.050	20.638	14.288	3.5	1.3	46 000	53 000	4 700	5 400	6 000	8 000
	62.000	19.050	20.638	14.288	0.8	1.3	46 000	53 000	4 700	5 400	6 000	8 000
	64.292	21.433	21.433	16.670	1.5	1.5	51 000	64 500	5 200	6 600	5 600	8 000
	68.262	22.225	22.225	17.462	0.8	1.5	55 000	64 000	5 600	6 550	5 600	7 500
	72.626	24.608	24.257	17.462	4.8	1.5	60 000	58 000	6 100	5 900	5 600	7 500
	72.626	24.608	24.257	17.462	1.5	1.5	60 000	58 000	6 100	5 900	5 600	7 500
	73.025	22.225	22.225	17.462	0.8	3.3	54 500	64 500	5 550	6 600	5 300	7 100

 $P = XF_r + YF_a$

F_a/F	$r \leq e$	F_a/I	r > e
X	Y	X	Y
1	0	0.4	Y_1

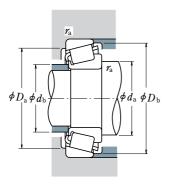
Carga Estática Equivalente

 $P_0 = 0.5F_r + Y_0 F_a$


Cuando $F_{\rm r}$ > 0.5 $F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de Ro		Di	imension	nes de To (mm)	. ,		Copa	Centros Efectivos de Carga	Cons- tante	Carga Axial		Masa (kg)	
CONO	COPA	$d_{\scriptscriptstyle \mathrm{a}}$	$d_{ m b}$	D_{a}	$D_{ ext{b}}$		$oldsymbol{r}_{ m a}$ máx.	(mm)	e	Y_1	Y_0	apr CONO	rox. COPA
LM 72849	LM 72810	29	27	40.5	44.5	1.5	1	12.2	0.47	1.3	0.70	0.086	0.046
† L 44640	† L 44610	30.5	28.5	44.5	47	1.5	1.3	10.9	0.37	1.6	0.88	0.097	0.039
1779	1729	29.5	28.5	49	51	0.8	1.3	12.2	0.31	2.0	1.1	0.143	0.102
▲JHM 33449	▲JHM 33410	35	30	47	52	2	2	15.8	0.35	1.7	0.93	0.181	0.107
07098	07204	31	29	45	48	1.5	1.3	12.1	0.40	1.5	0.82	0.085	0.061
07098	07205	31	29	44.5	48	1.5	2	12.1	0.40	1.5	0.82	0.085	0.061
17098	17244	33	30.5	54	57	1.5	1.5	12.8	0.38	1.6	0.86	0.165	0.091
07097	07196	31	29	44.5	47	1.5	1	10.6	0.40	1.5	0.82	0.085	0.035
07097	07204	31	29	45	48	1.5	1.3	12.1	0.40	1.5	0.82	0.085	0.061
07100 SA	07196	35	29.5	44.5	47	3.3	1	10.6	0.40	1.5	0.82	0.082	0.035
07100	07196	30.5	29.5	44.5	47	1	1	10.6	0.40	1.5	0.82	0.084	0.035
† L 44643	† L 44610	31.5	29.5	44.5	47	1.3	1.3	10.9	0.37	1.6	0.88	0.090	0.039
15578	15520	32.5	30.5	51	53	1.3	1.5	12.4	0.35	1.7	0.95	0.151	0.070
M 84548	M 84510	36	33	48.5	54	1.5	1.5	16.1	0.55	1.1	0.60	0.156	0.089
M 84249	M 84210	36	32.5	49.5	56	0.8	1.5	18.3	0.55	1.1	0.60	0.194	0.13
15101	15245	32.5	31.5	55	58	0.8	1.3	13.3	0.35	1.7	0.94	0.222	0.081
15100	15250 X	38	31.5	55	59	3.5	1.5	14.9	0.35	1.7	0.94	0.22	0.113
M 86643	M 86610	38	36.5	54	61	1.5	1.5	17.7	0.55	1.1	0.60	0.246	0.128
23100	23256	39	34.5	53	61	1.5	1.5	20.0	0.73	0.82	0.45	0.214	0.142
02473	02420	34.5	33.5	59	63	0.8	1.5	16.9	0.42	1.4	0.79	0.28	0.152
HM 88630	HM 88610	39.5	39.5	60	69	0.8	2.3	20.7	0.55	1.1	0.60	0.398	0.188
41100	41286	41	36.5	61	68	2.3	1.5	20.7	0.60	1.0	0.55	0.32	0.177
† L 44649	† L 44610	37.5	31	44.5	47	3.5	1.3	10.9	0.37	1.6	0.88	0.081	0.039
1997 X	1922	37.5	31.5	51	53.5	3.3	1.5	13.9	0.33	1.8	1.0	0.152	0.077
15580	15523	38.5	32	51	54	3.5	1.5	14.7	0.35	1.7	0.95	0.141	0.123
15106	15245	33.5	33	55	58	0.8	1.3	13.3	0.35	1.7	0.94	0.211	0.081
1988	1922	39.5	33.5	51	53.5	3.5	1.5	13.9	0.33	1.8	1.0	0.141	0.077
† LM 67043	† LM 67010	40	33.5	52	56	3.5	1.3	12.6	0.41	1.5	0.80	0.147	0.062
15112	15245	40	34	55	58	3.5	1.3	13.3	0.35	1.7	0.94	0.199	0.081
15113	15245	34.5	34	55	58	0.8	1.3	13.3	0.35	1.7	0.94	0.20	0.081
M 86647	M 86610	40	38	54	61	1.5	1.5	17.7	0.55	1.1	0.60	0.223	0.128
02474	02420	36.5	36	59	63	0.8	1.5	16.9	0.42	1.4	0.79	0.257	0.152
41125	41286	48	36.5	61	68	4.8	1.5	20.7	0.60	1.0	0.55	0.292	0.177
41126	41286	41.5	36.5	61	68	1.5	1.5	20.7	0.60	1.0	0.55	0.295	0.177
02872	02820	37.5	37	62	68	0.8	3.3	18.3	0.45	1.3	0.73	0.321	0.16

Notas † Las tolerancias para el diámetro interior y la anchura general del rodamiento difieren de las estándar (Consulte la Tabla 5 en la Página B110).


▲ Las tolerancias se listan en las Tablas 2, 3 y 4 en las Páginas B109 y B110.

Diámetro Interior 29.000~32.000 mm

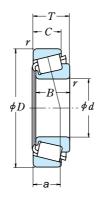
			nsiones nm)					Índices Básic	os de Carga {kgf}		cidades e (rpm)
d	D	T	B	С	Cono	Copa	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$ $C_{0\rm r}$	Grasa	Aceite
29.000 29.367	50.292 66.421	14.224 23.812	14.732 25.433	10.668 19.050	3.5 3.5	1.3 1.3	26 800 65 000	34 000 73 000	2 730 3 500 6 600 7 450	7 100 6 000	
30.000	62.000 62.000 63.500 72.000	16.002 19.050 20.638 19.000	16.566 20.638 20.638 18.923	14.288 14.288 15.875 15.875	1.5 1.3 1.3 1.5	1.5 1.3 1.3 1.5	37 000 46 000 46 000 52 000	39 500 53 000 53 000 56 000	3 750 4 000 4 700 5 400 4 700 5 400 5 300 5 700	6 300 6 000 6 000 5 600	8 000
30.112	62.000	19.050	20.638	14.288	0.8	1.3	46 000	53 000	4 700 5 400	6 000	8 000
30.162	58.738 64.292 68.262	14.684 21.433 22.225	15.080 21.433 22.225	10.716 16.670 17.462	3.5 1.5 2.3	1.0 1.5 1.5	28 800 51 000 55 500	33 500 64 500 70 500	2 940 3 450 5 200 6 600 5 650 7 200	6 000 5 600 5 300	8 000
	69.850 69.850 76.200	23.812 23.812 24.608	25.357 25.357 24.074	19.050 19.050 16.670	2.3 0.8 1.5	1.3 1.3 C3.3	71 000 71 000 67 500	84 000 84 000 69 500	7 200 8 550 7 200 8 550 6 850 7 100	5 600 5 600 5 000	7 500
30.213	62.000 62.000 62.000	19.050 19.050 19.050	20.638 20.638 20.638	14.288 14.288 14.288	3.5 0.8 1.5	1.3 1.3 1.3	46 000 46 000 46 000	53 000 53 000 53 000	4 700 5 400 4 700 5 400 4 700 5 400	6 000 6 000 6 000	8 000
30.955	64.292	21.433	21.433	16.670	1.5	1.5	51 000	64 500	5 200 6 600	5 600	8 000
31.750	58.738 59.131 62.000	14.684 15.875 18.161	15.080 16.764 19.050	10.716 11.811 14.288	1.0 espec. espec.	1.0 1.3 1.3	28 800 34 500 46 000	33 500 41 500 53 000	2 940 3 450 3 550 4 200 4 700 5 400	6 000 6 300 6 000	8 500
	62.000 62.000 63.500	19.050 19.050 20.638	20.638 20.638 20.638	14.288 14.288 15.875	0.8 3.5 0.8	1.3 1.3 1.3	46 000 46 000 46 000	53 000 53 000 53 000	4 700 5 400 4 700 5 400 4 700 5 400	6 000 6 000 6 000	8 000
	68.262 68.262 69.012	22.225 22.225 19.845	22.225 22.225 19.583	17.462 17.462 15.875	3.5 1.5 3.5	1.5 1.5 1.3	55 000 55 500 47 000	64 000 70 500 56 000	5 600 6 550 5 650 7 200 4 800 5 700	5 600 5 300 5 600	7 500
	69.012 69.850 69.850	26.982 23.812 23.812	26.721 25.357 25.357	15.875 19.050 19.050	4.3 0.8 3.5	3.3 1.3 1.3	47 000 71 000 71 000	56 000 84 000 84 000	4 800 5 700 7 200 8 550 7 200 8 550	5 600 5 600 5 600	7 500
	72.626 73.025 80.000	30.162 29.370 21.000	29.997 27.783 22.403	23.812 23.020 17.826	0.8 1.3 0.8	3.3 3.3 1.3	79 500 74 000 68 500	90 000 100 000 75 500	8 100 9 200 7 550 10 200 6 950 7 700	5 300 5 000 4 500	7 100
32.000	72.233	25.400	25.400	19.842	3.3	2.3	63 500	83 500	6 500 8 500	5 000	7 100

 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y_1

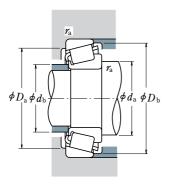
Carga Estática Equivalente

 $P_0 = 0.5F_r + Y_0 F_a$


Donde $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de Rodamientos		Dimensio	nes de T (mm			Cons	Centros Efectivos de Carga	Cons- tante		res de Axial		asa :g)
CONO COPA	d_{a}	$d_{ m b}$	D_{a}	$D_{\scriptscriptstyle m b}$		вора r a máx.	(mm)	e	Y_1	Y_0	apı CONO	rox. COPA
† L 45449 † L 4541		33	44.5	48	3.5	1.3	10.8	0.37	1.6	0.89	0.079	0.036
2690 263		35	58	60	3.5	1.3	14.3	0.25	2.4	1.3	0.242	0.165
* 17118 1724 * 15117 1524 * 15117 1525 * 26118 2628	36.5 36.5	34.5 35 35 36	54 55 56 62	57 58 59 65	1.5 1.3 1.3 1.5	1.5 1.3 1.3 1.5	12.8 13.3 14.9 14.8	0.38 0.35 0.35 0.36	1.6 1.7 1.7 1.7	0.86 0.94 0.94 0.92	0.136 0.189 0.189 0.225	0.091 0.081 0.113 0.163
15116 1524	36	35.5	55	58	0.8	1.3	13.3	0.35	1.7	0.94	0.189	0.081
08118 0823	41	35	52	55	3.5	1	13.3	0.47	1.3	0.70	0.12	0.057
M 86649 M 8661		38	54	61	1.5	1.5	17.7	0.55	1.1	0.60	0.211	0.128
M 88043 M 8801		39.5	58	65	2.3	1.5	19.1	0.55	1.1	0.60	0.263	0.146
2558 252	37	36.5	61	64	2.3	1.3	14.5	0.27	2.2	1.2	0.297	0.169
2559 252		36.5	61	64	0.8	1.3	14.5	0.27	2.2	1.2	0.298	0.169
43118 4330		42	64	73	1.5	3.3	22.9	0.67	0.90	0.49	0.383	0.146
15118 1524	36	35.5	55	58	3.5	1.3	13.3	0.35	1.7	0.94	0.186	0.081
15120 1524		35.5	55	58	0.8	1.3	13.3	0.35	1.7	0.94	0.188	0.081
15119 1524		35.5	55	58	1.5	1.3	13.3	0.35	1.7	0.94	0.188	0.081
M 86648 A M 8661	42	38	54	61	1.5	1.5	17.7	0.55	1.1	0.60	0.205	0.128
08125 0823	42.5	36	52	55	1	1	13.3	0.47	1.3	0.70	0.113	0.057
† LM 67048 † LM 6701		36	52	56	3.5	1.3	12.6	0.41	1.5	0.80	0.127	0.062
15123 1524		36.5	55	58	3.5	1.3	13.3	0.35	1.7	0.94	0.165	0.081
15126 1524	42.5	36.5	55	58	0.8	1.3	13.3	0.35	1.7	0.94	0.176	0.081
15125 1524		36.5	55	58	3.5	1.3	13.3	0.35	1.7	0.94	0.174	0.081
15126 1525		36.5	56	59	0.8	1.3	14.9	0.35	1.7	0.94	0.176	0.113
02475 0242	43	38.5	59	63	3.5	1.5	16.9	0.42	1.4	0.79	0.229	0.152
M 88046 M 8801		40.5	58	65	1.5	1.5	19.1	0.55	1.1	0.60	0.25	0.146
14125 A 1427		37.5	60	63	3.5	1.3	15.3	0.38	1.6	0.86	0.219	0.135
14123 A 1427	38.5	37.5	59	63	4.3	3.3	15.1	0.38	1.6	0.87	0.289	0.132
2580 252		37.5	61	64	0.8	1.3	14.5	0.27	2.2	1.2	0.282	0.169
2582 252		37.5	61	64	3.5	1.3	14.5	0.27	2.2	1.2	0.28	0.169
3188 312	45.5	39.5	61	67	0.8	3.3	19.6	0.33	1.8	0.99	0.368	0.225
HM 88542 HM 8851		42.5	59	70	1.3	3.3	23.5	0.55	1.1	0.60	0.379	0.242
346 33		39.5	73	75	0.8	1.3	14.6	0.27	2.2	1.2	0.419	0.146
*HM 88638 HM 8861	48.5	42.5	60	69	3.3	2.3	20.7	0.55	1.1	0.60	0.337	0.188

Notas * Se lista el diámetro interior máximo y su tolerancia es negativa (Consulte la Tabla 8.4.1 en la Página A68).


† Las tolerancias para el diámetro interior y la anchura general del rodamiento difieren de las estándar (Consulte la Tabla 5 en la Página **B110**).

Diámetro Interior 33.338~35.000 mm

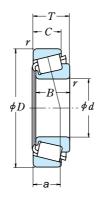
			nsiones nm)					Índices Básio	os de Carga	{kgf}	Velocio Límite	
d	D	T	B	С	Cono	Copa r mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	C_{r}	C_{0r}	Grasa	Aceite
33.338	66.675	20.638	20.638	15.875	3.5	1.5	46 000	53 500	4 650	5 450	5 600	7 500
	68.262	22.225	22.225	17.462	0.8	1.5	55 500	70 500	5 650	7 200	5 300	7 500
	69.012	19.845	19.583	15.875	3.5	3.3	47 000	56 000	4 800	5 700	5 600	7 500
	69.012	19.845	19.583	15.875	0.8	1.3	47 000	56 000	4 800	5 700	5 600	7 500
	69.850	23.812	25.357	19.050	3.5	1.3	71 000	84 000	7 200	8 550	5 600	7 500
	72.000	19.000	18.923	15.875	3.5	1.5	52 000	56 000	5 300	5 700	5 600	7 500
	72.626	30.162	29.997	23.812	0.8	3.3	79 500	90 000	8 100	9 200	5 300	7 500
	73.025	29.370	27.783	23.020	0.8	3.3	74 000	100 000	7 550	10 200	5 000	7 100
	76.200	29.370	28.575	23.020	3.8	0.8	78 500	106 000	8 000	10 800	4 800	6 700
	76.200	29.370	28.575	23.020	0.8	3.3	78 500	106 000	8 000	10 800	4 800	6 700
	79.375	25.400	24.074	17.462	3.5	1.5	67 500	69 500	6 850	7 100	5 000	6 700
34.925	65.088	18.034	18.288	13.970	espec.	1.3	47 500	57 500	4 850	5 900	5 600	7 500
	65.088	20.320	18.288	16.256	espec.	1.3	47 500	57 500	4 850	5 900	5 600	7 500
	66.675	20.638	20.638	16.670	3.5	2.3	53 000	62 500	5 400	6 400	5 600	7 500
	69.012	19.845	19.583	15.875	3.5	1.3	47 000	56 000	4 800	5 700	5 600	7 500
	69.012	19.845	19.583	15.875	1.5	1.3	47 000	56 000	4 800	5 700	5 600	7 500
	72.233	25.400	25.400	19.842	2.3	2.3	63 500	83 500	6 500	8 500	5 000	7 100
	73.025	22.225	22.225	17.462	0.8	3.3	54 500	64 500	5 550	6 600	5 300	7 100
	73.025	22.225	23.812	17.462	3.5	3.3	63 500	77 000	6 500	7 850	5 300	7 100
	73.025	23.812	24.608	19.050	1.5	0.8	71 000	86 000	7 250	8 750	5 300	7 100
	73.025	23.812	24.608	19.050	3.5	2.3	71 000	86 000	7 250	8 750	5 300	7 100
	76.200	29.370	28.575	23.020	0.8	0.8	78 500	106 000	8 000	10 800	4 800	6 700
	76.200	29.370	28.575	23.020	3.5	0.8	78 500	106 000	8 000	10 800	4 800	6 700
	76.200	29.370	28.575	23.020	3.5	3.3	78 500	106 000	8 000	10 800	4 800	6 700
	76.200	29.370	28.575	23.812	1.5	3.3	80 500	96 500	8 200	9 850	5 000	6 700
	79.375	29.370	29.771	23.812	3.5	3.3	88 000	106 000	8 950	10 800	4 800	6 700
34.976	68.262	15.875	16.520	11.908	1.5	1.5	45 000	53 500	4 600	5 450	5 300	7 100
	72.085	22.385	19.583	18.415	1.3	2.3	47 000	56 000	4 800	5 700	5 600	7 500
	80.000	21.006	20.940	15.875	1.5	1.5	56 500	64 500	5 750	6 600	5 000	6 700
35.000	59.131	15.875	16.764	11.938	espec.	1.3	35 000	47 000	3 550	4 750	6 000	8 000
	59.975	15.875	16.764	11.938	espec.	1.3	35 000	47 000	3 550	4 750	6 000	8 000
	62.000	16.700	17.000	13.600	espec.	1.0	38 000	50 000	3 900	5 100	5 600	8 000
	62.000	16.700	17.000	13.600	espec.	1.5	38 000	50 000	3 900	5 100	5 600	8 000
	65.987	20.638	20.638	16.670	3.5	2.3	53 000	62 500	5 400	6 400	5 600	7 500
	73.025	26.988	26.975	22.225	3.5	0.8	75 500	88 500	7 650	9 050	5 300	7 500

 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y ₁

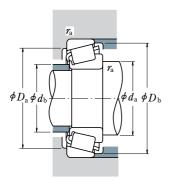
Carga Estática Equivalente

 $P_0 = 0.5F_r + Y_0 F_a$


Cuando $F_{\rm r}$ > 0.5 $F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de Ro	odamientos	Di	mensior	nes de T			Cona	Centros Efectivos de Carga	Cons- tante		res de ı Axial	Ma:	
CONO	COPA	$d_{\scriptscriptstyle \mathrm{a}}$	$d_{\scriptscriptstyle m b}$	D_{a}	$D_{ m b}$		$oldsymbol{r}_{ m a}$ náx.	(mm)	e	Y_1	Y_0	apro CONO	ox. COPA
1680	1620	44.5	38.5	58	61	3.5	1.5	15.2	0.37	1.6	0.89	0.236	0.121
M 88048	M 88010	42.5	41	58	65	0.8	1.5	19.0	0.55	1.1	0.60		0.146
14130	14274	45	38.5	59	63	3.5	3.3	15.3	0.38	1.6	0.86		0.132
14131	14276	39.5	38.5	60	63	0.8	1.3	15.3	0.38	1.6	0.86	0.263	0.135
2585	2523	45	39	61	64	3.5	1.3	14.5	0.27	2.2	1.2		0.169
26131	26283	44.5	38.5	62	65	3.5	1.5	14.7	0.36	1.7	0.92		0.163
3197	3120	41.5	40.5	61	67	0.8	3.3	19.6	0.33	1.8	0.99	0.362	0.225
HM 88547	HM 88510	45.5	42.5	59	70	0.8	3.3	23.5	0.55	1.1	0.60		0.242
HM 89444	HM 89411	53	44.5	65	73	3.8	0.8	23.6	0.55	1.1	0.60		0.261
HM 89443	HM 89410	46.5	44.5	62	73	0.8	3.3	23.6	0.55	1.1	0.60		0.257
43131	43312	51	42	67	74	3.5	1.5	23.7	0.67	0.90	0.49		0.22
† LM 48548	† LM 48510	46	40	58	61	3.5	1.3	14.1	0.38	1.6	0.88	0.172	0.087
† LM 48548	† LM 48511	46	40	58	61	3.5	1.3	16.4	0.38	1.6	0.88		0.108
M 38549	M 38510	46.5	40	58	62	3.5	2.3	15.2	0.35	1.7	0.94		0.112
14138 A	14276	46	40	60	63	3.5	1.3	15.3	0.38	1.6	0.86	0.196	0.135
14137 A	14276	42	40	60	63	1.5	1.3	15.1	0.38	1.6	0.86		0.135
HM 88649	HM 88610	48.5	42.5	60	69	2.3	2.3	20.7	0.55	1.1	0.60		0.188
02878	02820	42.5	42	62	68	0.8	3.3	18.3	0.45	1.3	0.73	0.291	0.16
2877	2820	47	41.5	63	68	3.5	3.3	16.1	0.37	1.6	0.90		0.15
25877	25821	43	40.5	65	68	1.5	0.8	15.7	0.29	2.1	1.1		0.167
25878	25820	47	40.5	64	68	3.5	2.3	15.7	0.29	2.1	1.1	0.403	0.165
HM 89446 A	HM 89411	47.5	44.5	65	73	0.8	0.8	23.6	0.55	1.1	0.60		0.261
HM 89446	HM 89411	53	44.5	65	73	3.5	0.8	23.6	0.55	1.1	0.60		0.261
HM 89446 31594 3478	HM 89410 31520 3420	53 46 50	44.5 43.5 43.5	62 64 67	73 72 74	3.5 1.5 3.5	3.3 3.3 3.3	23.6 21.6 20.0	0.55 0.40 0.37	1.1 1.5 1.6	0.60 0.82 0.90	0.404 0.448	0.257 0.235 0.259
19138 14139 28138	19268 14283 28315	42.5 41.5 43.5	40.5 40 41	61 60 69	65 65 73	1.5 1.3 1.5	1.5 2.3 1.5	14.5 17.7 16.0	0.44 0.38 0.40	1.4 1.6 1.5	0.74 0.87 0.82	0.198 0.308	0.073 0.21 0.199
*† L 68149 *† L 68149 * LM 78349	† L 68110 † L 68111 ** LM 78310	45.5 45.5 46	39 39 40	52 53 55	56 56 59	3.5 3.5 3.5	1.3 1.3 1	13.2 13.2 14.4	0.42 0.42 0.44	1.4 1.4 1.4	0.79 0.79 0.74	0.117 0.137	0.056 0.064 0.074
* LM 78349	** LM 78310 A	46	40	54	59	3.5	1.5	14.4	0.44	1.4	0.74	0.193	0.073
M 38547	M 38511	46	39.5	59	61	3.5	2.3	15.2	0.35	1.7	0.94		0.103
23691	23621	49	42	63	68	3.5	0.8	18.1	0.37	1.6	0.89		0.212

Notas


- * Está listado el diámetro interior máximo y su tolerancia es negativa (Consulte la Tabla 8.4.1 en la Página A68).
- ** Está listado el diámetro exterior máximo y su tolerancia es negativa (Consulte la Tabla 8.4.2 en las Páginas A68 y A69).
- † Las tolerancias para el diámetro interior y la anchura general del rodamiento difieren de las estándar (Consulte la Tabla 5 en la Página B110).
- * † La tolerancia para el diámetro interior es de 0 a $-20~\mu m$, y para la anchura general del rodamiento es de +356 a 0 μm .

Diámetro Interior 35.717~41.275 mm

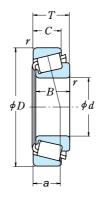
			nsiones nm)		_	_		Índices Bási N)	cos de Carga	{kgf}	Velocio Límite	
d	D	T	В	С	Cono	Copa Y mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	C_{r}	C_{0r}	Grasa	Aceite
35.717	72.233	25.400	25.400	19.842	3.5	2.3	63 500	83 500	6 500	8 500	5 000	7 100
36.487	73.025	23.812	24.608	19.050	1.5	0.8	71 000	86 000	7 250	8 750	5 300	7 100
36.512	76.200	29.370	28.575	23.020	3.5	3.3	78 500	106 000	8 000	10 800	4 800	6 700
	79.375	29.370	29.771	23.812	0.8	3.3	88 000	106 000	8 950	10 800	4 800	6 700
	88.501	25.400	23.698	17.462	2.3	1.5	73 000	81 000	7 450	8 250	4 000	5 600
	93.662	31.750	31.750	26.195	1.5	3.3	110 000	142 000	11 200	14 400	4 000	5 600
38.000	63.000	17.000	17.000	13.500	espec.	1.3	38 500	52 000	3 900	5 300	5 600	7 500
38.100	63.500	12.700	11.908	9.525	1.5	0.8	24 100	30 500	2 460	3 100	5 300	7 100
	65.088	18.034	18.288	13.970	2.3	1.3	42 500	55 000	4 300	5 650	5 300	7 500
	65.088	18.034	18.288	13.970	espec.	1.3	42 500	55 000	4 300	5 650	5 300	7 500
	65.088	19.812	18.288	15.748	2.3	1.3	42 500	55 000	4 300	5 650	5 300	7 500
	68.262	15.875	16.520	11.908	1.5	1.5	45 000	53 500	4 600	5 450	5 300	7 100
	69.012	19.050	19.050	15.083	2.0	2.3	49 000	61 000	4 950	6 250	5 300	7 100
	69.012	19.050	19.050	15.083	3.5	0.8	49 000	61 000	4 950	6 250	5 300	7 100
	72.238	20.638	20.638	15.875	3.5	1.3	48 500	59 500	4 950	6 050	5 300	7 100
	73.025	23.812	25.654	19.050	3.5	0.8	73 500	91 000	7 500	9 300	5 000	6 700
	76.200	23.812	25.654	19.050	3.5	3.3	73 500	91 000	7 500	9 300	5 000	6 700
	76.200	23.812	25.654	19.050	3.5	0.8	73 500	91 000	7 500	9 300	5 000	6 700
	79.375	29.370	29.771	23.812	3.5	3.3	88 000	106 000	8 950	10 800	4 800	6 700
	80.035	24.608	23.698	18.512	0.8	1.5	69 000	84 500	7 000	8 600	4 500	6 300
	82.550	29.370	28.575	23.020	0.8	3.3	87 000	117 000	8 850	11 900	4 500	6 000
	88.501	25.400	23.698	17.462	2.3	1.5	73 000	81 000	7 450	8 250	4 000	5 600
	88.501	26.988	29.083	22.225	3.5	1.5	96 500	109 000	9 800	11 100	4 500	6 000
	95.250	30.958	28.301	20.638	1.5	0.8	87 500	97 000	8 950	9 850	3 600	5 300
39.688	73.025	25.654	22.098	21.336	0.8	2.3	62 500	80 000	6 400	8 150	5 000	6 700
	76.200	23.812	25.654	19.050	3.5	3.3	73 500	91 000	7 500	9 300	5 000	6 700
	80.167	29.370	30.391	23.812	0.8	3.3	92 500	108 000	9 450	11 000	4 800	6 300
40.000	80.000	21.000	22.403	17.826	3.5	1.3	68 500	75 500	6 950	7 700	4 500	6 300
	80.000	21.000	22.403	17.826	0.8	1.3	68 500	75 500	6 950	7 700	4 500	6 300
	88.501	25.400	23.698	17.462	2.3	1.5	73 000	81 000	7 450	8 250	4 000	5 600
41.000	68.000	17.500	18.000	13.500	espec.	1.5	43 500	58 000	4 450	5 950	5 300	7 100
41.275	73.025	16.667	17.462	12.700	3.5	1.5	44 500	54 000	4 550	5 500	4 800	6 700
	73.431	19.558	19.812	14.732	3.5	0.8	54 500	67 000	5 550	6 850	4 800	6 700
	73.431	21.430	19.812	16.604	3.5	0.8	54 500	67 000	5 550	6 850	4 800	6 700

 $P = XF_r + YF_a$

$F_{\rm a}/I$	$r \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y ₁

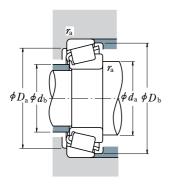
Carga Estática Equivalente

 $P_0 = 0.5F_r + Y_0 F_a$


Cuando $F_{\rm r}$ > 0.5 $F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de	Rodamientos	Di	mension	nes de To (mm)			Cons	Centros Efectivos	Cons- tante		res de a Axial	Ma (k	
CONO	COPA	$d_{\scriptscriptstyle \mathrm{a}}$	$d_{\scriptscriptstyle m b}$	D_{a}	$D_{ m b}$		vopa √a máx.	de Carga (mm)	e	Y_1	Y_0	apr CONO	ox. COPA
HM 88648	HM 88610	52	43	60	69	3.5	2.3	20.7	0.55	1.1	0.60	0.298	0.188
25880	25821	44	42	65	68	1.5	0.8	15.7	0.29	2.1	1.1	0.291	0.167
HM 89449	HM 89410	54	44.5	62	73	3.5	3.3	23.6	0.55	1.1	0.60	0.38	0.257
3479	3420	45.5	44.5	67	74	0.8	3.3	20.0	0.37	1.6	0.90	0.429	0.259
44143	44348	54	50	75	84	2.3	1.5	27.9	0.78	0.77	0.42	0.502	0.245
46143	46368	48.5	46.5	79	87	1.5	3.3	24.0	0.40	1.5	0.82	0.765	0.405
▲ JL 69349	▲ JL 69310	49	42.5	56	60	3.5	1.3	14.6	0.42	1.4	0.79	0.132	0.071
13889	13830	45	42.5	59	60	1.5	0.8	11.9	0.35	1.7	0.95	0.109	0.046
LM 29749	LM 29710	46	42.5	59	62	2.3	1.3	13.7	0.33	1.8	0.99	0.16	0.079
LM 29748	LM 29710	49	42.5	59	62	3.5	1.3	13.7	0.33	1.8	0.99	0.158	0.079
LM 29749	LM 29711	46	42.5	58	62	2.3	1.3	15.5	0.33	1.8	0.99	0.16	0.094
19150	19268	45	43	61	65	1.5	1.5	14.5	0.44	1.4	0.74	0.173	0.073
13687	13621	46.5	43	61	65	2	2.3	15.8	0.40	1.5	0.82	0.193	0.104
13685	13620	49.5	43	62	65	3.5	0.8	15.8	0.40	1.5	0.82	0.191	0.105
16150	16284	49.5	43	63	67	3.5	1.3	16.0	0.40	1.5	0.82	0.212	0.146
2788	2735 X	50	43.5	66	69	3.5	0.8	15.9	0.30	2.0	1.1	0.312	0.135
2788	2720	50	43.5	66	70	3.5	3.3	15.9	0.30	2.0	1.1	0.312	0.187
2788	2729	50	43.5	68	70	3.5	0.8	15.9	0.30	2.0	1.1	0.312	0.191
3490	3420	52	45.5	67	74	3.5	3.3	20.0	0.37	1.6	0.90	0.404	0.259
27880	27820	48	47	68	75	0.8	1.5	21.5	0.56	1.1	0.59	0.362	0.209
HM 801346	HM 801310	51	49	68	78	0.8	3.3	24.2	0.55	1.1	0.60	0.483	0.282
44150	44348	55	51	75	84	2.3	1.5	27.9	0.78	0.77	0.42	0.484	0.245
418	414	51	44.5	77	80	3.5	1.5	17.1	0.26	2.3	1.3	0.50	0.329
53150	53375	55	53	81	89	1.5	0.8	30.7	0.74	0.81	0.45	0.665	0.365
M 201047	M 201011	45.5	48	64	69	0.8	2.3	19.7	0.33	1.8	0.99	0.266	0.169
2789	2720	52	45	66	70	3.5	3.3	15.9	0.30	2.0	1.1	0.292	0.187
3386	3320	46.5	45.5	70	75	0.8	3.3	18.4	0.27	2.2	1.2	0.442	0.217
344	332	52	45.5	73	75	3.5	1.3	14.5	0.27	2.2	1.2	0.338	0.146
344 A	332	46	45.5	73	75	0.8	1.3	14.5	0.27	2.2	1.2	0.339	0.146
44157	44348	56	51	75	84	2.3	1.5	27.9	0.78	0.77	0.42	0.463	0.245
* LM 300849	** LM 300811	52	45	61	65	3.5	1.5	13.9	0.35	1.7	0.95	0.16	0.082
18590	18520	53	46	66	69	3.5	1.5	14.0	0.35	1.7	0.94	0.199	0.086
LM 501349	LM 501310	53	46.5	67	70	3.5	0.8	16.3	0.40	1.5	0.83	0.226	0.108
LM 501349	LM 501314	53	46.5	66	70	3.5	0.8	18.2	0.40	1.5	0.83	0.226	0.129

Notas


- * Está listado el diámetro interior máximo y su tolerancia es negativa (Consulte la Tabla 8.4.1 en la Página A68).
- ** Está listado el diámetro exterior máximo y su tolerancia es negativa (Consulte la Tabla 8.4.2 en las Páginas A68 y A69).
- Las tolerancias se listan en las Tablas 2, 3 y 4 en las Páginas B109 y B110.

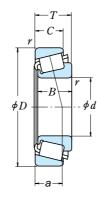
Diámetro Interior 41.275~44.450 mm

			nsiones nm)					ndices Básio	cos de Carga	{kgf}	Velocidades Límite (rpm)		
d	D	T	В	С	Cono	Copa	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	C_{0r}	Grasa	Aceite	
41.275	76.200	18.009	17.384	14.288	1.5	1.5	42 500	51 000	4 350	5 200	4 500	6 300	
	76.200	22.225	23.020	17.462	3.5	0.8	66 000	82 000	6 700	8 400	4 800	6 700	
	76.200	25.400	23.020	20.638	3.5	2.3	66 000	82 000	6 700	8 400	4 800	6 700	
	79.375	23.812	25.400	19.050	3.5	0.8	77 000	98 500	7 850	10 000	4 800	6 300	
	80.000	21.000	22.403	17.826	0.8	1.3	68 500	75 500	6 950	7 700	4 500	6 300	
	80.000	21.000	22.403	17.826	3.5	1.3	68 500	75 500	6 950	7 700	4 500	6 300	
	80.167	25.400	25.400	20.638	3.5	3.3	77 000	98 500	7 850	10 000	4 800	6 300	
	82.550	26.543	25.654	20.193	3.5	3.3	78 500	102 000	8 000	10 400	4 300	6 000	
	85.725	30.162	30.162	23.812	3.5	3.3	91 000	115 000	9 300	11 700	4 300	6 000	
	87.312	30.162	30.886	23.812	0.8	3.3	96 000	120 000	9 800	12 200	4 300	6 000	
	88.501	25.400	23.698	17.462	2.3	1.5	73 000	81 000	7 450	8 250	4 000	5 600	
	88.900	30.162	29.370	23.020	3.5	3.3	96 500	129 000	9 800	13 200	4 000	5 600	
	88.900	30.162	29.370	23.020	0.8	3.3	96 500	129 000	9 800	13 200	4 000	5 600	
	90.488	39.688	40.386	33.338	3.5	3.3	139 000	180 000	14 200	18 400	4 300	5 600	
	93.662	31.750	31.750	26.195	0.8	3.3	110 000	142 000	11 200	14 400	4 000	5 600	
	95.250	30.162	29.370	23.020	3.5	3.3	106 000	143 000	10 800	14 500	3 800	5 300	
	98.425	30.958	28.301	20.638	1.5	0.8	87 500	97 000	8 950	9 850	3 600	5 300	
42.862	76.992	17.462	17.145	11.908	1.5	1.5	44 000	54 000	4 450	5 500	4 500	6 000	
	82.550	19.842	19.837	15.080	2.3	1.5	58 500	69 000	5 950	7 050	4 500	6 300	
	82.931	23.812	25.400	19.050	2.3	0.8	76 500	99 000	7 800	10 100	4 500	6 000	
	82.931	26.988	25.400	22.225	2.3	2.3	76 500	99 000	7 800	10 100	4 500	6 000	
42.875	76.200	25.400	25.400	20.638	3.5	1.5	77 000	98 500	7 850	10 000	4 800	6 300	
	80.000	21.000	22.403	17.826	3.5	1.3	68 500	75 500	6 950	7 700	4 500	6 300	
	82.931	26.988	25.400	22.225	3.5	2.3	76 500	99 000	7 800	10 100	4 500	6 000	
	83.058	23.812	25.400	19.050	3.5	3.3	76 500	99 000	7 800	10 100	4 500	6 000	
43.000	74.988	19.368	19.837	14.288	1.5	1.3	52 500	68 000	5 350	6 900	4 800	6 300	
44.450	80.962	19.050	17.462	14.288	0.3	1.5	45 000	57 000	4 600	5 800	4 300	6 000	
	82.931	23.812	25.400	19.050	3.5	0.8	76 500	99 000	7 800	10 100	4 500	6 000	
	83.058	23.812	25.400	19.050	3.5	3.3	76 500	99 000	7 800	10 100	4 500	6 000	
	87.312	30.162	30.886	23.812	3.5	3.3	96 000	120 000	9 800	12 200	4 300	6 000	
	88.900	30.162	29.370	23.020	3.5	3.3	96 500	129 000	9 800	13 200	4 000	5 600	
	93.264	30.162	30.302	23.812	3.5	3.2	103 000	136 000	10 500	13 900	3 800	5 300	
	93.662	31.750	31.750	25.400	0.8	3.3	120 000	147 000	12 200	15 000	4 000	5 600	
	93.662	31.750	31.750	25.400	3.5	3.3	120 000	147 000	12 200	15 000	4 000	5 600	
	93.662	31.750	31.750	26.195	3.5	3.3	110 000	142 000	11 200	14 400	4 000	5 600	
	95.250	27.783	29.901	22.225	3.5	2.3	106 000	126 000	10 800	12 900	4 300	5 600	

 $P = XF_r + YF_a$

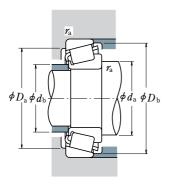
$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y_1

Carga Estática Equivalente


 $P_0 = 0.5F_r + Y_0 F_a$

Cuando $F_{\rm r}$ > 0.5 $F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de Rodamiento	s	Di	mension	es de To (mm)			Cons	Centros Efectivos de Carga	Cons- tante		res de Axial	Masa (kg)	_
CONO	COPA	$d_{\rm a}$	$d_{\scriptscriptstyle m b}$	D_{a}	$D_{ m b}$		υυμα γ a náx.	(mm)	e	Y_1	Y_0	aprox.	PA
11162	11300	49	46.5	67	71	1.5	1.5	17.4	0.49	1.2	0.68	0.212 0.12	5
24780	24720	53	47.5	68	72	3.5	0.8	17.0	0.39	1.5	0.84	0.279 0.15	
24780	24721	54	47	66	72	3.5	2.3	20.2	0.39	1.5	0.84	0.279 0.18	
26882	26822	54	47	71	74	3.5	0.8	16.4	0.32	1.9	1.0	0.349 0.18	16
336	332	47	46	73	75	0.8	1.3	14.5	0.27	2.2	1.2	0.325 0.14	
342	332	53	46	73	75	3.5	1.3	14.5	0.27	2.2	1.2	0.323 0.14	
26882	26820	54	47	69	74	3.5	3.3	18.0	0.32	1.9	1.0	0.349 0.21	3
M 802048 M 8	302011	57	51	70	79	3.5	3.3	22.9	0.55	1.1	0.60	0.406 0.23	
3877	3820	57	50	73	81	3.5	3.3	21.8	0.40	1.5	0.82	0.506 0.28	
3576	3525	49	48	75	81	0.8	3.3	19.5	0.31	2.0	1.1	0.532 0.30	15
44162	44348	57	51	75	84	2.3	1.5	28.0	0.78	0.77	0.42	0.447 0.24	
HM 803146 HM 8	303110	60	53	74	85	3.5	3.3	25.6	0.55	1.1	0.60	0.579 0.32	
HM 803145 HM 8	303110	54	53	74	85	0.8	3.3	25.6	0.55	1.1	0.60	0.582 0.32	59
4388	4335	57	51	77	85	3.5	3.3	24.6	0.28	2.1	1.2	0.789 0.45	
46162	46368	52	51	79	87	0.8	3.3	24.0	0.40	1.5	0.82	0.695 0.40	
HM 804840 HM 8	304810	61	54	81	91	3.5	3.3	26.1	0.55	1.1	0.60	0.726 0.35	
53162	53387	57	53	82	91	1.5	0.8	30.7	0.74	0.81	0.45	0.618 0.44	
12168 22168 25578 25578	12303 22325 25520 25523	51 52 53 53	48.5 48.5 49.5 49.5	68 73 74 72	73 76 77 77	1.5 2.3 2.3 2.3	1.5 1.5 0.8 2.3	17.7 17.6 17.6 20.8	0.51 0.43 0.33 0.33	1.2 1.4 1.8 1.8	0.65 0.77 0.99 0.99	0.228 0.09 0.283 0.17 0.383 0.20 0.383 0.24	76)3
26884 342 S 25577 25577	26823 332 25523 25521	55 54 55 55	48.5 47.5 49 49	69 73 72 72	73 75 77 77	3.5 3.5 3.5 3.5	1.5 1.3 2.3 3.3	18.0 14.5 20.8 17.6	0.32 0.27 0.33 0.33	1.9 2.2 1.8 1.8	1.0 1.2 0.99 0.99	0.337 0.13 0.305 0.14 0.381 0.24 0.381 0.20	16 18
* 16986	16929	51	48.5	67	71	1.5	1.3	17.2	0.44	1.4	0.74	0.24 0.10	
13175	13318	50	50	72	76	0.3	1.5	20.1	0.53	1.1	0.63	0.252 0.14)3
25580	25520	57	50	74	77	3.5	0.8	17.6	0.33	1.8	0.99	0.359 0.20	
25580	25521	56	51	72	78	3.5	3.3	17.6	0.33	1.8	0.99	0.359 0.20	
3578	3525	57	51	75	81	3.5	3.3	19.5	0.31	2.0	1.1	0.477 0.30	22
HM 803149 HM 8	303110	62	53	74	85	3.5	3.3	25.6	0.55	1.1	0.60	0.528 0.32	
3782	3720	58	52	82	88	3.5	3.2	22.4	0.34	1.8	0.97	0.678 0.29	
49176 49175 46176 438	49368 49368 46368 432	54 59 60 57	53 53 54 51	82 82 79 83	87 87 87 87	0.8 3.5 3.5 3.5	3.3 3.3 3.3 2.3	21.6 21.6 24.0 18.6	0.36 0.36 0.40 0.28	1.7 1.7 1.5 2.1	0.92 0.92 0.82 1.2	0.648 0.37 0.645 0.37 0.635 0.40 0.555 0.38	71)5


Nota * Está listado el diámetro interior máximo y su tolerancia es negativa (Consulte la Tabla 8.4.1 en la Página A68).

Diámetro Interior 44.450~47.625 mm

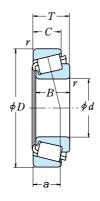
			n siones nm)		0	0	Ι ,	Índices Básic N)	os de Carga	{kgf}	Velocio Límite	
d	D	T	В	С	Cono	Copa <i>Y</i> mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Grasa	Aceite
44.450	95.250	30.162	29.370	23.020	3.5	3.3	106 000	143 000	10 800	14 500	3 800	5 300
	95.250	30.958	28.301	20.638	3.5	0.8	87 500	97 000	8 950	9 850	3 600	5 300
	95.250	30.958	28.301	20.638	1.3	0.8	87 500	97 000	8 950	9 850	3 600	5 300
	95.250 95.250 95.250	30.958 30.958 30.958	28.301 28.301 28.575	20.638 22.225 22.225	2.0 1.3 3.5	0.8 0.8 0.8	87 500 100 000 100 000	97 000 122 000 122 000	8 950 10 200 10 200		3 600 3 600 3 600	5 300 5 000 5 000
	98.425	30.958	28.301	20.638	3.5	0.8	87 500	97 000	8 950	9 850	3 600	5 300
	103.188	43.658	44.475	36.512	1.3	3.3	178 000	238 000	18 100	24 300	3 800	5 000
	104.775	36.512	36.512	28.575	3.5	3.3	139 000	192 000	14 200	19 600	3 400	4 800
	107.950	27.783	29.317	22.225	3.5	0.8	116 000	149 000	11 800	15 200	3 400	4 800
	111.125	30.162	26.909	20.638	3.5	3.3	92 500	110 000	9 450	11 200	3 200	4 300
	114.300	44.450	44.450	34.925	3.5	3.3	172 000	205 000	17 500	20 900	3 600	4 800
44.983	82.931	23.812	25.400	19.050	1.5	0.8	76 500	99 000	7 800	10 100	4 500	6 000
45.000	93.264	20.638	22.225	15.082	0.8	1.3	77 000	93 000	7 900	9 500	3 800	5 300
45.230	79.985	19.842	20.638	15.080	2.0	1.3	62 000	78 500	6 300	8 000	4 500	6 000
45.242	73.431	19.558	19.812	15.748	3.5	8.0	53 500	75 000	5 450	7 650	4 800	6 300
	77.788	19.842	19.842	15.080	3.5	8.0	56 000	71 000	5 700	7 250	4 500	6 300
	77.788	21.430	19.842	16.667	3.5	8.0	56 000	71 000	5 700	7 250	4 500	6 300
45.618	82.931	23.812	25.400	19.050	3.5	0.8	76 500	99 000	7 800	10 100	4 500	6 000
	82.931	26.988	25.400	22.225	3.5	2.3	76 500	99 000	7 800	10 100	4 500	6 000
46.000	75.000	18.000	18.000	14.000	2.3	1.5	51 000	71 500	5 200	7 300	4 500	6 300
46.038	79.375	17.462	17.462	13.495	2.8	1.5	46 000	57 000	4 700	5 800	4 500	6 000
	80.962	19.050	17.462	14.288	0.8	1.5	45 000	57 000	4 600	5 800	4 300	6 000
	85.000	20.638	21.692	17.462	2.3	1.3	71 500	81 500	7 300	8 300	4 300	6 000
	85.000	25.400	25.608	20.638	3.5	1.3	79 500	105 000	8 100	10 700	4 300	6 000
	95.250	27.783	29.901	22.225	3.5	0.8	106 000	126 000	10 800	12 900	4 300	5 600
47.625	88.900	20.638	22.225	16.513	3.5	1.3	73 000	85 000	7 450	8 650	4 000	5 600
	88.900	25.400	25.400	19.050	3.5	3.3	86 000	107 000	8 750	10 900	4 000	5 600
	95.250	30.162	29.370	23.020	3.5	3.3	106 000	143 000	10 800	14 500	3 800	5 300
	101.600	34.925	36.068	26.988	3.5	3.3	137 000	169 000	14 000	17 200	3 800	5 000
	111.125	30.162	26.909	20.638	3.5	3.3	92 500	110 000	9 450	11 200	3 200	4 300
	112.712	30.162	26.909	20.638	3.5	3.3	92 500	110 000	9 450	11 200	3 200	4 300
	117.475	33.338	31.750	23.812	3.5	3.3	137 000	156 000	13 900	15 900	3 200	4 300
	123.825	36.512	32.791	25.400	3.5	3.3	143 000	160 000	14 600	16 400	3 000	4 000

 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y_1

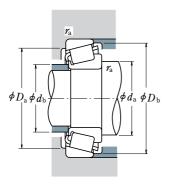
Carga Estática Equivalente

 $P_0 = 0.5F_r + Y_0 F_a$


Cuando $F_r > 0.5 F_r + Y_0 F_a$, use $P_0 = F_r$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de F	Rodamientos	D	imensio	nes de T (mm	, ,			Centros Efectivos de Carga	Cons- tante		res de Axial		asa :g)
CONO	COPA	d_{a}	$d_{\scriptscriptstyle m b}$	D_{a}	$D_{ m b}$		Copa r a náx.	(mm)	e	Y_1	Y_0	cono	rox. COPA
HM 804843	HM 804810	63	57	81	91	3.5	3.3	26.1	0.55	1.1	0.60	0.677	0.354
53177	53375	63	53	81	89	3.5	0.8	30.7	0.74	0.81	0.45	0.572	0.365
53176	53375	59	53	81	89	1.3	0.8	30.7	0.74	0.81	0.45	0.574	0.365
53178	53375	60	53	81	89	2	0.8	30.7	0.74	0.81	0.45	0.574	0.365
HM 903247	HM 903210	61	54	81	91	1.3	0.8	31.5	0.74	0.81	0.45	0.651	0.389
HM 903249	HM 903210	65	54	81	91	3.5	0.8	31.5	0.74	0.81	0.45	0.635	0.389
53177	53387	63	53	82	91	3.5	0.8	30.7	0.74	0.81	0.45	0.568	0.442
5356	5335	58	56	89	97	1.3	3.3	27.0	0.30	2.0	1.1	1.23	0.637
HM 807040	HM 807010	66	59	89	100	3.5	3.3	29.7	0.49	1.2	0.68	1.14	0.502
460	453 A	60	54	97	100	3.5	0.8	20.7	0.34	1.8	0.98	0.93	0.42
55175	55437	67	60	92	105	3.5	3.3	37.3	0.88	0.68	0.37	0.867	0.514
65385	65320	65	59	97	107	3.5	3.3	32.2	0.43	1.4	0.77	1.39	0.894
25584	25520	53	51	74	77	1.5	0.8	17.6	0.33	1.8	0.99	0.354	0.203
376	374	54	54	85	88	0.8	1.3	17.1	0.34	1.8	0.97	0.492	0.174
17887	17831	57	52	68	74	2	1.3	15.9	0.37	1.6	0.90	0.274	0.136
LM 102949	LM 102910	56	50	68	70	3.5	0.8	14.6	0.31	2.0	1.1	0.213	0.102
LM 603049	LM 603011	57	50	71	74	3.5	0.8	17.2	0.43	1.4	0.77	0.249	0.119
LM 603049	LM 603012	57	50	70	74	3.5	0.8	18.8	0.43	1.4	0.77	0.249	0.137
25590	25520	58	51	74	77	3.5	0.8	17.6	0.33	1.8	0.99	0.343	0.203
25590	25523	58	51	72	77	3.5	2.3	20.8	0.33	1.8	0.99	0.343	0.248
* LM 503349	** LM 503310	55	51	67	71	2.3	1.5	15.9	0.40	1.5	0.82	0.209	0.096
18690	18620	56	51	71	74	2.8	1.5	15.5	0.37	1.6	0.88	0.211	0.126
13181	13318	52	52	72	76	0.8	1.5	20.1	0.53	1.1	0.63	0.236	0.144
359 S	354 A	55	51	77	80	2.3	1.3	15.4	0.31	2.0	1.1	0.343	0.162
2984	2924	58	52	76	80	3.5	1.3	19.0	0.35	1.7	0.95	0.397	0.223
436	432 A	59	52	84	87	3.5	0.8	18.6	0.28	2.1	1.2	0.536	0.381
369 A	362 A	60	53	81	84	3.5	1.3	16.6	0.32	1.9	1.0	0.381	0.166
M 804049	M 804010	63	56	77	85	3.5	3.3	23.8	0.55	1.1	0.60	0.455	0.218
HM 804846	HM 804810	66	57	81	91	3.5	3.3	26.1	0.55	1.1	0.60	0.626	0.354
528	522	62	55	89	95	3.5	3.3	22.1	0.29	2.1	1.2	0.894	0.416
55187	55437	69	62	92	105	3.5	3.3	37.3	0.88	0.68	0.37	0.817	0.514
55187	55443	69	62	92	106	3.5	3.3	37.3	0.88	0.68	0.37	0.816	0.554
66187	66462	66	62	100	111	3.5	3.3	32.1	0.63	0.96	0.53	1.19	0.552
72187	72487	72	66	102	116	3.5	3.3	37.0	0.74	0.81	0.45	1.29	0.79

Notas * Está listado el diámetro interior máximo y su tolerancia es negativa (Consulte la Tabla 8.4.1 en la Página A68).


** Está listado el diámetro exterior máximo y su tolerancia es negativa (Consulte la Tabla 8.4.2 en las Páginas A68 y A69).

Diámetro Interior 48.412~52.388 mm

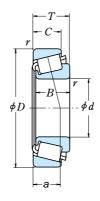
			nsiones nm)		_			Índices Básic N)	os de Carga	{kgf}	Velocio Límite	
d	D	T	В	С	Cono	Copa r mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Grasa	Aceite
48.412	95.250	30.162	29.370	23.020	3.5	3.3	106 000	143 000	10 800	14 500	3 800	5 300
	95.250	30.162	29.370	23.020	2.3	3.3	106 000	143 000	10 800	14 500	3 800	5 300
49.212	104.775	36.512	36.512	28.575	3.5	0.8	139 000	192 000	14 200	19 600	3 400	4 800
	114.300	44.450	44.450	36.068	3.5	3.3	196 000	243 000	20 000	24 800	3 400	4 800
50.000	82.000	21.500	21.500	17.000	3.0	0.5	71 000	96 000	7 250	9 800	4 300	5 600
	82.550	21.590	22.225	16.510	0.5	1.3	71 000	96 000	7 250	9 800	4 300	5 600
	88.900	20.638	22.225	16.513	2.3	1.3	73 000	85 000	7 450	8 650	4 000	5 600
	90.000	28.000	28.000	23.000	3.0	2.5	104 000	136 000	10 600	13 900	4 000	5 600
	105.000	37.000	36.000	29.000	3.0	2.5	139 000	192 000	14 200	19 600	3 400	4 800
50.800	80.962	18.258	18.258	14.288	1.5	1.5	53 000	81 000	5 400	8 250	4 300	5 600
	82.550	23.622	22.225	18.542	3.5	0.8	71 000	96 000	7 250	9 800	4 300	5 600
	82.931	21.590	22.225	16.510	3.5	1.3	71 000	96 000	7 250	9 800	4 300	5 600
	85.000	17.462	17.462	13.495	3.5	1.5	48 500	63 000	4 950	6 450	4 300	5 600
	85.725	19.050	18.263	12.700	1.5	1.5	42 500	54 000	4 350	5 500	4 000	5 300
	88.900	20.638	22.225	16.513	3.5	1.3	73 000	85 000	7 450	8 650	4 000	5 600
	88.900	20.638	22.225	16.513	1.5	1.3	73 000	85 000	7 450	8 650	4 000	5 600
	92.075	24.608	25.400	19.845	3.5	0.8	84 500	117 000	8 600	11 900	4 000	5 300
	93.264	30.162	30.302	23.812	0.8	0.8	103 000	136 000	10 500	13 900	3 800	5 300
	93.264	30.162	30.302	23.812	3.5	0.8	103 000	136 000	10 500	13 900	3 800	5 300
	95.250	27.783	28.575	22.225	3.5	2.3	110 000	144 000	11 200	14 700	3 800	5 300
	101.600	31.750	31.750	25.400	3.5	3.3	118 000	150 000	12 100	15 200	3 600	5 000
	101.600	34.925	36.068	26.988	0.8	3.3	137 000	169 000	14 000	17 200	3 800	5 000
	101.600	34.925	36.068	26.988	3.5	3.3	137 000	169 000	14 000	17 200	3 800	5 000
	104.775	36.512	36.512	28.575	3.5	0.8	139 000	192 000	14 200	19 600	3 400	4 800
	104.775	36.512	36.512	28.575	3.5	3.3	139 000	192 000	14 200	19 600	3 400	4 800
	108.966	34.925	36.512	26.988	3.5	3.3	145 000	181 000	14 700	18 500	3 600	4 800
	111.125	30.162	26.909	20.638	3.5	3.3	113 000	152 000	11 500	15 400	3 000	4 300
	111.125	30.162	26.909	20.638	3.5	3.3	92 500	110 000	9 450	11 200	3 200	4 300
	123.825	36.512	32.791	25.400	3.5	3.3	162 000	199 000	16 500	20 300	2 800	4 000
	123.825	36.512	32.791	25.400	3.5	3.3	143 000	160 000	14 600	16 400	3 000	4 000
	127.000	44.450	44.450	34.925	3.5	3.3	199 000	258 000	20 200	26 300	3 000	4 000
	127.000	50.800	52.388	41.275	3.5	3.3	236 000	300 000	24 000	31 000	3 200	4 300
52.388	92.075	24.608	25.400	19.845	3.5	0.8	84 500	117 000	8 600	11 900	4 000	5 300
	100.000	25.000	22.225	21.824	2.3	2.0	77 000	93 000	7 900	9 500	3 800	5 300
	111.125	30.162	26.909	20.638	3.5	3.3	92 500	110 000	9 450	11 200	3 200	4 300

 $P = XF_r + YF_a$

$F_{\rm a}/I$	$r \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y ₁

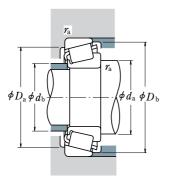
Carga Estática Equivalente

 $P_0 = 0.5F_r + Y_0 F_a$


Cuando $F_{\rm r}$ > 0.5 $F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de Ro	odamientos	D	imensio	nes de T (mm			Cona	Centros Efectivos de Carga	Cons- tante		res de ı Axial		asa :g)
CONO	COPA	$d_{\scriptscriptstyle \mathrm{a}}$	$d_{\scriptscriptstyle m b}$	$D_{\scriptscriptstyle \mathrm{a}}$	$D_{ m b}$		γ _a náx.	(mm)	e	Y_1	Y_0	cono	rox. COPA
HM 804849	HM 804810	66	57	81	91	3.5	3.3	26.1	0.55	1.1	0.60	0.61	0.354
HM 804848	HM 804810	63	57	81	91	2.3	3.3	26.1	0.55	1.1	0.60	0.614	0.354
HM 807044	HM 807011	69	63	91	100	3.5	0.8	29.7	0.49	1.2	0.68	1.03	0.508
HH 506348	HH 506310	71	61	97	107	3.5	3.3	30.8	0.40	1.5	0.82	1.43	0.837
▲ JLM 104948	A JLM 104910	60	55	76	78	3	0.5	16.1	0.31	2.0	1.1	0.306	0.129
* LM 104947 A	LM 104911	55	55	75	78	0.5	1.3	15.7	0.31	2.0	1.1	0.316	0.133
366	362 A	59	55	81	84	2.3	1.3	16.6	0.32	1.9	1.0	0.351	0.166
▲ JM 205149	▲ JM 205110	62	57	80	85	3	2.5	19.9	0.33	1.8	1.0	0.507	0.246
▲ JHM 807045	▲ JHM 807012	69	63	90	100	3	2.5	29.7	0.49	1.2	0.68	1.01	0.523
L 305649	L 305610	58	56	73	77	1.5	1.5	15.7	0.36	1.7	0.93	0.239	0.119
LM 104949	LM 104911 A	62	55	75	78	3.5	0.8	17.8	0.31	2.0	1.1	0.303	0.156
LM 104949	LM 104912	62	55	75	78	3.5	1.3	15.7	0.31	2.0	1.1	0.301	0.14
18790	18720	62	56	77	80	3.5	1.5	16.7	0.41	1.5	0.81	0.239	0.136
18200	18337	59	56	76	81	1.5	1.5	21.0	0.57	1.1	0.58	0.268	0.136
368 A	362 A	62	56	81	84	3.5	1.3	16.6	0.32	1.9	1.0	0.338	0.166
368	362 A	58	56	81	84	1.5	1.3	16.6	0.32	1.9	1.0	0.341	0.166
28580	28521	63	57	83	87	3.5	0.8	20.0	0.38	1.6	0.87	0.46	0.247
3775	3730	58	58	84	88	0.8	0.8	22.4	0.34	1.8	0.97	0.568	0.297
3780	3730	64	58	84	88	3.5	0.8	22.4	0.34	1.8	0.97	0.564	0.297
33889	33821	64	58	85	90	3.5	2.3	19.8	0.33	1.8	1.0	0.601	0.267
49585	49520	66	59	88	96	3.5	3.3	23.4	0.40	1.5	0.82	0.744	0.389
529	522	59	58	89	95	0.8	3.3	22.1	0.29	2.1	1.2	0.822	0.416
529 X	522	65	58	89	95	3.5	3.3	22.1	0.29	2.1	1.2	0.819	0.416
HM 807046	HM 807011	70	63	91	100	3.5	0.8	29.7	0.49	1.2	0.68	0.992	0.508
HM 807046	HM 807010	70	63	89	100	3.5	3.3	29.7	0.49	1.2	0.68	0.993	0.502
59200	59429	68	61	93	101	3.5	3.3	25.4	0.40	1.5	0.82	0.943	0.594
55200 C	55437	71	65	92	105	3.5	3.3	37.6	0.88	0.68	0.37	0.845	0.514
55200	55437	71	64	92	105	3.5	3.3	37.3	0.88	0.68	0.37	0.767	0.514
72200 C	72487	77	67	102	116	3.5	3.3	38.0	0.74	0.81	0.45	1.33	0.79
72200	72487	74	66	102	116	3.5	3.3	37.0	0.74	0.81	0.45	1.22	0.79
65200	65500	75	69	107	119	3.5	3.3	35.0	0.49	1.2	0.68	1.86	1.03
6279	6220	71	65	108	117	3.5	3.3	30.7	0.30	2.0	1.1	2.08	1.22
28584	28521	65	58	83	87	3.5	0.8	20.0	0.38	1.6	0.87	0.435	0.247
377	372	62	58	86	90	2.3	2	21.4	0.34	1.8	0.97	0.392	0.435
55206	55437	72	64	92	105	3.5	3.3	37.3	0.88	0.68	0.37	0.737	0.514

Notas * Está listado el diámetro interior máximo y su tolerancia es negativa (Consulte la Tabla 8.4.1 en la Página A68).


Las tolerancias se listan en las Tablas 2, 3 y 4 en las Páginas B109 y B110.

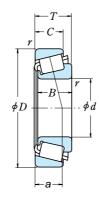
Diámetro Interior 53.975~58.738 mm

			nsiones nm)				(Índices Bási N)	cos de Carga	{kgf}	Velocio Límite	
d	D	T	В	С	Cono	Copa	C_{r}	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Grasa	Aceite
53.975	104.775	39.688	40.157	33.338	3.5	3.3	150 000	210 000	15 300	21 400	3 600	4 800
	107.950	36.512	36.957	28.575	3.5	3.3	144 000	182 000	14 700	18 500	3 600	4 800
	122.238	33.338	31.750	23.812	3.5	3.3	135 000	156 000	13 800	15 900	3 000	4 000
	123.825	36.512	32.791	25.400	3.5	3.3	143 000	160 000	14 600	16 400	3 000	4 000
	123.825	36.512	32.791	25.400	3.5	3.3	162 000	199 000	16 500	20 300	2 800	4 000
	123.825	38.100	36.678	30.162	3.5	3.3	161 000	221 000	16 400	22 500	3 000	4 000
	127.000	44.450	44.450	34.925	3.5	3.3	199 000	258 000	20 200	26 300	3 000	4 000
	127.000	50.800	52.388	41.275	3.5	3.3	236 000	300 000	24 000	31 000	3 200	4 300
	130.175	36.512	33.338	23.812	3.5	3.3	133 000	154 000	13 600	15 700	2 600	3 600
55.000	90.000	23.000	23.000	18.500	1.5	0.5	79 000	111 000	8 050	11 300	3 800	5 300
	95.000	29.000	29.000	23.500	1.5	2.5	111 000	152 000	11 300	15 500	3 800	5 000
	96.838	21.000	21.946	15.875	2.3	0.8	80 500	100 000	8 200	10 200	3 600	5 000
	110.000	39.000	39.000	32.000	3.0	2.5	177 000	225 000	18 000	23 000	3 400	4 500
	115.000	41.021	41.275	31.496	3.0	3.0	172 000	214 000	17 500	21 800	3 200	4 500
55.562	97.630	24.608	24.608	19.446	3.5	0.8	89 000	129 000	9 100	13 100	3 600	5 000
	122.238	43.658	43.764	36.512	1.3	3.3	198 000	292 000	20 200	29 700	3 000	4 000
	123.825	36.512	32.791	25.400	3.5	3.3	143 000	160 000	14 600	16 400	3 000	4 000
	123.825	36.512	32.791	25.400	3.5	3.3	162 000	199 000	16 500	20 300	2 800	4 000
57.150	96.838	21.000	21.946	15.875	3.5	0.8	80 500	100 000	8 200	10 200	3 600	5 000
	96.838	21.000	21.946	15.875	2.3	0.8	80 500	100 000	8 200	10 200	3 600	5 000
	96.838	25.400	21.946	20.275	3.5	2.3	80 500	100 000	8 200	10 200	3 600	5 000
	98.425	21.000	21.946	17.826	3.5	0.8	80 500	100 000	8 200	10 200	3 600	5 000
	104.775	30.162	29.317	24.605	3.5	3.3	116 000	149 000	11 800	15 200	3 400	4 800
	104.775	30.162	29.317	24.605	2.3	3.3	116 000	149 000	11 800	15 200	3 400	4 800
	104.775	30.162	30.958	23.812	0.8	3.3	130 000	170 000	13 300	17 400	3 400	4 800
	104.775	30.162	30.958	23.812	0.8	0.8	130 000	170 000	13 300	17 400	3 400	4 800
	122.238	33.338	31.750	23.812	3.5	3.3	135 000	156 000	13 800	15 900	3 000	4 000
	123.825	36.512	32.791	25.400	3.5	3.3	162 000	199 000	16 500	20 300	2 800	4 000
	123.825	38.100	36.678	30.162	3.5	3.3	161 000	221 000	16 400	22 500	3 000	4 000
	140.030	36.512	33.236	23.520	3.5	2.3	152 000	183 000	15 500	18 700	2 600	3 600
	144.983	36.000	33.236	23.007	3.5	3.5	152 000	183 000	15 500	18 700	2 600	3 600
	149.225	53.975	54.229	44.450	3.5	3.3	287 000	410 000	29 300	41 500	2 600	3 400
57.531	96.838	21.000	21.946	15.875	3.5	0.8	80 500	100 000	8 200	10 200	3 600	5 000
58.738	112.712	33.338	30.048	26.988	3.5	3.3	120 000	173 000	12 200	17 700	3 200	4 300

 $P = XF_r + YF_a$

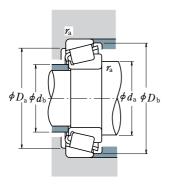
$F_{\rm a}/I$	$r_{\rm r} \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y_1

Carga Estática Equivalente


 $P_0 = 0.5F_r + Y_0F_a$

Cuando $F_{\rm r}$ > $0.5F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de Ro	odamientos	D	imensio	nes de T (mm			Copa	Centros Efectivos de Carga	Cons- tante		res de ı Axial		asa
CONO	COPA	d_{a}	$d_{ m b}$	$D_{\scriptscriptstyle \mathrm{a}}$	$D_{ m b}$		$oldsymbol{r}_{ m a}$ náx.	(mm)	e	Y_1	Y_0	CONO	rox. COPA
4595	4535	70	63	90	99	3.5	3.3	27.4	0.33	1.8	0.99	0.972	0.583
539	532 X	68	61	94	100	3.5	3.3	24.3	0.30	2.0	1.1	0.88	0.57
66584	66520	75	68	105	116	3.5	3.3	34.3	0.67	0.90	0.50	1.2	0.558
72212	72487	77	66	102	116	3.5	3.3	37.0	0.74	0.81	0.45	1.16	0.79
72212 C	72487	79	67	102	116	3.5	3.3	38.0	0.74	0.81	0.45	1.27	0.79
557 S	552 A	71	65	109	116	3.5	3.3	28.8	0.35	1.7	0.95	1.49	0.764
65212	65500	77	71	107	119	3.5	3.3	35.0	0.49	1.2	0.68	1.76	1.03
6280	6220	74	67	108	117	3.5	3.3	30.7	0.30	2.0	1.1	1.97	1.22
HM911242	HM911210	79	74	109	124	3.5	3.3	42.2	0.82	0.73	0.40	1.45	0.725
▲ JLM506849	▲ JLM506810	63	61	82	86	1.5	0.5	19.7	0.40	1.5	0.82	0.378	0.186
▲ JM207049	▲ JM207010	64	62	85	91	1.5	2.5	21.3	0.33	1.8	0.99	0.59	0.26
385	382 A	65	61	89	92	2.3	0.8	17.6	0.35	1.7	0.93	0.455	0.179
▲ JH307749	▲ JH307710	71	64	97	104	3	2.5	27.2	0.35	1.7	0.95	1.13	0.567
622 X	614 X	70	64	101	108		3	26.6	0.31	1.9	1.1	1.3	0.597
28680	28622	68	62	88	92	3.5	0.8	21.3	0.40	1.5	0.82	0.499	0.27
5566	5535	70	68	106	116	1.3	3.3	29.9	0.36	1.7	0.92	1.76	0.815
72218	72487	78	66	102	116	3.5	3.3	37.0	0.74	0.81	0.45	1.12	0.79
72218 C	72487	80	67	102	116	3.5	3.3	38.0	0.74	0.81	0.45	1.23	0.79
387 A	382 A	69	62	89	92	3.5	0.8	17.6	0.35	1.7	0.93	0.42	0.179
387	382 A	66	62	89	92	2.3	0.8	17.6	0.35	1.7	0.93	0.423	0.179
387 A	382 S	69	62	87	91	3.5	2.3	22.0	0.35	1.7	0.93	0.42	0.249
387 A	382	69	62	90	92	3.5	0.8	17.6	0.35	1.7	0.93	0.42	0.226
469	453 X	70	63	92	98	3.5	3.3	23.1	0.34	1.8	0.98	0.692	0.376
462	453 X	67	63	92	98	2.3	3.3	23.1	0.34	1.8	0.98	0.694	0.376
45289	45220	65	65	93	99	0.8	3.3	21.9	0.33	1.8	0.99	0.752	0.347
45289	45221	65	65	95	99	0.8	0.8	21.9	0.33	1.8	0.99	0.76	0.35
66587	66520	77	71	105	116	3.5	3.3	34.3	0.67	0.90	0.50	1.14	0.558
72225 C	72487	81	67	102	116	3.5	3.3	38.0	0.74	0.81	0.45	1.19	0.79
555 S	552 A	83	68	109	116	3.5	3.3	28.8	0.35	1.7	0.95	1.41	0.764
78225	78551	83	77	117	132	3.5	2.3	44.2	0.87	0.69	0.38	1.67	0.926
78225	78571	83	77	118	132	3.5	3.5	43.6	0.87	0.69	0.38	1.68	1.08
6455	6420	81	75	129	140	3.5	3.3	39.0	0.36	1.7	0.91	3.49	1.63
388 A	382 A	69	63	89	92	3.5	0.8	17.6	0.35	1.7	0.93	0.416	0.179
3981	3926	73	67	98	106	3.5	3.3	28.7	0.40	1.5	0.82	0.899	0.541


Nota A Las tolerancias se listan en las Tablas 2, 3 y 4 en las Páginas B109 y B110.

Diámetro Interior 60.000~64.963 mm

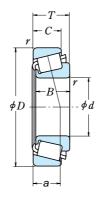
			nsiones nm)					Índices Básico	os de Carga	{kgf}	Velocio Límite	
d	D	T	В	С	Cono	Copa r mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	C_{0r}	Grasa	Aceite
60.000	95.000	24.000	24.000	19.000	5.0	2.5	86 500	125 000	8 800	12 800	3 600	5 000
	104.775	21.433	22.000	15.875	2.3	2.0	83 500	107 000	8 500	10 900	3 400	4 500
	110.000	22.000	21.996	18.824	0.8	1.3	85 500	113 000	8 750	11 500	3 200	4 300
	122.238	33.338	31.750	23.812	3.5	3.3	135 000	156 000	13 800	15 900	3 000	4 000
60.325	100.000	25.400	25.400	19.845	3.5	3.3	91 000	135 000	9 250	13 700	3 400	4 800
	101.600	25.400	25.400	19.845	3.5	3.3	91 000	135 000	9 250	13 700	3 400	4 800
	122.238	38.100	36.678	30.162	2.3	3.3	161 000	221 000	16 400	22 500	3 000	4 000
	122.238	38.100	38.354	29.718	8.0	1.5	188 000	245 000	19 200	25 000	3 000	4 000
	122.238	43.658	43.764	36.512	0.8	3.3	198 000	292 000	20 200	29 700	3 000	4 000
	127.000	44.450	44.450	34.925	3.5	3.3	199 000	258 000	20 200	26 300	3 000	4 000
	130.175	41.275	41.275	31.750	3.5	3.3	195 000	263 000	19 800	26 800	2 800	3 800
	135.755	53.975	56.007	44.450	3.5	3.3	264 000	355 000	27 000	36 000	2 800	3 800
61.912	136.525	46.038	46.038	36.512	3.5	3.3	233 000	370 000	23 800	37 500	2 600	3 400
	146.050	41.275	39.688	25.400	3.5	3.3	193 000	225 000	19 700	22 900	2 400	3 400
	152.400	47.625	46.038	31.750	3.5	3.3	237 000	267 000	24 200	27 300	2 400	3 400
63.500	94.458	19.050	19.050	15.083	1.5	1.5	59 000	100 000	6 050	10 200	3 600	4 800
	104.775	21.433	22.000	15.875	2.0	2.0	83 500	107 000	8 500	10 900	3 400	4 500
	107.950	25.400	25.400	19.050	1.5	3.3	90 000	138 000	9 150	14 100	3 200	4 300
	110.000	22.000	21.996	18.824	3.5	1.3	85 500	113 000	8 750	11 500	3 200	4 300
	110.000	22.000	21.996	18.824	1.5	1.3	85 500	113 000	8 750	11 500	3 200	4 300
	112.712	30.162	30.048	23.812	3.5	3.2	120 000	173 000	12 200	17 700	3 200	4 300
	112.712	30.162	30.162	23.812	3.5	3.3	142 000	202 000	14 500	20 600	3 200	4 300
	112.712	33.338	30.048	26.988	3.5	3.3	120 000	173 000	12 200	17 700	3 200	4 300
	122.238	38.100	38.354	29.718	7.0	3.3	188 000	245 000	19 200	25 000	3 000	4 000
	122.238	38.100	38.354	29.718	7.0	1.5	188 000	245 000	19 200	25 000	3 000	4 000
	122.238	38.100	38.354	29.718	3.5	1.5	188 000	245 000	19 200	25 000	3 000	4 000
	122.238	43.658	43.764	36.512	3.5	3.3	198 000	292 000	20 200	29 700	3 000	4 000
	123.825	38.100	36.678	30.162	3.5	3.3	161 000	221 000	16 400	22 500	3 000	4 000
	127.000	36.512	36.170	28.575	3.5	3.3	166 000	234 000	16 900	23 900	2 800	3 800
	130.175	41.275	41.275	31.750	3.5	3.3	195 000	263 000	19 800	26 800	2 800	3 800
	136.525	36.512	33.236	23.520	2.3	3.3	152 000	183 000	15 500	18 700	2 600	3 600
	136.525	41.275	41.275	31.750	3.5	3.3	195 000	263 000	19 800	26 800	2 800	3 800
	140.030	36.512	33.236	23.520	2.3	2.3	152 000	183 000	15 500	18 700	2 600	3 600
64.963	127.000	36.512	36.170	28.575	3.5	3.3	166 000	234 000	16 900	23 900	2 800	3 800

 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y_1

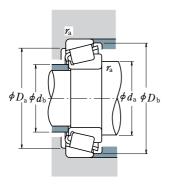
Carga Estática Equivalente

 $P_0 = 0.5F_r + Y_0 F_a$


Cuando $F_{\rm r}$ > 0.5 $F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de R	odamientos	D	imensio	nes de T (mm				Centros Efectivos de Carga	Cons- tante		res de a Axial		asa (g)
CONO	COPA	$d_{\scriptscriptstyle \mathrm{a}}$	$d_{\scriptscriptstyle m b}$	D_{a}	$D_{ m b}$		γ _a máx.	(mm)	e	Y_1	Y_0	api CONO	rox. COPA
▲ JLM 508748	▲ JLM 508710	75	66	85	91	5	2.5	21.6	0.40	1.5	0.82	0.43	0.20
* 39236	39412	71	67	96	100	2.3	2	20.0	0.39	1.5	0.85	0.559	0.186
397	394 A	69	68	101	104	0.8	1.3	20.9	0.40	1.5	0.82	0.642	0.263
66585	66520	79	73	105	116	3.5	3.3	34.3	0.67	0.90	0.50	1.07	0.558
28985	28921	73	67	89	96	3.5	3.3	22.9	0.43	1.4	0.78	0.538	0.232
28985	28920	73	67	90	97	3.5	3.3	22.9	0.43	1.4	0.78	0.538	0.272
558	553 X	73	69	108	115	2.3	3.3	28.8	0.35	1.7	0.95	1.33	0.692
HM 212044	HM 212010	85	70	110	116	8	1.5	27.0	0.34	1.8	0.98	1.43	0.604
5582	5535	73	72	106	116	0.8	3.3	29.9	0.36	1.7	0.92	1.61	0.815
65237	65500	82	71	107	119	3.5	3.3	35.0	0.49	1.2	0.68	1.56	1.03
637	633	78	72	116	124	3.5	3.3	29.9	0.36	1.7	0.91	1.87	0.712
6376	6320	81	74	117	126	3.5	3.3	35.0	0.32	1.8	1.0	2.45	1.39
H 715334	H 715311	84	78	119	132	3.5	3.3	37.1	0.47	1.3	0.70	2.51	0.961
H 913842	H 913810	90	82	124	138	3.5	3.3	44.4	0.78	0.77	0.42	2.2	0.898
9180	9121	90	81	130	145	3.5	3.3	44.3	0.66	0.92	0.50	2.77	1.21
L 610549	L 610510	71	69	86	91	1.5	1.5	19.6	0.42	1.4	0.78	0.306	0.154
39250	39412	73	69	96	100	2	2	20.0	0.39	1.5	0.85	0.501	0.186
29586	29520	73	71	96	103	1.5	3.3	24.0	0.46	1.3	0.72	0.661	0.281
395	394 A	77	70	101	104	3.5	1.3	20.9	0.40	1.5	0.82	0.58	0.263
390 A	394 A	73	70	101	104	1.5	1.3	20.9	0.40	1.5	0.82	0.583	0.263
3982	3920	77	71	99	106	3.5	3.2	25.5	0.40	1.5	0.82	0.789	0.454
39585	39520	77	71	101	107	3.5	3.3	23.5	0.34	1.8	0.97	0.899	0.359
3982	3926	78	71	98	106	3.5	3.3	28.7	0.40	1.5	0.82	0.789	0.541
HM 212047	HM 212011	87	73	108	116	7	3.3	26.9	0.34	1.8	0.98	1.34	0.598
HM 212047	HM 212010	87	73	110	116	7	1.5	26.9	0.34	1.8	0.98	1.34	0.604
HM 212046	HM 212010	80	73	110	116	3.5	1.5	26.9	0.34	1.8	0.98	1.35	0.604
5584	5535	81	75	106	116	3.5	3.3	29.9	0.36	1.7	0.92	1.5	0.815
559	522 A	78	73	109	116	3.5	3.3	28.8	0.35	1.7	0.95	1.23	0.764
565	563	80	73	112	120	3.5	3.3	28.3	0.36	1.6	0.91	1.46	0.655
639	633	81	74	116	124	3.5	3.3	29.9	0.36	1.7	0.91	1.77	0.712
78250	78537	85	79	115	130	2.3	3.3	44.2	0.87	0.69	0.38	1.51	0.782
639	632	79	76	119	125	3.5	3.3	29.9	0.36	1.7	0.91	1.77	1.04
78250	78551	85	79	117	132	2.3	2.3	44.2	0.87	0.69	0.38	1.51	0.926
569	563	81	74	112	120	3.5	3.3	28.3	0.36	1.6	0.91	1.41	0.655

Notas * Está listado el diámetro interior máximo y su tolerancia es negativa (Consulte la Tabla 8.4.1 en la Página A68).


Las tolerancias se listan en las Tablas 2, 3 y 4 en las Páginas B109 y B110.

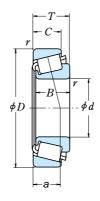
Diámetro Interior 65.000~69.850 mm

			nsiones nm)				(1)	Índices Básic	os de Carga	{kgf}	Velocio Límite	
d	D	T	В	С	Cono	Copa	$C_{\rm r}$	C_{0r}	$C_{ m r}$	C_{0r}	Grasa	Aceite
65.000	105.000	24.000	23.000	18.500	3.0	1.0	93 000	126 000	9 500	12 900	3 400	4 500
	110.000	28.000	28.000	22.500	3.0	2.5	120 000	173 000	12 200	17 700	3 200	4 300
	120.000	29.002	29.007	23.444	2.3	3.3	123 000	169 000	12 500	17 200	3 000	4 000
	120.000	39.000	38.500	32.000	3.0	2.5	185 000	249 000	18 800	25 400	3 000	4 000
65.088	135.755	53.975	56.007	44.450	3.5	3.3	264 000	355 000	27 000	36 000	2 800	3 800
	136.525	46.038	46.038	36.512	3.5	3.3	233 000	370 000	23 800	37 500	2 600	3 400
66.675	110.000	22.000	21.996	18.824	0.8	1.3	85 500	113 000	8 750	11 500	3 200	4 300
	110.000	22.000	21.996	18.824	3.5	1.3	85 500	113 000	8 750	11 500	3 200	4 300
	112.712	30.162	30.048	23.812	3.5	3.2	120 000	173 000	12 200	17 700	3 200	4 300
	112.712	30.162	30.048	23.812	5.5	3.2	120 000	173 000	12 200	17 700	3 200	4 300
	112.712	30.162	30.162	23.812	3.5	0.8	142 000	202 000	14 500	20 600	3 200	4 300
	112.712	30.162	30.162	23.812	3.5	3.3	142 000	202 000	14 500	20 600	3 200	4 300
	117.475	30.162	30.162	23.812	3.5	3.3	119 000	179 000	12 200	18 300	3 000	4 000
	122.238	38.100	36.678	30.162	3.5	3.3	161 000	221 000	16 400	22 500	3 000	4 000
	122.238	38.100	38.354	29.718	3.5	1.5	188 000	245 000	19 200	25 000	3 000	4 000
	122.238	38.100	38.354	29.718	3.5	3.3	188 000	245 000	19 200	25 000	3 000	4 000
	123.825	38.100	36.678	30.162	3.5	3.3	161 000	221 000	16 400	22 500	3 000	4 000
	136.525	46.038	46.038	36.512	3.5	3.3	233 000	370 000	23 800	37 500	2 600	3 400
68.262	110.000	22.000	21.996	18.824	2.3	1.3	85 500	113 000	8 750	11 500	3 200	4 300
	120.000	29.795	29.007	24.237	3.5	2.0	123 000	169 000	12 500	17 200	3 000	4 000
	122.238	38.100	36.678	30.162	3.5	3.3	161 000	221 000	16 400	22 500	3 000	4 000
	127.000	36.512	36.170	28.575	3.5	3.3	166 000	234 000	16 900	23 900	2 800	3 800
	136.525	41.275	41.275	31.750	3.5	3.3	229 000	297 000	23 300	30 500	2 600	3 600
	136.525	46.038	46.038	36.512	3.5	3.3	233 000	370 000	23 800	37 500	2 600	3 400
	152.400	47.625	46.038	31.750	3.5	3.3	237 000	267 000	24 200	27 300	2 400	3 400
69.850	112.712	22.225	21.996	15.875	1.5	0.8	85 000	113 000	8 650	11 500	3 000	4 000
	112.712	25.400	25.400	19.050	1.5	3.3	96 000	152 000	9 800	15 500	2 800	4 000
	117.475	30.162	30.162	23.812	3.5	3.3	119 000	179 000	12 200	18 300	3 000	4 000
	120.000	32.545	32.545	26.195	3.5	3.3	152 000	225 000	15 500	22 900	3 000	4 000
	120.650	25.400	25.400	19.050	1.5	3.3	96 000	152 000	9 800	15 500	2 800	4 000
	127.000	36.512	36.170	28.575	3.5	0.8	166 000	234 000	16 900	23 900	2 800	3 800
	130.175	41.275	41.275	31.750	3.5	3.3	195 000	263 000	19 800	26 800	2 800	3 80
	146.050	41.275	39.688	25.400	3.5	3.3	193 000	225 000	19 700	22 900	2 400	3 40
	146.050	41.275	41.275	31.750	3.5	3.3	207 000	296 000	21 100	30 000	2 400	3 20
	149.225	53.975	54.229	44.450	5.0	3.3	287 000	410 000	29 300	41 500	2 600	3 40
	150.089	44.450	46.672	36.512	3.5	3.3	265 000	370 000	27 000	37 500	2 400	3 20

 $P = XF_r + YF_a$

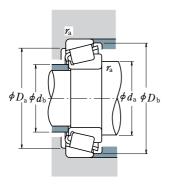
$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y_1

Carga Estática Equivalente


 $P_0 = 0.5F_r + Y_0F_a$

Cuando $F_{\rm r}$ > 0.5 $F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de R	odamientos	Dimensiones de Tope y Chaflán (mm) Cono Copa						Centros Efectivos de Carga	Efectivos tanto		Factores de Carga Axial		Masa (kg)	
CONO	COPA	d_{a}	$d_{\scriptscriptstyle m b}$	$D_{\scriptscriptstyle \mathrm{a}}$	$D_{\scriptscriptstyle m b}$		ν _a náx.	(mm)	e	Y_1	Y_0	cono	rox. COPA	
▲ JLM 710949	▲ JLM 710910	77	71	96	101	3	1	23.7	0.45	1.3	0.73	0.526	0.237	
▲ JM 511946	▲ JM 511910	78	72	99	105	3	2.5	24.5	0.40	1.5	0.82	0.72	0.342	
478	472 A	77	73	106	114	2.3	3.3	24.3	0.38	1.6	0.86	0.942	0.466	
▲ JH 211749	▲ JH 211710	80	74	107	114	3	2.5	27.9	0.34	1.8	0.98	1.25	0.625	
6379	6320	84	77	117	126	3.5	3.3	35.0	0.32	1.8	1.0	2.25	1.39	
H 715340	H 715311	88	82	118	132	3.5	3.3	37.1	0.47	1.3	0.70	2.4	0.961	
395 A	394 A	73	73	101	104	0.8	1.3	20.9	0.40	1.5	0.82	0.528	0.263	
395 S	394 A	79	73	101	104	3.5	1.3	20.9	0.40	1.5	0.82	0.524	0.263	
3984	3920	80	74	99	106	3.5	3.2	25.5	0.40	1.5	0.82	0.712	0.454	
3994	3920	84	74	99	106	5.5	3.2	25.5	0.40	1.5	0.82	0.706	0.454	
39590	39521	80	74	103	107	3.5	0.8	23.5	0.34	1.8	0.97	0.822	0.365	
39590	39520	80	74	101	107	3.5	3.3	23.5	0.34	1.8	0.97	0.822	0.359	
33262	33462	81	75	104	112	3.5	3.3	26.8	0.44	1.4	0.76	0.911	0.442	
560	553 X	81	75	108	115	3.5	3.3	28.8	0.35	1.7	0.95	1.14	0.692	
HM 212049	HM 212010	82	75	110	116	3.5	1.5	26.9	0.34	1.8	0.98	1.25	0.604	
HM 212049	HM 212011	81	74	108	116	3.5	3.3	26.9	0.34	1.8	0.98	1.25	0.598	
560	552 A	81	75	109	116	3.5	3.3	28.8	0.35	1.7	0.95	1.14	0.764	
H 715341	H 715311	89	83	118	132	3.5	3.3	37.1	0.47	1.3	0.70	2.34	0.961	
399 A	394 A	78	74	101	104	2.3	1.3	20.9	0.40	1.5	0.82	0.497	0.263	
480	472	83	76	106	113	3.5	2	25.1	0.38	1.6	0.86	0.862	0.493	
560 S	553 X	83	76	108	115	3.5	3.3	28.8	0.35	1.7	0.95	1.09	0.692	
570	563	83	77	112	120	3.5	3.3	28.3	0.36	1.6	0.91	1.32	0.655	
H 414245	H 414210	86	82	121	129	3.5	3.3	30.6	0.36	1.7	0.92	1.95	0.796	
H 715343	H 715311	90	84	118	132	3.5	3.3	37.1	0.47	1.3	0.70	2.28	0.961	
9185	9121	94	81	130	145	3.5	3.3	44.3	0.66	0.92	0.50	2.53	1.21	
LM 613449	LM 613410	78	76	104	107	1.5	0.8	22.1	0.42	1.4	0.79	0.562	0.238	
29675	29620	80	77	101	109	1.5	3.3	26.3	0.49	1.2	0.68	0.695	0.273	
33275	33462	84	77	104	112	3.5	3.3	26.8	0.44	1.4	0.76	0.83	0.442	
47487	47420	84	78	107	114	3.5	3.3	26.0	0.36	1.7	0.92	1.02	0.477	
29675	29630	79	78	105	113	1.5	3.3	26.3	0.49	1.2	0.68	0.695	0.489	
566	563 X	85	78	114	120	3.5	0.8	28.3	0.36	1.6	0.91	1.27	0.658	
643	633	86	80	116	124	3.5	3.3	29.9	0.36	1.7	0.91	1.56	0.712	
H 913849	H 913810	95	82	124	138	3.5	3.3	44.4	0.78	0.77	0.42	1.95	0.898	
655	653	88	82	131	139	3.5	3.3	33.2	0.41	1.5	0.81	2.35	0.891	
6454	6420	94	85	129	140	5	3.3	39.0	0.36	1.7	0.91	2.95	1.63	
745 A	742	88	82	134	142	3.5	3.3	32.5	0.33	1.8	1.0	2.82	1.07	


Nota A Las tolerancias se listan en las Tablas 2, 3 y 4 en las Páginas B109 y B110.

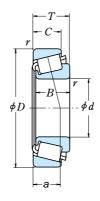
Diámetro Interior 70.000~76.200 mm

			nsiones nm)				()	{kgf}		Velocidades Límite (rpm)		
d	D	T	B	С	Cono	Copa γ mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	C_{r}	C_{0r}	Grasa	Aceite
70.000	110.000	26.000	25.000	20.500	1.0	2.5	98 500	152 000	10 000	15 500	3 000	4 000
	115.000	29.000	29.000	23.000	3.0	2.5	126 000	177 000	12 900	18 100	3 000	4 000
	120.000	29.795	29.007	24.237	2.0	2.0	123 000	169 000	12 500	17 200	3 000	4 000
71.438	117.475	30.162	30.162	23.812	3.5	3.3	119 000	179 000	12 200	18 300	3 000	4 000
	120.000	32.545	32.545	26.195	3.5	3.3	152 000	225 000	15 500	22 900	3 000	4 000
	127.000	36.512	36.170	28.575	6.4	3.3	166 000	234 000	16 900	23 900	2 800	3 800
	127.000	36.512	36.170	28.575	3.5	3.3	166 000	234 000	16 900	23 900	2 800	3 800
	130.175	41.275	41.275	31.750	6.4	3.3	195 000	263 000	19 800	26 800	2 800	3 800
	136.525	41.275	41.275	31.750	3.5	3.3	195 000	263 000	19 800	26 800	2 800	3 800
	136.525	41.275	41.275	31.750	3.5	3.3	229 000	297 000	23 300	30 500	2 600	3 600
	136.525	46.038	46.038	36.512	3.5	3.3	233 000	370 000	23 800	37 500	2 600	3 400
73.025	112.712	25.400	25.400	19.050	3.5	3.3	96 000	152 000	9 800	15 500	2 800	4 000
	117.475	30.162	30.162	23.812	3.5	3.3	119 000	179 000	12 200	18 300	3 000	4 000
	127.000	36.512	36.170	28.575	3.5	3.3	166 000	234 000	16 900	23 900	2 800	3 800
	146.050	41.275	41.275	31.750	3.5	3.3	207 000	296 000	21 100	30 000	2 400	3 200
	149.225	53.975	54.229	44.450	3.5	3.3	287 000	410 000	29 300	41 500	2 600	3 400
73.817	127.000	36.512	36.170	28.575	0.8	3.3	166 000	234 000	16 900	23 900	2 800	3 800
74.612	150.000	41.275	41.275	31.750	3.5	3.0	207 000	296 000	21 100	30 000	2 400	3 200
75.000	115.000	25.000	25.000	19.000	3.0	2.5	101 000	150 000	10 300	15 300	3 000	4 000
	120.000	31.000	29.500	25.000	3.0	2.5	129 000	198 000	13 100	20 200	2 800	3 800
	145.000	51.000	51.000	42.000	3.0	2.5	287 000	410 000	29 300	41 500	2 600	3 400
76.200	121.442	24.608	23.012	17.462	2.0	2.0	89 000	124 000	9 100	12 600	2 800	3 800
	127.000	30.162	31.000	22.225	3.5	3.3	134 000	195 000	13 700	19 900	2 800	3 800
	127.000	30.162	31.001	22.225	6.4	3.3	134 000	195 000	13 700	19 900	2 800	3 800
	133.350	33.338	33.338	26.195	0.8	3.3	154 000	237 000	15 700	24 200	2 600	3 600
	135.732	44.450	46.101	34.925	3.5	3.3	216 000	340 000	22 000	35 000	2 600	3 600
	136.525	30.162	29.769	22.225	3.5	3.3	130 000	192 000	13 300	19 600	2 600	3 400
	136.525	30.162	29.769	22.225	6.4	3.3	130 000	192 000	13 300	19 600	2 600	3 400
	139.992	36.512	36.098	28.575	3.5	3.3	175 000	260 000	17 800	26 500	2 600	3 400
	149.225	53.975	54.229	44.450	3.5	3.3	287 000	410 000	29 300	41 500	2 600	3 400
	152.400	39.688	36.322	30.162	3.5	3.2	183 000	285 000	18 700	29 100	2 200	3 200
	152.400	41.275	41.275	31.750	3.5	3.3	207 000	296 000	21 100	30 000	2 400	3 200
	161.925	49.212	46.038	31.750	3.5	3.3	248 000	290 000	25 300	29 600	2 200	3 000
	161.925	53.975	55.100	42.862	3.5	3.3	325 000	480 000	33 000	49 000	2 200	3 000
	161.925	53.975	55.100	42.862	6.4	3.3	325 000	480 000	33 000	49 000	2 200	3 000
	161.925	53.975	55.100	42.862	6.4	0.8	325 000	480 000	33 000	49 000	2 200	3 000

 $P = XF_r + YF_a$

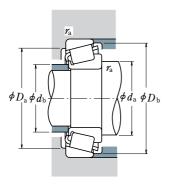
$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y_1

Carga Estática Equivalente


 $P_0 = 0.5F_r + Y_0F_a$

Cuando $F_{\rm r}$ > $0.5F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de R	Números de Rodamientos				Dimensiones de Tope y Chaflán (mm) Cono Copa						Factores de Carga Axial		Masa (kg)	
CONO	COPA	$d_{\scriptscriptstyle \mathrm{a}}$	$d_{\scriptscriptstyle m b}$	$D_{\scriptscriptstyle \mathrm{a}}$	$D_{\scriptscriptstyle m b}$	50110	ν _a máx.	(mm)	e	Y_1	Y_0	cono	rox. COPA	
▲ JLM 813049	▲ JLM 813010	78	77	98	105	1	2.5	26.2	0.49	1.2	0.68	0.604	0.304	
▲ JM 612949	▲ JM 612910	83	77	103	110	3	2.5	26.4	0.43	1.4	0.77	0.800	0.362	
484	472	80	78	106	113	2	2	25.1	0.38	1.6	0.86	0.822	0.493	
33281	33462	85	79	104	112	3.5	3.3	26.8	0.44	1.4	0.76	0.789	0.442	
47490	47420	86	79	107	114	3.5	3.3	26.0	0.36	1.7	0.92	0.983	0.477	
567 S	563	92	80	112	120	6.4	3.3	28.3	0.36	1.6	0.91	1.21	0.655	
567 A	563	86	80	112	120	3.5	3.3	28.3	0.36	1.6	0.91	1.23	0.655	
645	633	93	81	116	124	6.4	3.3	29.9	0.36	1.7	0.91	1.49	0.712	
644	632	87	81	118	125	3.5	3.3	29.9	0.36	1.7	0.91	1.5	1.04	
H 414249	H 414210	89	83	121	129	3.5	3.3	30.6	0.36	1.7	0.92	1.83	0.796	
H 715345	H 715311	92	84	119	132	3.5		37.1	0.47	1.3	0.70	2.15	0.961	
29685	29620	86	80	101	109	3.5	3.3	26.3	0.49	1.2	0.68	0.62	0.273	
33287	33462	87	80	104	112	3.5	3.3	26.8	0.44	1.4	0.76	0.746	0.442	
567	563	88	81	112	120	3.5	3.3	28.3	0.36	1.6	0.91	1.17	0.655	
657	653	91	85	131	139	3.5	3.3	33.2	0.41	1.5	0.81	2.24	0.891	
6460	6420	93	87	129	140	3.5		39.0	0.36	1.7	0.91	2.8	1.63	
568 658	563 653 X	83 92	82 86	112 133	120 141	0.8 3.5	3.3	28.3	0.36	1.6 1.5	0.91	1.15	0.655	
▲ JLM 714149	▲ JLM 714110	87	81	104	110	3	2.5	25.3	0.46	1.3	0.72	0.638	0.272	
▲ JM 714249	▲ JM 714210	88	83	108	115	3	2.5	28.8	0.44	1.4	0.74	0.863	0.436	
▲ JH 415647	▲ JH 415610	94	89	129	139	3	2.5	36.7	0.36	1.7	0.91	2.64	1.19	
34300	34478	86	84	111	116	2	2	26.3	0.45	1.3	0.73	0.65	0.316	
42687	42620	90	84	114	121	3.5	3.3	27.3	0.42	1.4	0.79	1.03	0.438	
42688	42620	94	84	114	121	6.4	3.3	27.3	0.42	1.4	0.79	1.01	0.438	
47680	47620	86	85	119	128	0.8	3.3	29.0	0.40	1.5	0.82	1.39	0.577	
5760	5735	94	88	119	130	3.5	3.3	32.9	0.41	1.5	0.81	1.86	0.887	
495 A	493	92	86	122	130	3.5	3.3	28.7	0.44	1.4	0.74	1.27	0.55	
495 AX	493	98	86	122	130	6.4	3.3	28.7	0.44	1.4	0.74	1.26	0.55	
575	572	92	86	125	133	3.5	3.3	31.1	0.40	1.5	0.82	1.61	0.788	
6461	6420	96	89	129	140	3.5	3.3	39.0	0.36	1.7	0.91	2.64	1.63	
590 A	592 A	95	89	135	145	3.5	3.2	37.1	0.44	1.4	0.75	2.2	1.06	
659	652	93	87	134	141	3.5	3.3	33.2	0.41	1.5	0.81	2.11	1.26	
9285	9220	103	90	138	153	3.5	3.3	49.8	0.71	0.85	0.47	2.82	1.4	
6576	6535	99	92	141	154	3.5	3.3	40.7	0.40	1.5	0.82	3.74	1.67	
6575	6535	104	92	141	154	6.4	3.3	40.7	0.40	1.5	0.82	3.73	1.67	
6575	6536	104	92	144	154	6.4	0.8	40.7	0.40	1.5	0.82	3.73	1.68	


Nota A Las tolerancias se listan en las Tablas 2, 3 y 4 en las Páginas B109 y B110.

Diámetro Interior 76.200~83.345 mm

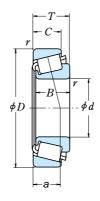
			nsiones nm)		_		(Velocidades Límite (rpm)				
d	D	T	В	С	Cono	Copa <i>Y</i> mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	C_{r}	C_{0r}	Grasa	Aceite
76.200	168.275	53.975	56.363	41.275	6.4	3.3	345 000	470 000	35 000	48 000	2 200	3 000
	168.275	53.975	56.363	41.275	0.8	3.3	345 000	470 000	35 000	48 000	2 200	3 000
	171.450	49.212	46.038	31.750	3.5	3.3	257 000	310 000	26 200	32 000	2 000	2 800
	177.800	55.562	50.800	34.925	3.5	3.3	257 000	310 000	26 200	32 000	2 000	2 800
77.788	121.442	24.608	23.012	17.462	3.5	2.0	89 000	124 000	9 100	12 600	2 800	3 800
	127.000	30.162	31.000	22.225	3.5	3.3	134 000	195 000	13 700	19 900	2 800	3 800
	135.733	44.450	46.101	34.925	3.5	3.3	216 000	340 000	22 000	35 000	2 600	3 600
79.375	146.050	41.275	41.275	31.750	3.5	3.3	207 000	296 000	21 100	30 000	2 400	3 200
	150.089	44.450	46.672	36.512	3.5	3.3	265 000	370 000	27 000	37 500	2 400	3 200
80.000	130.000	35.000	34.000	28.500	3.0	2.5	166 000	251 000	17 000	25 600	2 600	3 600
80.962	136.525	30.162	29.769	22.225	3.5	3.3	130 000	192 000	13 300	19 600	2 600	3 400
	139.700	36.512	36.098	28.575	3.5	3.3	175 000	260 000	17 800	26 500	2 600	3 400
	139.992	36.512	36.098	28.575	3.5	3.3	175 000	260 000	17 800	26 500	2 600	3 400
82.550	125.412	25.400	25.400	19.845	3.5	1.5	102 000	164 000	10 400	16 700	2 600	3 600
	133.350	30.162	29.769	22.225	3.5	3.3	130 000	192 000	13 300	19 600	2 600	3 400
	133.350	33.338	33.338	26.195	3.5	3.3	154 000	237 000	15 700	24 200	2 600	3 600
	133.350	33.338	33.338	26.195	0.8	3.3	154 000	237 000	15 700	24 200	2 600	3 600
	133.350	33.338	33.338	26.195	6.8	3.3	154 000	237 000	15 700	24 200	2 600	3 600
	133.350	39.688	39.688	32.545	6.8	3.3	179 000	310 000	18 300	31 500	2 600	3 600
	136.525	30.162	29.769	22.225	3.5	3.3	130 000	192 000	13 300	19 600	2 600	3 400
	139.700	36.512	36.098	28.575	3.5	3.3	175 000	260 000	17 800	26 500	2 600	3 400
	139.992	36.512	36.098	28.575	3.5	3.3	175 000	260 000	17 800	26 500	2 600	3 400
	139.992	36.512	36.098	28.575	6.8	3.3	175 000	260 000	17 800	26 500	2 600	3 400
	146.050	41.275	41.275	31.750	3.5	3.3	207 000	296 000	21 100	30 000	2 400	3 200
	150.000	44.455	46.672	35.000	3.5	3.3	265 000	370 000	27 000	37 500	2 400	3 200
	150.089	44.450	46.672	36.512	3.5	3.3	265 000	370 000	27 000	37 500	2 400	3 200
	152.400	41.275	41.275	31.750	3.5	3.3	207 000	296 000	21 100	30 000	2 400	3 200
	161.925	47.625	48.260	38.100	3.5	3.3	274 000	390 000	28 000	40 000	2 200	3 000
	161.925 168.275 168.275	53.975 47.625 53.975	55.100 48.260 56.363	42.862 38.100 41.275	3.5 3.5 3.5	3.3 3.3 3.3	325 000 274 000 345 000	480 000 390 000 470 000	33 000 28 000 35 000	49 000 40 000 48 000	2 200 2 200 2 200	3 000 3 000
83.345	125.412	25.400	25.400	19.845	3.5	1.5	102 000	164 000	10 400	16 700	2 600	3 600
	125.412	25.400	25.400	19.845	0.8	1.5	102 000	164 000	10 400	16 700	2 600	3 600

 $P = XF_r + YF_a$

$F_{\rm a}/I$	$r_{\rm r} \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y_1

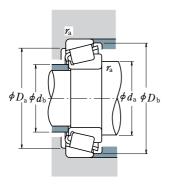
Carga Estática Equivalente

 $P_0 = 0.5F_r + Y_0F_a$


Cuando $F_{\rm r}$ > 0.5 $F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de Rod	amientos	D	imensio	nes de T (mm			Cona	Centros Efectivos de Carga	Cons- tante	Factor Carga	res de Axial		asa (g)
CONO	COPA	$d_{\scriptscriptstyle \mathrm{a}}$	$d_{\scriptscriptstyle m b}$	$D_{\scriptscriptstyle \mathrm{a}}$	$D_{ m b}$		τ _a náx.	(mm)	e	Y_1	Y_0	CONO	rox. COPA
843	832	101	89	149	155	6.4	3.3	35.2	0.30	2.0	1.1	4.11	1.74
837	832	90	89	149	155	0.8	3.3	35.2	0.30	2.0	1.1	4.13	1.74
9380	9321	105	98	147	164	3.5	3.3	54.1	0.76	0.79	0.43	3.47	1.51
9378	9320	105	98	148	164	3.5	3.3	57.3	0.76	0.79	0.43	3.71	2.24
34306	34478	90	84	110	116	3.5	2	26.3	0.45	1.3	0.73	0.612	0.316
42690	42620	91	85	114	121	3.5	3.3	27.3	0.42	1.4	0.79	0.976	0.438
5795	5735	96	89	119	130	3.5	3.3	32.9	0.41	1.5	0.81	1.79	0.887
661	653	96	90	131	139	3.5	3.3	33.2	0.41	1.5	0.81	1.99	0.891
750	742	96	90	134	142	3.5	3.3	32.5	0.33	1.8	1.0	2.42	1.07
▲ JM 515649	▲ JM 515610	94	88	117	125	3	2.5	29.9	0.39	1.5	0.85	1.18	0.583
496	493	95	89	122	130	3.5	3.3	28.7	0.44	1.4	0.74	1.13	0.55
581	572 X	96	90	125	133	3.5	3.3	31.1	0.40	1.5	0.82	1.44	0.774
581	572	96	90	125	133	3.5	3.3	31.1	0.40	1.5	0.82	1.44	0.788
27687	27620	96	89	115	120	3.5	1.5	25.7	0.42	1.4	0.79	0.747	0.348
495	492 A	97	90	120	128	3.5	3.3	28.7	0.44	1.4	0.74	1.08	0.434
47686	47620	97	90	119	128	3.5	3.3	29.0	0.40	1.5	0.82	1.18	0.577
47685	47620	90	90	119	128	0.8	3.3	29.0	0.40	1.5	0.82	1.18	0.577
47687	47620	103	90	119	128	6.8	3.3	29.0	0.40	1.5	0.82	1.16	0.577
HM 516448	HM 516410	105	92	118	128	6.8	3.3	32.4	0.40	1.5	0.82	1.35	0.767
495	493	97	90	122	130	3.5	3.3	28.7	0.44	1.4	0.74	1.08	0.55
580	572 X	98	91	125	133	3.5	3.3	31.1	0.40	1.5	0.82	1.39	0.774
580	572	98	91	125	133	3.5	3.3	31.1	0.40	1.5	0.82	1.39	0.788
582	572	104	91	125	133	6.8	3.3	31.1	0.40	1.5	0.82	1.37	0.788
663	653	99	92	131	139	3.5	3.3	33.2	0.41	1.5	0.81	1.85	0.891
749 A	743	99	93	134	142	3.5	3.3	32.5	0.33	1.8	1.0	2.26	1.04
749 A	742	98	93	135	143	3.5	3.3	32.5	0.33	1.8	1.0	2.26	1.07
663	652	99	92	134	141	3.5	3.3	33.2	0.41	1.5	0.81	1.85	1.26
757	752	100	94	144	150	3.5	3.3	35.6	0.34	1.8	0.97	2.79	1.61
6559	6535	104	98	141	154	3.5	3.3	40.7	0.40	1.5	0.82	3.4	1.67
757	753	100	94	147	150	3.5	3.3	35.6	0.34	1.8	0.97	2.79	2.1
842	832	101	94	149	155	3.5	3.3	35.2	0.30	2.0	1.1	3.76	1.74
27690	27620	96	90	115	120	3.5	1.5	25.7	0.42	1.4	0.79	0.727	0.348
27689	27620	90	90	115	120	0.8	1.5	25.7	0.42	1.4	0.79	0.732	0.348

Nota A Las tolerancias se listan en las Tablas 2, 3 y 4 en las Páginas B109 y B110.


RODAMIENTOS DE RODILLOS CÓNICOS DE UNA SOLA HILERA (DISEÑO EN PULGADAS) -

Diámetro Interior 84.138~90.488 mm

			nsiones nm)				1)	Índices Básio	cos de Carga	{kgf}	Velocio Límite	
d	D	T	В	С	Cono	Copa	$C_{\rm r}$	C_{0r}	$C_{\rm r}$	C_{0r}	Grasa	Aceite
84.138	136.525	30.162	29.769	22.225	3.5	3.3	130 000	192 000	13 300	19 600	2 600	3 400
	146.050	41.275	41.275	31.750	3.5	3.3	207 000	296 000	21 100	30 000	2 400	3 200
	171.450	49.212	46.038	31.750	3.5	3.3	257 000	310 000	26 200	32 000	2 000	2 800
85.000	130.000	30.000	29.000	24.000	6.0	2.5	138 000	222 000	14 100	22 700	2 600	3 600
	130.000	30.000	29.000	24.000	3.0	2.5	138 000	222 000	14 100	22 700	2 600	3 600
	140.000	39.000	38.000	31.500	3.0	2.5	202 000	305 000	20 600	31 000	2 400	3 400
	150.000	46.000	46.000	38.000	3.0	2.5	275 000	390 000	28 000	40 000	2 400	3 200
85.026	150.089	44.450	46.672	36.512	3.5	3.3	265 000	370 000	27 000	37 500	2 400	3 200
	150.089	44.450	46.672	36.512	5.0	3.3	265 000	370 000	27 000	37 500	2 400	3 200
85.725	133.350	30.162	29.769	22.225	3.5	3.3	130 000	192 000	13 300	19 600	2 600	3 400
	136.525	30.162	29.769	22.225	3.5	3.3	130 000	192 000	13 300	19 600	2 600	3 400
	142.138	42.862	42.862	34.133	4.8	3.3	221 000	360 000	22 500	36 500	2 400	3 400
	146.050	41.275	41.275	31.750	6.4	3.3	207 000	296 000	21 100	30 000	2 400	3 200
	146.050	41.275	41.275	31.750	3.5	3.3	207 000	296 000	21 100	30 000	2 400	3 200
	152.400	39.688	36.322	30.162	3.5	3.2	183 000	285 000	18 700	29 100	2 200	3 200
	161.925	47.625	48.260	38.100	3.5	3.3	274 000	390 000	28 000	40 000	2 200	3 000
	168.275	41.275	41.275	30.162	3.5	3.3	223 000	345 000	22 700	35 000	2 000	2 800
87.312	190.500	57.150	57.531	46.038	8.0	3.3	390 000	520 000	39 500	53 500	1 900	2 600
88.900	149.225	31.750	28.971	24.608	3.0	3.3	140 000	218 000	14 300	22 300	2 200	3 000
	152.400	39.688	36.322	30.162	3.5	3.2	183 000	285 000	18 700	29 100	2 200	3 200
	152.400	39.688	39.688	30.162	6.4	3.3	253 000	365 000	25 800	37 500	2 200	3 200
	161.925	47.625	48.260	38.100	3.5	3.3	274 000	390 000	28 000	40 000	2 200	3 000
	161.925	47.625	48.260	38.100	7.0	3.3	274 000	390 000	28 000	40 000	2 200	3 000
	161.925	53.975	55.100	42.862	3.5	3.3	325 000	480 000	33 000	49 000	2 200	3 000
	168.275	47.625	48.260	38.100	3.5	3.3	274 000	390 000	28 000	40 000	2 200	3 000
	168.275	53.975	56.363	41.275	3.5	3.3	345 000	470 000	35 000	48 000	2 200	3 000
	190.500	57.150	57.531	44.450	8.0	3.3	355 000	500 000	36 000	51 000	1 900	2 600
	190.500	57.150	57.531	46.038	8.0	3.3	390 000	520 000	39 500	53 500	1 900	2 600
90.000	145.000	35.000	34.000	27.000	3.0	2.5	190 000	285 000	19 400	29 000	2 400	3 200
	147.000	40.000	40.000	32.500	7.0	3.5	229 000	345 000	23 400	35 000	2 400	3 200
	155.000	44.000	44.000	35.500	3.0	2.5	274 000	395 000	28 000	40 000	2 200	3 000
90.488	161.925	47.625	48.260	38.100	3.5	3.3	274 000	390 000	28 000	40 000	2 200	3 000

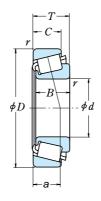
 $P = XF_r + YF_a$

$F_{\rm a}/I$	$T_{\rm r} \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y ₁

Carga Estática Equivalente

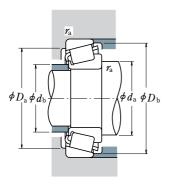
 $P_0 = 0.5F_r + Y_0 F_a$

Cuando $F_{\rm r}$ > 0.5 $F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.


Números de I	Rodamientos	[)imensio	nes de ' (mn	Tope y C		Copa	Centros Efectivos de Carga	Cons- tante		res de ı Axial		asa (g)
CONO	COPA	$d_{\scriptscriptstyle \mathrm{a}}$	$d_{\scriptscriptstyle m b}$	D_{a}	$D_{\scriptscriptstyle m b}$		γ _a náx.	(mm)	e	Y_1	Y_0	cono	rox. COPA
498	493	98	91	122	130	3.5	3.3	28.7	0.44	1.4	0.74	1.04	0.55
664	653	99	93	131	139	3.5	3.3	33.2	0.41	1.5	0.81	1.79	0.891
9385	9321	111	98	147	164	3.5	3.3	54.1	0.76	0.79	0.43	3.11	1.51
▲ JM 716648	▲ JM 716610	104	92	117	125	6	2.5	29.5	0.44	1.4	0.74	0.931	0.461
▲ JM 716649	▲ JM 716610	98	92	117	125	3	2.5	29.5	0.44	1.4	0.74	0.943	0.461
▲ JHM 516849	▲ JHM 516810	100	94	125	134	3	2.5	33.3	0.41	1.5	0.81	1.55	0.768
▲ JH 217249	▲ JH 217210	101	95	134	142	3	2.5	33.9	0.33	1.8	0.99	2.29	1.09
749	742	101	95	134	142	3.5	3.3	32.5	0.33	1.8	1.0	2.14	1.07
749 S	742	104	95	134	142	5	3.3	32.5	0.33	1.8	1.0	2.14	1.07
497	492 A	99	93	120	128	3.5	3.3	28.7	0.44	1.4	0.74	0.987	0.434
497	493	99	93	122	130	3.5	3.3	28.7	0.44	1.4	0.74	0.987	0.55
HM 617049	HM 617010	106	95	125	137	4.8	3.3	35.4	0.43	1.4	0.76	1.77	0.911
665 A	653	107	95	131	139	6.4	3.3	33.2	0.41	1.5	0.81	1.71	0.891
665	653	102	95	131	139	3.5	3.3	33.2	0.41	1.5	0.81	1.72	0.891
596	592 A	102	96	135	144	3.5	3.2	37.1	0.44	1.4	0.75	1.85	1.06
758	752	103	97	144	150	3.5	3.3	35.6	0.34	1.8	0.97	2.63	1.61
677	672	105	99	149	160	3.5	3.3	38.3	0.47	1.3	0.70	2.91	1.24
HH 221432	HH 221410	118	103	171	179	8	3.3	42.3	0.33	1.8	0.99	5.51	2.24
42350	42587	104	98	134	143	3	3.3	34.9	0.49	1.2	0.67	1.39	0.711
593	592 A	104	98	135	144	3.5	3.2	37.1	0.44	1.4	0.75	1.73	1.06
HM 518445	HM 518410	107	96	137	148	6.4	3.3	33.1	0.40	1.5	0.82	2.11	0.776
759	752	106	99	144	150	3.5	3.3	35.6	0.34	1.8	0.97	2.47	1.61
766	752	113	99	144	150	7	3.3	35.6	0.34	1.8	0.97	2.45	1.61
6580	6535	109	102	141	154	3.5	3.3	40.7	0.40	1.5	0.82	3.03	1.67
759	753	106	99	147	150	3.5	3.3	35.6	0.34	1.8	0.97	2.47	2.1
850	832	106	100	149	155	3.5	3.3	35.2	0.30	2.0	1.1	3.39	1.74
855 HH 221434	854 HH 221410	118 120	103 105	170 171	174 179	8	3.3 3.3	41.8 42.3	0.33 0.33	1.8 1.8	0.99 0.99	4.99 5.41	2.55 2.24
▲ JM 718149	▲ JM 718110	105	99	131	139	3	2.5	33.0	0.44	1.4	0.74	1.49	0.66
*HM 218248	**HM 218210	111	98	133	141	7	3.5	30.8	0.33	1.8	0.99	1.77	0.796
▲ JHM 318448	▲ JHM 318410	106	100	140	148	3	2.5	34.1	0.34	1.7	0.96	2.32	1.01
760	752	107	101	144	150	3.5	3.3	35.6	0.34	1.8	0.97	2.38	

Notas

- * Está listado el diámetro interior máximo y su tolerancia es negativa (Consulte la Tabla 8.4.1 en la Página A68).
- ** Está listado el diámetro exterior máximo y su tolerancia es negativa (Consulte la Tabla 8.4.2 en las Páginas A68 y A69).
- Las tolerancias se listan en las Tablas 2, 3 y 4 en las Páginas B109 y B110.


RODAMIENTOS DE RODILLOS CÓNICOS DE UNA SOLA HILERA (DISEÑO EN PULGADAS) -

Diámetro Interior 92.075~100.012 mm

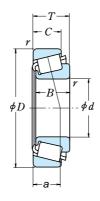
			ensiones mm)		0	0	1)	Índices Bási	cos de Carga	{kgf}	Velocio Límite	
d	D	T	В	С	Cono	Copa <i>Y</i> mín.	C_{r}	$C_{0\mathrm{r}}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite
92.075	146.050	33.338	34.925	26.195	3.5	3.3	169 000	280 000	17 300	28 500	2 400	3 200
	148.430	28.575	28.971	21.433	3.5	3.0	140 000	218 000	14 300	22 300	2 200	3 000
	152.400	39.688	36.322	30.162	3.5	3.2	183 000	285 000	18 700	29 100	2 200	3 200
	152.400	39.688	36.322	30.162	6.4	3.2	183 000	285 000	18 700	29 100	2 200	3 200
	168.275	41.275	41.275	30.162	3.5	3.3	223 000	345 000	22 700	35 000	2 000	2 800
	190.500	57.150	57.531	44.450	8.0	3.3	355 000	500 000	36 000	51 000	1 900	2 600
93.662	148.430	28.575	28.971	21.433	3.0	3.0	140 000	218 000	14 300	22 300	2 200	3 000
	149.225	31.750	28.971	24.608	3.0	3.3	140 000	218 000	14 300	22 300	2 200	3 000
	152.400	39.688	36.322	30.162	3.5	3.2	183 000	285 000	18 700	29 100	2 200	3 200
95.000	150.000	35.000	34.000	27.000	3.0	2.5	183 000	285 000	18 700	29 100	2 200	3 200
95.250	146.050	33.338	34.925	26.195	3.5	3.3	169 000	280 000	17 300	28 500	2 400	3 200
	148.430	28.575	28.971	21.433	3.0	3.0	140 000	218 000	14 300	22 300	2 200	3 000
	149.225	31.750	28.971	24.608	3.5	3.3	140 000	218 000	14 300	22 300	2 200	3 000
	152.400	39.688	36.322	30.162	3.5	3.2	183 000	285 000	18 700	29 100	2 200	3 200
	152.400	39.688	36.322	33.338	3.5	3.3	183 000	285 000	18 700	29 100	2 200	3 200
	168.275	41.275	41.275	30.162	3.5	3.3	223 000	345 000	22 700	35 000	2 000	2 800
	171.450	47.625	48.260	38.100	3.5	3.3	282 000	415 000	28 800	42 500	2 000	2 800
	180.975	47.625	48.006	38.100	3.5	3.3	258 000	375 000	26 300	38 500	2 000	2 600
	190.500	57.150	57.531	44.450	8.0	3.3	355 000	500 000	36 000	51 000	1 900	2 600
	190.500	57.150	57.531	46.038	8.0	3.3	390 000	520 000	39 500	53 500	1 900	2 600
96.838	148.430	28.575	28.971	21.433	3.5	3.0	140 000	218 000	14 300	22 300	2 200	3 000
	149.225	31.750	28.971	24.606	3.5	3.3	140 000	218 000	14 300	22 300	2 200	3 000
98.425	161.925	36.512	36.116	26.195	3.5	3.3	191 000	310 000	19 500	31 500	2 000	2 800
	168.275	41.275	41.275	30.162	3.5	3.3	223 000	345 000	22 700	35 000	2 000	2 800
	180.975	47.625	48.006	38.100	3.5	3.3	258 000	375 000	26 300	38 500	2 000	2 600
	190.500	57.150	57.531	44.450	3.5	3.3	355 000	500 000	36 000	51 000	1 900	2 600
	190.500	57.150	57.531	46.038	3.5	3.3	390 000	520 000	39 500	53 500	1 900	2 600
99.982	190.500	57.150	57.531	46.038	6.4	3.3	390 000	520 000	39 500	53 500	1 900	2 600
100.000	150.000	32.000	30.000	26.000	2.3	2.3	146 000	235 000	14 900	24 000	2 200	3 000
	155.000	36.000	35.000	28.000	3.0	2.5	191 000	325 000	19 500	33 000	2 000	2 800
	160.000	41.000	40.000	32.000	3.0	2.5	239 000	380 000	24 400	38 500	2 000	2 800
100.012	157.162	36.512	36.116	26.195	3.5	3.3	191 000	310 000	19 500	31 500	2 000	2 800

 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r_{\rm r} \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y_1

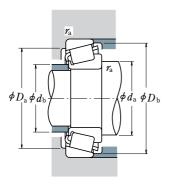
Carga Estática Equivalente

 $P_0 = 0.5F_r + Y_0F_a$


Cuando $F_{\rm r}$ > 0.5 $F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de Rodamier		С)imensic	nes de 1 (mm	Tope y Ch			Centros Efectivos de Carga	Cons- tante		res de a Axial		asa kg)
CONO	COPA	d_{a}	$d_{ ext{b}}$	D_{a}	$D_{ ext{b}}$		$oldsymbol{r}_{ m a}$ náx.	(mm)	e	Y_1	Y_0	cono	COPA
47890	47820	107	101	131	140	3.5	3.3	32.3	0.45	1.3	0.74	1.46	0.664
42362	42584	107	101	134	142	3.5	3	31.8	0.49	1.2	0.67	1.29	0.553
598	592 A	107	101	135	144	3.5	3.2	37.1	0.44	1.4	0.75	1.6	1.06
598 A 681 857	592 A 672 854	110 121	101 104 106	135 149 170	144 160 174	6.4 3.5 8	3.2 3.3 3.3	37.1 38.3 41.8	0.44 0.47 0.33	1.4 1.3 1.8	0.75 0.70 0.99	1.59 2.62 4.78	1.06 1.24 2.55
42368	42584	107	102	134	142	3	3	31.8	0.49	1.2	0.67	1.24	0.553
42368	42587	107	102	134	143	3	3.3	34.9	0.49	1.2	0.67	1.24	0.711
597	592 A	109	102	135	144	3.5	3.2	37.1	0.44	1.4	0.75	1.54	1.06
▲ JM 719149	l 719113	109	104	135	143	3	2.5	33.4	0.44	1.4	0.75	1.46	0.765
47896	47820	110	103	131	140	3.5	3.3	32.3	0.45	1.3	0.74	1.33	0.664
42375	42584	108	103	134	142	3	3	31.8	0.49	1.2	0.67	1.18	0.553
42376	42587	109	103	134	143	3.5	3.3	34.9	0.49	1.2	0.67	1.18	0.711
594	592 A	110	104	135	144	3.5	3.2	37.1	0.44	1.4	0.75	1.47	1.06
594	592	109	103	135	145	3.5	3.3	37.1	0.44	1.4	0.75	1.47	1.12
683	672	113	106	149	160	3.5	3.3	38.3	0.47	1.3	0.70	2.47	1.24
77375 776 864 HH 221440 HH	77675 772 854 I 221410	117 114 123 125	105 107 108 110	152 161 170 171	159 168 174 179	3.5 3.5 8	3.3 3.3 3.3 3.3	37.8 39.1 41.8 42.3	0.37 0.39 0.33 0.33	1.6 1.6 1.8 1.8	0.90 0.86 0.99 0.99	2.91 3.25 4.57 5.0	1.67 1.99 2.55 2.24
42381	42584	110	104	134	142	3.5	3	31.8	0.49	1.2	0.67	1.13	0.553
42381	42587	111	105	135	143	3.5	3.3	34.9	0.49	1.2	0.67	1.13	0.711
52387	52637	114	108	144	154	3.5	3.3	36.1	0.47	1.3	0.69	1.89	0.942
685	672	116	109	149	160	3.5	3.3	38.3	0.47	1.3	0.70	2.32	1.24
779	772	116	110	161	168	3.5	3.3	39.1	0.39	1.6	0.86	3.06	1.99
866	854	118	111	170	174	3.5	3.3	41.8	0.33	1.8	0.99	4.38	2.55
HH 221442 HH	I 221410	119	113	171	179	3.5	3.3	42.3	0.33	1.8	0.99	4.81	2.24
HH 221447 HH	I 221410	126	114	171	179	6.4	3.3	42.3	0.33	1.8	0.99	4.68	2.24
▲ JM 720249	l 820012	111	107	135	144	2.3	2.3	36.8	0.50	1.2	0.66	1.27	0.616
	l 720210	115	109	140	149	3	2.5	36.8	0.47	1.3	0.70	1.68	0.772
	l 720210	117	109	143	154	3	2.5	38.2	0.47	1.3	0.70	2.09	0.974
52393	52618	116	109	142	152	3.5	3.3	36.1	0.47	1.3	0.69	1.81	0.702

Nota A Las tolerancias se listan en las Tablas 2, 3 y 4 en las Páginas B109 y B110.


RODAMIENTOS DE RODILLOS CÓNICOS DE UNA SOLA HILERA (DISEÑO EN PULGADAS) -

Diámetro Interior 101.600~117.475 mm

			ensiones mm)		Con-	Con-	1)	Índices Básid	cos de Carga	{kgf}	Veloci Límite	
d	D	T	В	С	Cono	Copa <i>Y</i> mín.	C_{r}	C_{0r}	$C_{\rm r}$	C_{0r}	Grasa	Aceite
101.600	157.162	36.512	36.116	26.195	3.5	3.3	191 000	310 000	19 500	31 500	2 000	2 800
	161.925	36.512	36.116	26.195	3.5	3.3	191 000	310 000	19 500	31 500	2 000	2 800
	168.275	41.275	41.275	30.162	3.5	3.3	223 000	345 000	22 700	35 000	2 000	2 800
	180.975	47.625	48.006	38.100	3.5	3.3	258 000	375 000	26 300	38 500	2 000	2 600
	190.500	57.150	57.531	44.450	8.0	3.3	355 000	500 000	36 000	51 000	1 900	2 600
	190.500	57.150	57.531	46.038	8.0	3.3	390 000	520 000	39 500	53 500	1 900	2 600
	212.725	66.675	66.675	53.975	7.0	3.3	570 000	810 000	58 000	82 500	1 700	2 200
104.775	180.975	47.625	48.006	38.100	7.0	3.3	258 000	375 000	26 300	38 500	2 000	2 600
	180.975	47.625	48.006	38.100	3.5	3.3	258 000	375 000	26 300	38 500	2 000	2 600
	190.500	47.625	49.212	34.925	3.5	3.3	296 000	465 000	30 000	47 000	1 800	2 400
106.362	165.100	36.512	36.512	26.988	3.5	3.3	195 000	320 000	19 800	33 000	2 000	2 600
107.950	158.750	23.020	21.438	15.875	3.5	3.3	102 000	165 000	10 400	16 800	2 000	2 800
	159.987	34.925	34.925	26.988	3.5	3.3	164 000	315 000	16 700	32 000	2 000	2 800
	161.925	34.925	34.925	26.988	3.5	3.3	164 000	280 000	16 800	28 600	2 000	2 800
	165.100	36.512	36.512	26.988	3.5	3.3	195 000	320 000	19 800	33 000	2 000	2 600
	190.500	47.625	49.212	34.925	3.5	3.3	296 000	465 000	30 000	47 000	1 800	2 400
	212.725	66.675	66.675	53.975	8.0	3.3	570 000	810 000	58 000	82 500	1 700	2 200
109.987	159.987	34.925	34.925	26.988	3.5	3.3	164 000	315 000	16 700	32 000	2 000	2 800
	159.987	34.925	34.925	26.988	8.0	3.3	164 000	315 000	16 700	32 000	2 000	2 800
109.992	177.800	41.275	41.275	30.162	3.5	3.3	232 000	375 000	23 700	38 000	1 800	2 600
110.000	165.000	35.000	35.000	26.500	3.0	2.5	195 000	320 000	19 800	33 000	2 000	2 600
	180.000	47.000	46.000	38.000	3.0	2.5	310 000	490 000	31 500	50 000	1 900	2 600
111.125	190.500	47.625	49.212	34.925	3.5	3.3	296 000	465 000	30 000	47 000	1 800	2 400
114.300	152.400	21.433	21.433	16.670	1.5	1.5	89 500	178 000	9 100	18 100	2 000	2 800
	177.800	41.275	41.275	30.162	3.5	3.3	232 000	375 000	23 700	38 000	1 800	2 600
	180.000	34.925	31.750	25.400	3.5	0.8	174 000	254 000	17 800	25 900	1 800	2 400
	190.500	47.625	49.212	34.925	3.5	3.3	296 000	465 000	30 000	47 000	1 800	2 400
	212.725	66.675	66.675	53.975	7.0	3.3	475 000	700 000	48 500	71 500	1 700	2 400
	212.725	66.675	66.675	53.975	7.0	3.3	570 000	810 000	58 000	82 500	1 700	2 200
115.087	190.500	47.625	49.212	34.925	3.5	3.3	296 000	465 000	30 000	47 000	1 800	2 400
117.475	180.975	34.925	31.750	25.400	3.5	3.3	174 000	254 000	17 800	25 900	1 800	2 400

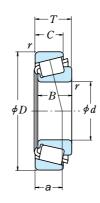
 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r_{\rm r} \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y_1

Carga Estática Equivalente

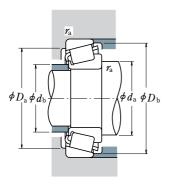
 $P_0 = 0.5F_r + Y_0 F_a$

Cuando $F_{\rm r}$ > 0.5 $F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.


Números de	Rodamientos	[)imensio	ones de ⁻ (mm	Γope y Cl			Centros Efectivos de Carga	Cons- tante		res de ı Axial		asa :g)
CONO	COPA	$d_{\scriptscriptstyle \mathrm{a}}$	$d_{\scriptscriptstyle m b}$	$D_{\rm a}$	$D_{ m b}$		γ _a náx.	(mm)	e	Y_1	Y_0	cono	rox. COPA
52400	52618	117	111	142	152	3.5	3.3	36.1	0.47	1.3	0.69	1.75	0.702
52400	52637	117	111	144	154	3.5	3.3	36.1	0.47	1.3	0.69	1.75	0.942
687	672	118	112	149	160	3.5	3.3	38.3	0.47	1.3	0.70	2.15	1.24
780	772	119	113	161	168	3.5	3.3	39.1	0.39	1.6	0.86	2.88	1.99
861	854	129	114	170	174	8	3.3	41.8	0.33	1.8	0.99	4.13	2.55
HH 221449	HH 221410	131	116	171	179	8	3.3	42.3	0.33	1.8	0.99	4.55	2.24
HH 224335	HH 224310	132	121	192	202	7	3.3	47.3	0.33	1.8	1.0	8.14	3.06
787	772	129	116	161	168	7	3.3	39.1	0.39	1.6	0.86	2.66	1.99
782	772	122	116	161	168	3.5	3.3	39.1	0.39	1.6	0.86	2.68	1.99
71412	71750	124	118	171	181	3.5	3.3	40.1	0.42	1.4	0.79	4.0	1.71
56418	56650	122	116	149	159	3.5	3.3	38.6	0.50	1.2	0.66	1.87	0.861
37425	37625	122	115	143	152	3.5	3.3	37.0	0.61	0.99	0.54	0.886	0.488
LM 522546	LM 522510	122	116	146	154	3.5	3.3	33.7	0.40	1.5	0.82	1.65	0.784
48190	48120	122	116	146	156	3.5	3.3	38.7	0.51	1.2	0.65	1.59	0.83
56425	56650	123	117	149	159	3.5	3.3	38.6	0.50	1.2	0.66	1.8	0.861
71425	71750	126	120	171	181	3.5	3.3	40.1	0.42	1.4	0.79	3.79	1.71
HH 224340	HH 224310	139	126	192	202	8	3.3	47.3	0.33	1.8	1.0	7.58	3.06
LM 522549	LM 522510	124	118	146	154	3.5	3.3	33.7	0.40	1.5	0.82	1.55	0.784
LM 522548	LM 522510	133	118	146	154	8	3.3	33.7	0.40	1.5	0.82	1.53	0.784
64433	64700	128	121	160	172	3.5	3.3	42.4	0.52	1.2	0.64	2.64	1.11
▲ JM 822049	▲ JM 822010	124	119	149	159	3	2.5	38.3	0.50	1.2	0.66	1.64	0.842
▲ JHM 522649	▲ JHM 522610	127	122	162	172	3	2.5	40.9	0.41	1.5	0.81	3.12	1.51
71437	71750	129	123	171	181	3.5	3.3	40.1	0.42	1.4	0.79	3.58	1.71
L 623149	L 623110	123	121	143	148	1.5	1.5	27.4	0.41	1.5	0.80	0.725	0.344
64450	64700	131	125	160	172	3.5	3.3	42.4	0.52	1.2	0.64	2.39	1.11
68450	** 68709	130	123	165	172	3.5	0.8	40.0	0.50	1.2	0.66	1.95	1.0
71450	71750	132	125	171	181	3.5	3.3	40.1	0.42	1.4	0.79	3.37	1.71
938	932	141	128	187	193	7	3.3	46.9	0.33	1.8	1.0	6.01	4.11
HH 224346	HH 224310	143	131	192	202	7	3.3	47.3	0.33	1.8	1.0	7.01	3.06
71453	71750	133	126	171	181	3.5	3.3	40.1	0.42	1.4	0.79	3.31	1.71
68462	68712	132	125	163	172	3.5	3.3	40.0	0.50	1.2	0.66	1.73	1.05

Notas ** Está listado el diámetro exterior máximo y su tolerancia es negativa (Consulte la Tabla 8.4.2 en las Páginas A68 y A69).

▲ Las tolerancias se listan en las Tablas 2, 3 y 4 en las Páginas B109 y B110.


RODAMIENTOS DE RODILLOS CÓNICOS DE UNA SOLA HILERA (DISEÑO EN PULGADAS) -

Diámetro Interior 120.000 \sim 165.100 mm

			ensiones mm)		Cono	Copa	1)	Índices Básio	cos de Carga	{kgf}	Veloci Límite	
d	D	T	В	С	GUIIU	υσμα γ mín.	$C_{\rm r}$	C_{0r}	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite
120.000	170.000	25.400	25.400	19.050	3.3	3.3	130 000	219 000	13 200	22 300	1 900	2 600
	174.625	35.720	36.512	27.783	3.5	1.5	212 000	385 000	21 600	39 000	1 900	2 600
120.650	182.562	39.688	38.100	33.338	3.5	3.3	228 000	445 000	23 200	45 000	1 800	2 400
	206.375	47.625	47.625	34.925	3.3	3.3	320 000	530 000	32 500	54 000	1 600	2 200
123.825	182.562	39.688	38.100	33.338	3.5	3.3	228 000	445 000	23 200	45 000	1 800	2 400
125.000	175.000	25.400	25.400	18.288	3.3	3.3	134 000	232 000	13 700	23 600	1 800	2 400
127.000	165.895	18.258	17.462	13.495	1.5	1.5	84 500	149 000	8 650	15 200	1 900	2 600
	182.562	39.688	38.100	33.338	3.5	3.3	228 000	445 000	23 200	45 000	1 800	2 400
	196.850	46.038	46.038	38.100	3.5	3.3	315 000	560 000	32 000	57 500	1 700	2 200
	215.900	47.625	47.625	34.925	3.5	3.3	287 000	495 000	29 300	50 000	1 500	2 000
128.588	206.375	47.625	47.625	34.925	3.3	3.3	320 000	530 000	32 500	54 000	1 600	2 200
130.000	206.375	47.625	47.625	34.925	3.5	3.3	320 000	530 000	32 500	54 000	1 600	2 200
130.175	203.200	46.038	46.038	38.100	3.5	3.3	315 000	560 000	32 000	57 500	1 700	2 200
	206.375	47.625	47.625	34.925	3.5	3.3	320 000	530 000	32 500	54 000	1 600	2 200
133.350	177.008	25.400	26.195	20.638	1.5	1.5	124 000	258 000	12 700	26 300	1 800	2 400
	190.500	39.688	39.688	33.338	3.5	3.3	240 000	485 000	24 500	49 500	1 700	2 200
	196.850	46.038	46.038	38.100	3.5	3.3	315 000	560 000	32 000	57 500	1 700	2 200
	215.900	47.625	47.625	34.925	3.5	3.3	287 000	495 000	29 300	50 000	1 500	2 000
136.525	190.500	39.688	39.688	33.338	3.5	3.3	240 000	485 000	24 500	49 500	1 700	2 200
	217.488	47.625	47.625	34.925	3.5	3.3	287 000	495 000	29 300	50 000	1 500	2 000
139.700	187.325	28.575	29.370	23.020	1.5	1.5	153 000	305 000	15 600	31 500	1 700	2 200
	215.900	47.625	47.625	34.925	3.5	3.3	287 000	495 000	29 300	50 000	1 500	2 000
	254.000	66.675	66.675	47.625	7.0	3.3	515 000	830 000	52 500	84 500	1 300	1 800
142.875	200.025	41.275	39.688	34.130	3.5	3.3	227 000	460 000	23 100	46 500	1 600	2 20
146.050	193.675	28.575	28.575	23.020	1.5	1.5	170 000	355 000	17 300	36 500	1 600	2 200
	236.538	57.150	56.642	44.450	3.5	3.3	455 000	720 000	46 000	73 500	1 400	1 900
	254.000	66.675	66.675	47.625	7.0	3.3	515 000	830 000	52 500	84 500	1 300	1 800
149.225	254.000	66.675	66.675	47.625	7.0	3.3	515 000	830 000	52 500	84 500	1 300	1 800
152.400	254.000	66.675	66.675	47.625	7.0	3.3	515 000	830 000	52 500	84 500	1 300	1 800
158.750	225.425	41.275	39.688	33.338	3.5	3.3	240 000	540 000	24 400	55 000	1 400	1 900
165.100	247.650	47.625	47.625	38.100	3.5	3.3	345 000	705 000	35 500	71 500	1 300	1 700

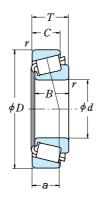
 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y_1

Carga Estática Equivalente

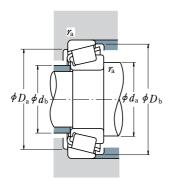
 $P_0 = 0.5F_r + Y_0 F_a$

Cuando $F_{\rm r}$ > 0.5 $F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.


Números de Ro	odamientos	[Dimensio	ones de '	Tope y C		Cona	Centros Efectivos de Carga	Cons- tante		res de a Axial		asa (g)
CONO	COPA	$d_{ m a}$	$d_{\scriptscriptstyle m b}$	D_{a}	$D_{ m b}$		ra náx.	(mm) a	e	Y_1	Y_0	ap CONO	rox. COPA
▲ JL 724348	▲ JL 724314	132	127	156	163	3.3	3.3	32.9	0.46	1.3	0.72	1.08	0.591
* M 224748	M 224710	135	129	163	168	3.5	1.5	32.2	0.33	1.8	0.99	1.9	0.866
48282	48220	136	133	168	176	3.5	3.3	34.2	0.31	2.0	1.1	2.56	1.14
795	792	139	134	186	198	3.3	3.3	45.7	0.46	1.3	0.72	4.44	1.9
48286	48220	139	133	168	176	3.5	3.3	34.2	0.31	2.0	1.1	2.37	1.14
▲ JL 725346	▲ JL 725316	138	133	161	168	3.3	3.3	34.3	0.48	1.3	0.69	1.19	0.573
LL 225749	LL 225710	135	132	158	160	1.5	1.5	24.2	0.33	1.8	0.99	0.647	0.288
48290	48220	141	135	168	176	3.5	3.3	34.2	0.31	2.0	1.1	2.19	1.14
67388	67322	144	138	180	189	3.5	3.3	39.7	0.34	1.7	0.96	3.74	1.46
74500	74850	148	141	196	208	3.5	3.3	48.4	0.49	1.2	0.68	4.92	1.99
799	792	146	140	186	198	3.3	3.3	45.7	0.46	1.3	0.72	3.86	1.9
797	792	148	141	186	198	3.5	3.3	45.7	0.46	1.3	0.72	3.76	1.9
67389	67320	146	141	183	191	3.5	3.3	39.7	0.34	1.7	0.96	3.51	2.06
799 A	792	148	142	186	198	3.5	3.3	45.7	0.46	1.3	0.72	3.74	1.9
L 327249	L 327210	143	141	167	171	1.5	1.5	29.5	0.35	1.7	0.95	1.18	0.55
48385	48320	148	142	177	184	3.5	3.3	35.9	0.32	1.9	1.0	2.58	1.16
67390	67322	149	143	180	189	3.5	3.3	39.7	0.34	1.7	0.96	3.27	1.46
74525	74850	152	146	196	208	3.5	3.3	48.4	0.49	1.2	0.68	4.44	1.99
48393	48320	151	144	177	184	3.5	3.3	35.9	0.32	1.9	1.0	2.37	1.16
74537	74856	155	148	197	210	3.5	3.3	48.4	0.49	1.2	0.68	4.19	2.13
LM 328448	LM 328410	149	147	176	182	1.5	1.5	31.7	0.36	1.7	0.93	1.59	0.67
74550	74850	158	151	196	208	3.5	3.3	48.4	0.49	1.2	0.68	3.93	1.99
99550	99100	170	156	227	238	7	3.3	55.3	0.41	1.5	0.81	9.99	3.83
48685	48620	158	151	185	193	3.5	3.3	37.6	0.34	1.8	0.98	2.63	1.19
36690	36620	155	154	182	188	1.5	1.5	33.5	0.37	1.6	0.90	1.64	0.725
HM 231140	HM 231110	164	160	217	224	3.5	3.3	45.9	0.32	1.9	1.0	6.07	2.93
99575	99100	175	162	227	238	7	3.3	55.3	0.41	1.5	0.81	9.24	3.83
99587	99100	178	165	227	238	7	3.3	55.3	0.41	1.5	0.81	8.86	3.83
99600	99100	181	167	227	238	7	3.3	55.3	0.41	1.5	0.81	8.46	3.83
46780	46720	176	169	209	218	3.5	3.3	44.3	0.38	1.6	0.86	3.69	1.66
67780	67720	185	179	229	240	3.5	3.3	52.4	0.44	1.4	0.75	5.83	2.33

Notas * Está listado el diámetro interior máximo y su tolerancia es negativa (Consulte la Tabla 8.4.1 en la Página A68).

Las tolerancias se listan en las Tablas 2, 3 y 4 en las Páginas B109 y B110.


RODAMIENTOS DE RODILLOS CÓNICOS DE UNA SOLA HILERA (DISEÑO EN PULGADAS) -

Diámetro Interior 170.000∼206.375 mm

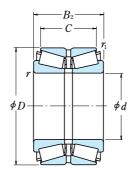
			nsiones mm)		Cana	Cana	Índices Básicos de Carga (N) {kgf}			{kgf}	Velocidades Límite (rpm)		
d	D	T	В	С	Cono	Copa r mín.	$C_{\rm r}$	C_{0r}	$C_{\rm r}$	C_{0r}	Grasa	Aceite	
170.000	230.000	39.000	38.000	31.000	3.0	2.5	278 000	520 000	28 300	53 000	1 300	1 800	
	240.000	46.000	44.500	37.000	3.0	2.5	380 000	720 000	39 000	73 000	1 300	1 800	
174.625	247.650	47.625	47.625	38.100	3.5	3.3	345 000	705 000	35 500	71 500	1 300	1 700	
177.800	227.012	30.162	30.162	23.020	1.5	1.5	181 000	415 000	18 500	42 000	1 300	1 800	
	247.650	47.625	47.625	38.100	3.5	3.3	345 000	705 000	35 500	71 500	1 300	1 700	
	260.350	53.975	53.975	41.275	3.5	3.3	455 000	835 000	46 500	85 000	1 200	1 700	
190.000	260.000	46.000	44.000	36.500	3.0	2.5	370 000	730 000		74 500	1 100	1 600	
190.500	266.700	47.625	46.833	38.100	3.5	3.3	345 000	720 000		73 000	1 100	1 500	
200.000	300.000	65.000	62.000	51.000	3.5	2.5	615 000	1 130 000		116 000	1 000	1 400	
203.200	282.575	46.038	46.038	36.512	3.5	3.3	365 000	800 000	37 500	81 500	1 000	1 400	
206.375	282.575	46.038	46.038	36.512	3.5	3.3	365 000	800 000	37 500	81 500	1 000	1 400	

 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r_{\rm r} \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	0	0.4	Y_1

Carga Estática Equivalente

 $P_0 = 0.5F_r + Y_0 F_a$

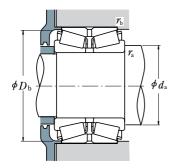

Cuando $F_{\rm r}$ > $0.5F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ Los valores de e, Y_1 , y Y_0 se muestran en la tabla siguiente.

Números de	Rodamientos	[Centros Efectivos de Carga	tante		ores de a Axial		asa <g)< th=""></g)<>
CONO	CONO COPA		$d_{ m b}$	$D_{ m a}$	$D_{ m b}$	Cono	r copa r∕ _a máx.	(mm)	e	Y_1	Y_0	ap CONO	rox. COPA
▲ JHM 534149	▲ JHM 534110	184	178	217	224	3	2.5	43.2	0.38	1.6	0.86	3.1	1.3
▲ JM 734449	▲ JM 734410	185	180	222	232	3	2.5	50.5	0.44	1.4	0.75	4.42	2.02
67787	67720	192	185	229	240	3.5	3.3	52.4	0.44	1.4	0.75	4.88	2.33
36990	36920	189	186	214	221	1.5	1.5	42.9	0.44	1.4	0.75	2.1	0.907
67790	67720	194	188	229	240	3.5	3.3	52.4	0.44	1.4	0.75	4.56	2.33
M 236849	M 236810	195	192	241	249	3.5	3.3	47.5	0.33	1.8	0.99	6.49	2.86
▲ JM 738249	▲ JM 738210	206	200	242	252	3	2.5	56.4	0.48	1.3	0.69	4.73	2.2
67885	67820	209	203	246	259	3.5	3.3	57.9	0.48	1.3	0.69	5.4	2.64
▲ JHM 840449	▲ JHM 840410	223	215	273	289	3.5	2.5	73.1	0.52	1.2	0.63	10.3	5.19
67983	67920	222	216	260	275	3.5	3.3	61.9	0.51	1.2	0.65	6.03	2.82
67985	67920	224	219	260	275	3.5	3.3	61.9	0.51	1.2	0.65	5.66	2.82

Nota A Las tolerancias se listan en las Tablas 2, 3 y 4 en las Páginas B109 y B110.

RODAMIENTOS DE RODILLOS CÓNICOS DE DOBLE HILERA

Diámetro Interior 40~90 mm



			nsiones mm)			Índices Básio	cos de Carga N	Velocidades Límite (rpm)	
d	D	B_2	C	r mín.	${m \gamma}_1$ mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite
40	80	45	37.5	1.5	0.6	109 000	140 000	3 700	5 100
45	85	47	37.5	1.5	0.6	117 000	159 000	3 400	4 700
	85	55	43.5	1.5	0.6	143 000	204 000	3 400	4 700
50	90	48	38.5	1.5	0.6	131 000	183 000	3 200	4 400
	90	49	39.5	1.5	0.6	131 000	183 000	3 200	4 400
	90	55	43.5	1.5	0.6	150 000	218 000	3 200	4 400
	110	64	51.5	2.5	0.6	224 000	297 000	2 700	3 700
55	100	51	41.5	2	0.6	162 000	226 000	2 900	3 900
	100	52	42.5	2	0.6	162 000	226 000	2 900	3 900
	100	60	48.5	2	0.6	188 000	274 000	2 900	3 900
	120	70	57	2.5	0.6	256 000	342 000	2 500	3 400
60	110	53	43.5	2	0.6	178 000	246 000	2 700	3 600
	110	66	54.5	2	0.6	225 000	335 000	2 700	3 600
	130	74	59	3	1	298 000	405 000	2 300	3 200
65	120	56	46.5	2	0.6	210 000	300 000	2 400	3 200
	120	57	47.5	2	0.6	210 000	300 000	2 400	3 200
	120	73	61.5	2	0.6	269 000	405 000	2 400	3 300
	140	79	63	3	1	340 000	465 000	2 100	2 900
70	125	57	46.5	2	0.6	227 000	325 000	2 300	3 100
	125	59	48.5	2	0.6	227 000	325 000	2 300	3 100
	125	74	61.5	2	0.6	270 000	410 000	2 300	3 100
	150	83	67	3	1	390 000	535 000	2 000	2 700
75	130	62	51.5	2	0.6	245 000	365 000	2 200	3 000
	130	74	61.5	2	0.6	283 000	440 000	2 200	3 000
	160	87	69	3	1	435 000	600 000	1 900	2 500
80	140	61	49	2.5	0.6	269 000	390 000	2 000	2 800
	140	64	51.5	2.5	0.6	269 000	390 000	2 000	2 800
	140	78	63.5	2.5	0.6	330 000	505 000	2 000	2 800
	170	92	73	3	1	475 000	655 000	1 700	2 400
85	150	70	57	2.5	0.6	315 000	465 000	1 900	2 600
	150	86	69	2.5	0.6	360 000	555 000	1 900	2 600
	180	98	77	4	1	530 000	745 000	1 600	2 200
90	160	71	58	2.5	0.6	345 000	510 000	1 800	2 400
	160	74	61	2.5	0.6	345 000	510 000	1 800	2 400
	160	94	77	2.5	0.6	440 000	700 000	1 800	2 400

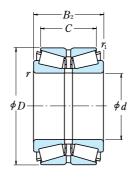
Observaciones

Para otros rodamientos de rodillos cónicos no listados, contacte con NSK.

 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/F_{\rm r} > e$				
X	Y	X	Y			
1	Y_3	0.67	Y_2			

Carga Estática Equivalente

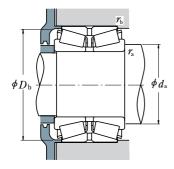

 $P_0 = F_r + Y_0 F_a$

Los valores de $e,\,Y_2$, Y_3 , y $Y_0\,$ se muestran en la tabla siguiente.

						l			
Némana de Dadamientos					Cons- tante		actores d arga Axia		Masa (kg)
Números de Rodamientos					e	Y_2	Y_3	Y_0	aprox.
HR 40 KBE 42+L	51	75	1.5	0.6	0.37	2.7	1.8	1.8	0.97
HR 45 KBE 42+L	56	81	1.5	0.6	0.40	2.5	1.7	1.6	1.08
HR 45 KBE 52X+L	56	81	1.5	0.6	0.40	2.5	1.7	1.6	1.31
HR 50 KBE 042+L	61	87	1.5	0.6	0.42	2.4	1.6	1.6	1.20
HR 50 KBE 42+L	61	87	1.5	0.6	0.42	2.4	1.6	1.6	1.22
HR 50 KBE 52X+L	61	87	1.5	0.6	0.42	2.4	1.6	1.6	1.39
HR 50 KBE 043+L	65	104	2	0.6	0.35	2.9	2.0	1.9	2.77
HR 55 KBE 042+L	67	96	2	0.6	0.40	2.5	1.7	1.6	1.59
HR 55 KBE 1003+L	67	96	2	0.6	0.40	2.5	1.7	1.6	1.63
HR 55 KBE 52X+L	67	97	2	0.6	0.40	2.5	1.7	1.6	1.88
HR 55 KBE 43+L	70	113	2	0.6	0.35	2.9	2.0	1.9	3.52
HR 60 KBE 042+L	72	105	2	0.6	0.40	2.5	1.7	1.6	2.03
HR 60 KBE 52X+L	72	106	2	0.6	0.40	2.5	1.7	1.6	2.52
HR 60 KBE 43+L	78	122	2.5	1	0.35	2.9	2.0	1.9	4.40
HR 65 KBE 42+L	77	115	2	0.6	0.40	2.5	1.7	1.6	2.58
HR 65 KBE 1202+L	77	115	2	0.6	0.40	2.5	1.7	1.6	2.61
HR 65 KBE 52X+L	77	117	2	0.6	0.40	2.5	1.7	1.6	3.35
HR 65 KBE 43+L	83	132	2.5	1	0.55	2.9	2.0	1.9	5.42
HR 70 KBE 042+L	82	120	2	0.6	0.42	2.4	1.6	1.6	2.79
HR 70 KBE 42+L	82	120	2	0.6	0.42	2.4	1.6	1.6	2.85
HR 70 KBE 52X+L	82	121	2	0.6	0.42	2.4	1.6	1.6	3.58
HR 70 KBE 43+L	88	142	2.5	1	0.35	2.9	2.0	1.9	6.45
HR 75 KBE 42+L	87	126	2	0.6	0.44	2.3	1.6	1.5	3.15
HR 75 KBE 52X+L	87	127	2	0.6	0.44	2.3	1.6	1.5	3.73
HR 75 KBE 043+L	93	151	2.5	1	0.35	2.9	2.0	1.9	7.66
HR 80 KBE 042+L	95	134	2	0.6	0.42	2.4	1.6	1.6	3.70
HR 80 KBE 42+L	95	134	2	0.6	0.42	2.4	1.6	1.6	3.70
HR 80 KBE 52X+L	95	136	2	0.6	0.42	2.4	1.6	1.6	4.59
HR 80 KBE 043+L	98	161	2.5	1	0.35	2.9	2.0	1.9	9.02
HR 85 KBE 42+L	100	143	2	0.6	0.42	2.4	1.6	1.6	4.69
HR 85 KBE 52X+L	100	144	2	0.6	0.42	2.4	1.6	1.6	5.70
HR 85 KBE 043+L	106	169	3	1	0.35	2.9	2.0	1.9	10.8
HR 90 KBE 042+L	105	152	2	0.6	0.42	2.4	1.6	1.6	5.53
HR 90 KBE 42+L	105	152	2	0.6	0.42	2.4	1.6	1.6	5.71
HR 90 KBE 52X+L	105	154	2	0.6	0.42	2.4	1.6	1.6	7.26

RODAMIENTOS DE RODILLOS CÓNICOS DE DOBLE HILERA

Diámetro Interior 90~120 mm



			ensiones mm)				icos de Carga	Velocidades I	_ímite (rpm)
d	D	B_2	С	γ mín.	${m \gamma}_1$ mín.	C_{r}	$C_{0\mathrm{r}}$	Grasa	Aceite
90	190	102	81	4	1	595 000	845 000	1 600	2 100
	190	144	115	4	1	770 000	1 180 000	1 600	2 200
95	170	78	63	3	1	385 000	570 000	1 700	2 300
	170	100	83	3	1	495 000	800 000	1 700	2 300
	200	108	85	4	1	640 000	910 000	1 500	2 000
100	165	52	46	2.5	0.6	222 000	340 000	1 700	2 300
	180	81	64	3	1	435 000	665 000	1 600	2 200
	180	81	65	3	1	435 000	665 000	1 600	2 200
	180	82	66	3	1	435 000	665 000	1 600	2 200
	180	83	67	3	1	435 000	665 000	1 600	2 200
	180	105	85	3	1	555 000	905 000	1 600	2 200
	180	107	87	3	1	555 000	905 000	1 600	2 200
	180	110	90	3	1	555 000	905 000	1 600	2 200
	215	112	87	4	1	725 000	1 050 000	1 400	1 900
105	190	88	70	3	1	480 000	735 000	1 500	2 000
	190	117	96	3	1	620 000	1 020 000	1 500	2 000
	190	115	95	3	1	620 000	1 020 000	1 500	2 000
	225	116	91	4	1	780 000	1 130 000	1 300	1 800
110	180	56	50	2.5	0.6	264 000	400 000	1 500	2 000
	180	70	56	2.5	0.6	340 000	555 000	1 500	2 000
	180	125	100	2.5	0.6	550 000	1 060 000	1 500	2 100
	200	90	72	3	1	540 000	840 000	1 400	1 900
	200	92	74	3	1	540 000	840 000	1 400	1 900
	200	120	100	3	1	685 000	1 130 000	1 400	1 900
	200	121	101	3	1	685 000	1 130 000	1 400	1 900
	240	118	93	4	1.5	830 000	1 190 000	1 200	1 700
120	180	46	41	2.5	0.6	184 000	296 000	1 500	2 000
	180	58	46	2.5	0.6	260 000	450 000	1 500	2 000
	200	62	55	2.5	0.6	310 000	500 000	1 400	1 800
	200	78	62	2.5	0.6	415 000	690 000	1 400	1 900
	200	100	84	2.5	0.6	515 000	885 000	1 400	1 800
	215	97	78	3	1	575 000	900 000	1 300	1 800
	215	132	109	3	1	750 000	1 270 000	1 300	1 800
	260	128	101	4	1	915 000	1 310 000	1 100	1 500
	260	188	145	4	1	1 320 000	2 110 000	1 100	1 500
Obcoru	aaianaa	Doro ot	roo rodomio	ntoo do rodi	llaa aániaaa n	a lietados, contac	to oon NCV		

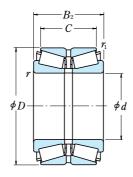
Observaciones

Para otros rodamientos de rodillos cónicos no listados, contacte con NSK.

 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/F_{\rm r}{>}e$				
X	Y	X	Y			
1	Y_3	0.67	Y_2			

Carga Estática Equivalente

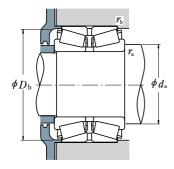

 $P_0 = F_r + Y_0 F_a$

Los valores de $e,\,Y_2$, Y_3 , y $Y_0\,$ se muestran en la tabla siguiente.

Números de Rodamientos		iones de		Chaflán	Cons- tante		actores d arga Axia		Masa (kg)
Numeros de nodamientos	$d_{ m a}$ mín.	$D_{ m b}$ mín.	$oldsymbol{\gamma}_{ m a}$ máx.	$\emph{r}_{ m b}$ máx.	e	Y_2	Y_3	Y_0	aprox.
HR 90 KBE 043+L	111	178	3	1	0.35	2.9	2.0	1.9	12.7
HR 90 KBE1901+L	111	179	3		0.35	2.9	2.0	1.9	17.9
HR 95 KBE 42+L	113	161	2.5	1	0.42	2.4	1.6	1.6	6.75
HR 95 KBE 52+L	113	163	2.5	1	0.42	2.4	1.6	1.6	8.60
HR 95 KBE 43+L	116	187	3	1	0.35	2.9	2.0	1.9	14.7
100 KBE 31+L	115	156	2	0.6	0.33	3.0	2.0	2.0	4.04
HR100 KBE 1805+L	118	170	2.5	1	0.42	2.4	1.6	1.6	8.16
HR100 KBE 042+L	118	170	2.5	1	0.42	2.4	1.6	1.6	8.13
HR100 KBE 1801+L	118	170	2.5	1	0.42	2.4	1.6	1.6	8.22
HR100 KBE 42+L	118	170	2.5	1	0.42	2.4	1.6	1.6	8.7
HR100 KBE 1802+L	118	173	2.5	1	0.42	2.4	1.6	1.6	10.6
HR100 KBE 52X+L	118	173	2.5	1	0.42	2.4	1.6	1.6	10.7
HR100 KBE 1804+L	118	173	2.5	1	0.42	2.4	1.6	1.6	11
HR100 KBE 043+L	121	200	3	1	0.35	2.9	2.0	1.9	18.1
HR105 KBE 42X+L	123	179	2.5	1	0.42	2.4	1.6	1.6	9.76
HR105 KBE 1902+L	123	182	2.5	1	0.42	2.4	1.6	1.6	13.4
HR105 KBE 52+L	123	182	2.5	1	0.42	2.4	1.6	1.6	13.1
HR105 KBE 043+L	126	209	3	1	0.35	2.9	2.0	1.9	20.4
110 KBE 31+L	125	172	2	0.6	0.39	2.6	1.7	1.7	5.11
110 KBE 031+L	125	172	2	0.6	0.39	2.6	1.7	1.7	6.33
110 KBE 1802+L	125	172	2	0.6	0.26	3.8	2.6	2.5	11.4
HR110 KBE 42+L	128	190	2.5	1	0.42	2.4	1.6	1.6	11.2
HR110 KBE 42X+L	128	190	2.5	1	0.42	2.4	1.6	1.6	11.5
HR110 KBE2001+L	128	193	2.5	1	0.42	2.4	1.6	1.6	15.4
HR110 KBE 52X+L	128	193	2.5	1	0.42	2.4	1.6	1.6	15.2
HR110 KBE 043+L	131	223	3	1.5	0.35	2.9	2.0	1.9	23.6
120 KBE 30+L	135	172	2	0.6	0.40	2.5	1.7	1.6	3.75
120 KBE 030+L	135	172	2	0.6	0.39	2.6	1.7	1.7	4.64
120 KBE 31+L	135	190	2	0.6	0.39	2.6	1.7	1.7	7.35
120 KBE 031+L	135	190	2	0.6	0.39	2.6	1.7	1.7	8.97
120 KBE2001+L	135	193	2	0.6	0.37	2.7	1.8	1.8	11.3
HR120 KBE 42X+L	138	204	2.5	1	0.44	2.3	1.6	1.5	13.7
HR120 KBE 52X+L	138	207	2.5	1	0.44	2.3	1.6	1.5	18.8
HR120 KBE 43+L	141	240	3	1	0.35	2.9	2.0	1.9	29.4
HR120 KBE2601+L	141	242	3	1	0.35	2.9	2.0	1.9	44.6

RODAMIENTOS DE RODILLOS CÓNICOS DE DOBLE HILERA

Diámetro Interior 125 \sim 150 mm



			ensiones mm)				sicos de Carga (N)	Velocidades Límite (rpm)		
d	D	B_2	C	γ mín.	${m r}_1$ mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite	
125	210	110	88	4	1	560 000	1 030 000	1 300	1 800	
130	230	98	78.5	4	1	640 000	1 010 000	1 200	1 600	
	230	100	80.5	4	1	640 000	1 010 000	1 200	1 600	
	280	137	107.5	5	1.5	940 000	1 350 000	1 000	1 400	
	230	145	115	4	1	905 000	1 580 000	1 200	1 700	
	230	145	117.5	4	1	905 000	1 580 000	1 200	1 700	
	230	150	120	4	1	905 000	1 580 000	1 200	1 700	
140	210	53	47	2.5	0.6	280 000	495 000	1 200	1 700	
	210	106	94	2.5	0.6	555 000	1 200 000	1 300	1 700	
	210	66	53	2.5	1	305 000	530 000	1 200	1 700	
	225	68	61	3	1	400 000	630 000	1 200	1 600	
	225	84	68	3	1	490 000	850 000	1 200	1 600	
	225	85	68	3	1	490 000	850 000	1 200	1 600	
	230	120	94	3	1	685 000	1 270 000	1 200	1 600	
	230	140	110	3	1	820 000	1 550 000	1 200	1 600	
	240	132	106	4	1.5	685 000	1 360 000	1 100	1 500	
	250	102	82.5	4	1	670 000	1 030 000	1 100	1 500	
	250	153	125.5	4	1	1 040 000	1 830 000	1 100	1 500	
	300	145	115.5	5	1.5	1 030 000	1 480 000	1 000	1 300	
150	225	56	50	3	1	300 000	545 000	1 200	1 600	
	225	70	56	3	1	395 000	685 000	1 200	1 600	
	250	80	71	3	1	510 000	810 000	1 100	1 400	
	250	100	80	3	1	630 000	1 090 000	1 100	1 400	
	250	115	95	3	1	745 000	1 320 000	1 100	1 500	
	260	150	115	4	1	815 000	1 520 000	1 100	1 400	
	270	109	87	4	1	830 000	1 330 000	1 000	1 400	
	270	164	130	4	1	1 210 000	2 150 000	1 000	1 400	
	270	174	140	4	1	1 210 000	2 150 000	1 000	1 400	
	320	154	120	5	1.5	1 420 000	2 130 000	900	1 200	

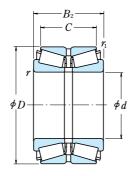
Observaciones

Para otros rodamientos de rodillos cónicos no listados, contacte con NSK.

 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/F_{\rm r} > e$			
X	Y	X	Y		
1	Y_3	0.67	Y_2		

Carga Estática Equivalente

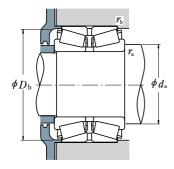

 $P_0 = F_r + Y_0 F_a$

Los valores de $e,\,Y_2$, Y_3 , y $Y_0\,$ se muestran en la tabla siguiente.

	Dimens			Chaflán	Cons-		actores d		Masa
Números de Rodamientos	$d_{\scriptscriptstyle m a}$ $D_{\scriptscriptstyle m b}$,	v	tante	C	arga Axia	al	(kg)
	$oldsymbol{u}_{\mathrm{a}}$ mín.	D _в mín.	$oldsymbol{r}_{ m a}$ máx.	r̂ _b máx.	e	Y_2	Y_3	Y_0	aprox.
125 KBE 2101+L	146	201	3	1	0.43	2.3	1.6	1.5	14.5
HR130 KBE 42+L	151	220	3	1	0.44	2.3	1.6	1.5	15.8
HR130 KBE2301+L	151	220	3	1	0.44	2.3	1.6	1.5	15.9
130 KBE 43+L	157	258	4	1.5	0.36	2.8	1.9	1.8	35
HR130 KBE 2302+L	151	221	3	1	0.44	2.3	1.6	1.5	24.1
HR130 KBE 52+L	151	222	3	1	0.44	2.3	1.6	1.5	23.8
HR130 KBE 2303+L	151	221	3	1	0.44	2.3	1.6	1.5	24.2
140 KBE 30+L	155	202	2	0.6	0.39	2.6	1.7	1.7	6.02
140 KBE 030+L	155	202	2	1	0.40	2.5	1.7	1.6	7.02
140 KBE2101+L	155	202	2	0.6	0.33	3.0	2.0	2.0	12.3
140 KBE 31+L	158	216	2.5	1	0.39	2.6	1.7	1.7	9.31
140 KBE 031+L	158	215	2.5	1	0.39	2.6	1.7	1.7	11.6
140 KBE2201+L	158	215	2.5	1	0.39	2.6	1.7	1.7	11.7
140 KBE 2301+L	158	220	2.5	1	0.33	3.0	2.0	2.0	17.6
140 KBE 2302+L	158	221	2.5	1	0.35	2.9	2.0	1.9	20.7
140 KBE 2401+L	161	227	3	1.5	0.44	2.3	1.5	1.5	22.7
HR140 KBE 42+L	161	237	3	1	0.44	2.3	1.6	1.5	18.9
HR140 KBE 52X+L	161	241	3	1	0.44	2.3	1.6	1.5	29.6
140 KBE 43+L	167	275	4	1.5	0.36	2.8	1.9	1.8	42.6
150 KBE 30+L	168	213	2.5	1	0.35	2.9	2.0	1.9	7.41
150 KBE 030+L	168	215	2.5	1	0.35	2.9	2.0	1.9	8.70
150 KBE 31+L	168	240	2.5	1	0.40	2.5	1.7	1.6	14.2
150 KBE 031+L	168	238	2.5	1	0.39	2.6	1.7	1.7	17.8
150 KBE2502+L	168	238	2.5	1	0.37	2.7	1.8	1.8	20.9
150 KBE2601+L	171	242	3	1	0.43	2.3	1.6	1.5	30.0
HR150 KBE 42+L HR150 KBE 52X+L HR150 KBE 2701+L HR150 KBE 43+L	171 171 171 177	253 257 257 295	3 3 4	1 1 1 1.5	0.44 0.44 0.44 0.35	2.3 2.3 2.3 2.9	1.6 1.6 1.6 2.0	1.5 1.5 1.5 1.9	24.3 37.3 39.7 53.4

RODAMIENTOS DE RODILLOS CÓNICOS DE UNA SOLA HILERA (DISEÑO EN PULGADAS) -

Diámetro Interior 160~200 mm



			ensiones mm)				icos de Carga	Velocidades Límite (rpm)	
d	D	B_2	С	γ mín.	${m r}_1$ mín.	C_{r}	$C_{0\mathrm{r}}$	Grasa	Aceite
160	240	60	53	3	1	355 000	580 000	1 100	1 500
	240	75	60	3	1	395 000	710 000	1 100	1 500
	240	110	90	3	1	650 000	1 290 000	1 100	1 500
	270	86	76	3	1	540 000	885 000	1 000	1 300
	270	108	86	3	1	775 000	1 380 000	1 000	1 300
	270	140	120	3	1	990 000	1 880 000	1 000	1 300
	280	150	125	4	1	1 100 000	2 020 000	1 000	1 300
	290	115	91	4	1	800 000	1 220 000	900	1 300
	290	178	144	4	1	1 360 000	2 440 000	1 000	1 300
	340	160	126	5	1.5	1 310 000	1 920 000	800	1 100
165	290	150	125	4	1	1 140 000	2 130 000	900	1 300
170	250	85	65	3	1	435 000	845 000	1 000	1 400
	260	67	60	3	1	400 000	700 000	1 000	1 300
	260	84	67	3	1	575 000	1 030 000	1 000	1 300
	280	88	78	3	1	630 000	1 040 000	900	1 300
	280	110	88	3	1	820 000	1 450 000	900	1 300
	280	150	130	3	1	1 110 000	2 160 000	1 000	1 300
	310	192	152	5	1.5	1 590 000	2 910 000	900	1 200
180	280	74	66	3	1	455 000	810 000	900	1 300
	280	93	74	3	1	655 000	1 220 000	900	1 200
	300	96	85	3	1	725 000	1 210 000	900	1 200
	300	120	96	4	1.5	940 000	1 690 000	900	1 200
	320	127	99	5	1.5	895 000	1 390 000	800	1 200
	320	192	152	5	1.5	1 640 000	3 050 000	900	1 200
	340	180	140	5	1.5	1 410 000	2 510 000	800	1 100
190	290	75	67	3	1	490 000	845 000	900	1 200
	290	94	75	3	1	670 000	1 230 000	900	1 200
	320	104	92	4	1.5	800 000	1 380 000	800	1 100
	320	130	104	4	1.5	1 070 000	1 960 000	800	1 100
	340	133	105	5	1.5	990 000	1 580 000	800	1 100
	340	204	160	5	1.5	1 910 000	3 550 000	800	1 100
200	310	152	123	3	1	1 300 000	2 740 000	800	1 100
	320	146	110	5	1.5	990 000	2 120 000	800	1 100
	330	180	140	5	1.5	1 390 000	2 730 000	800	1 100
	340	112	100	4	1.5	940 000	1 670 000	800	1 000
	340	140	112	4	1.5	1 260 000	2 250 000	800	1 000
	360	142	110	5	1.5	1 100 000	1 780 000	700	1 000
	360	218	174	5	1.5	2 070 000	3 850 000	800	1 000

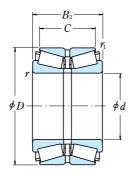
Observaciones

Para otros rodamientos de rodillos cónicos no listados, contacte con NSK.

 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/F_{\rm r} > e$			
X	Y	X	Y		
1	Y_3	0.67	Y_2		

Carga Estática Equivalente

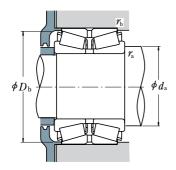

 $P_0 = F_r + Y_0 F_a$

Los valores de $e,\,Y_2$, Y_3 , y $Y_0\,$ se muestran en la tabla siguiente.

Números de Dadamientos		(m	Tope y	Chaflán	Cons- tante		actores d arga Axia		Masa (kg)
Números de Rodamientos	$d_{ m a}$ mín.	$D_{ m b}$ mín.	$oldsymbol{r}_{ m a}$ máx.	${m r}_{ m b}$ máx.	e	Y_2	Y_3	Y_0	aprox.
160 KBE 30+L	178	231	2.5	1	0.37	2.7	1.8	1.8	8.56
160 KBE 030+L	178	230	2.5	1	0.40	2.5	1.7	1.6	10.5
160 KBE2401+L	178	232	2.5	1	0.38	2.6	1.8	1.7	16.2
160 KBE 31+L	178	255	2.5	1	0.40	2.5	1.7	1.6	18.6
160 KBE 031+L	178	256	2.5	1	0.39	2.6	1.7	1.7	23.1
160 KBE2701+L	178	261	2.5	1	0.39	2.6	1.7	1.7	30.6
160 KBE 2801+L 160 KBE 42+L HR160 KBE 52X+L 160 KBE 43+L	181 181 181 187	266 275 277 314	3 3 4	1 1 1 1.5	0.32 0.43 0.44 0.36	3.2 2.3 2.3 2.8	2.1 1.6 1.6 1.9	2.1 1.5 1.5 1.8	35.9 28.2 47.3 60.4
165 KBE 2901+L	186	272	3	1	0.33	3.1	2.1	2.0	39.5
170 KBE 2501+L	188	241	2.5	1	0.44	2.3	1.5	1.5	12.3
170 KBE 30+L	188	248	2.5	1	0.40	2.5	1.7	1.6	11.8
170 KBE 030+L	188	249	2.5	1	0.39	2.6	1.7	1.7	14.4
170 KBE 31+L	188	266	2.5	1	0.39	2.6	1.7	1.7	19.7
170 KBE 031+L	188	268	2.5	1	0.39	2.6	1.7	1.7	24.2
170 KBE2802+L	188	269	2.5	1	0.39	2.6	1.7	1.7	34.6
HR170 KBE 52X+L	197	297	4	1.5	0.44	2.3	1.6	1.5	57.3
180 KBE 30+L	198	265	2.5	1	0.40	2.5	1.7	1.6	15.4
180 KBE 030+L	198	265	2.5	1	0.35	2.9	2.0	1.9	14.4
180 KBE 31+L	198	265	2.5	1	0.39	2.6	1.7	1.7	24.8
180 KBE 031+L	201	287	3	1.5	0.39	2.6	1.7	1.7	31.1
180 KBE 42+L	207	300	4	1.5	0.44	2.3	1.5	1.5	36.5
HR180 KBE 52X+L	207	308	4	1.5	0.45	2.2	1.5	1.5	59.2
180 KBE3401+L	207	305	4	1.5	0.43	2.3	1.6	1.5	68.1
190 KBE 30+L	208	279	2.5	1	0.39	2.6	1.7	1.7	16.2
190 KBE 030+L	208	279	2.5	1	0.40	2.5	1.7	1.6	20.1
190 KBE 31+L	211	301	3	1.5	0.40	2.5	1.7	1.6	30.9
190 KBE 031+L	211	302	3	1.5	0.39	2.6	1.7	1.7	39.0
190 KBE 42+L	217	320	4	1.5	0.40	2.5	1.7	1.6	43.9
HR190 KBE 52X+L	217	327	4	1.5	0.44	2.3	1.6	1.5	70.8
HR200 KBE 3101+L	218	301	2.5	1	0.43	2.3	1.6	1.5	40.1
200 KBE 3201+L	227	301	4	1.5	0.52	1.9	1.3	1.3	41.6
200 KBE 3301+L	227	316	4	1.5	0.42	2.4	1.6	1.6	54.4
200 KBE 31+L	221	321	3	1.5	0.40	2.5	1.7	1.6	38.8
200 KBE 031+L	221	324	3	1.5	0.39	2.6	1.7	1.7	47.0
200 KBE 42+L	227	338	4	1.5	0.40	2.5	1.7	1.6	52.6
HR200 KBE 52+L	227	344	4	1.5	0.41	2.5	1.7	1.6	88.3

RODAMIENTOS DE RODILLOS CÓNICOS DE UNA SOLA HILERA (DISEÑO EN PULGADAS) -

Diámetro Interior 206~260 mm



			ensiones mm)				sicos de Carga (N)	Velocidades I	_ímite (rpm)
d	D	B_2	С	r mín.	${m r}_1$ mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite
206	283	102	83	4	1.5	580 000	1 430 000	900	1 200
210	355	116	103	4	1.5	905 000	1 520 000	700	1 000
220	300	110	88	3	1	730 000	1 710 000	800	1 100
	340	90	80	4	1.5	695 000	1 280 000	700	1 000
	340	113	90	4	1.5	920 000	1 830 000	700	1 000
	370	120	107	5	1.5	1 110 000	1 940 000	700	1 000
	370	150	120	5	1.5	1 460 000	2 760 000	700	1 000
	400	158	122	5	1.5	1 390 000	2 300 000	600	900
240	360	92	82	4	1.5	780 000	1 490 000	700	900
	360	115	92	4	1.5	1 020 000	2 040 000	700	900
	400	128	114	5	1.5	1 180 000	2 190 000	600	900
	400	160	128	5	1.5	1 620 000	3 050 000	600	900
	400	209	168	5	1.5	2 220 000	4 450 000	600	900
250	380	98	87	4	1	795 000	1 460 000	600	900
260	400	104	92	5	1.5	895 000	1 670 000	600	800
	400	130	104	5	1.5	1 210 000	2 460 000	600	800
	440	144	128	5	1.5	1 540 000	2 760 000	600	800
	440	172	145	5	1.5	1 870 000	3 500 000	600	800
	440	180	144	5	1.5	2 110 000	4 150 000	600	800

Observaciones

Para otros rodamientos de rodillos cónicos no listados, contacte con NSK.

 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/F_{\rm r}{>}e$				
X	Y	X	Y			
1	Y_3	0.67	Y_2			

Carga Estática Equivalente

 $P_0 = F_r + Y_0 F_a$

Los valores de $e,\,Y_2$, Y_3 , y $Y_0\,$ se muestran en la tabla siguiente.

Números de Rodamientos		Dimensiones de Tope y Chaflán				ons- Factores de ante Carga Axial			Masa (kg)
Numeros de nodamientos	$d_{ m a}$ mín.	$D_{ m b}$ mín.	$oldsymbol{r}_{ m a}$ máx.	r̂ _b máx.	e	Y_2	Y_3	Y_0	aprox.
206 KBE 2801+L	227	275	3	1.5	0.51	2.0	1.3	1.3	18.1
210 KBE 31+L	231	338	3	1.5	0.46	2.2	1.5	1.4	41.7
220 KBE 3001+L	238	292	2.5	1	0.37	2.7	1.8	1.8	21.2
220 KBE 30+L	241	324	3	1.5	0.40	2.5	1.7	1.6	27.9
220 KBE 030+L	241	327	3	1.5	0.40	2.5	1.7	1.6	34.7
220 KBE 31+L	247	345	4	1.5	0.39	2.6	1.7	1.7	48.3
220 KBE 031+L	247	349	4	1.5	0.39	2.6	1.7	1.7	60.2
220 KBE 42+L	247	371	4	1.5	0.40	2.5	1.7	1.6	74.2
240 KBE 30+L	261	344	3	1.5	0.39	2.6	1.7	1.7	30.1
240 KBE 030+L	261	344	3	1.5	0.35	2.9	2.0	1.9	37.3
240 KBE 31+L	267	380	4	1.5	0.43	2.3	1.6	1.5	60.0
240 KBE 031+L	267	378	4	1.5	0.39	2.6	1.7	1.7	73.6
240 KBE4003+L	267	384	4	1.5	0.33	3.0	2.0	2.0	96.4
250 KBE 3801+L	271	365	3	1	0.40	2.5	1.7	1.6	35.5
260 KBE 30+L	287	379	4	1.5	0.40	2.5	1.7	1.6	43.4
260 KBE 030+L	287	382	4	1.5	0.40	2.5	1.7	1.6	54.1
260 KBE 31+L	287	416	4	1.5	0.39	2.6	1.7	1.7	82.5
260 KBE 4401+L	287	414	4	1.5	0.38	2.6	1.8	1.7	98.1
260 KBE 031+L	287	416	4	1.5	0.39	2.6	1.7	1.7	104.0

RODAMIENTOS DE RODILLOS ESFÉRICOS

Diámetros Interiores Cilíndricos, Diámetros

Interiores Cónicos Diámetro Interior 20~ 150mm............... Páginas B180~B187

Diámetro Interior 160~ 560mm...... Páginas B188~B197

Diámetro Interior 600~1400mm...... Páginas B198~B201

DISEÑO, TIPOS Y CARACTERÍSTICAS

Los tipos EA, C, CD, CA, mostrados en las figuras, están diseñados para altas capacidades de carga y todos ellos están disponibles. Los tipos EA, C y CD tienen jaulas de acero prensado, y el tipo CA tiene jaulas de latón mecanizado. El tipo EA tiene una capacidad de carga especialmente alta y un bajo par.

El tipo EA dispone de serie de ranura y orificios de engrase. Con otros tipos, es posible disponer de una ranura y orificios de engrase en el anillo exterior para aplicar el lubricante. Para los rodamientos con diámetros exteriores inferiores a 180 mm, si son necesarios una ranura y orificios de engrase, notifique el número de rodamiento con E4 cuando realice un pedido a NSK. Para los rodamientos con diámetros exteriores superiores a 180 mm, las ranuras y orificios de engrase son de serie (los números de rodamientos tienen el sufijo E4).

Para utilizar rodamientos con ranuras y orificios de engrase, es recomendable que el anillo interior del alojamiento disponga de una ranura de engrase, ya que la profundidad de la ranura en el rodamiento está limitada. Los números y dimensiones de la ranura y orificios de engrase se muestran en las Tablas 1 y 2.

Si es necesario que los rodamientos dispongan de un orificio para evitar la rotación del anillo exterior mediante un pasador de fijación, informe a NSK.

TOLERANCIAS Y PRECISIÓN DE FUNCIONAMIENTO	Tabla 8.2 (Páginas A60~A63)
AJUSTES RECOMENDADOS	.Tabla 9.2 (Página A84) Tabla 9.4 (Página A85)
JUEGO INTERNO	,

DESALINEACIÓN ADMISIBLE

Tabla 2 Número de Orificios de

Engrase

La desalineación admisible de los rodamientos de rodillos esféricos depende del tamaño y de la carga, pero es de aproximadamente 0,018 a 0,045 radianes (de 1° a 2,5°) con cargas normales.

VELOCIDADES LÍMITE

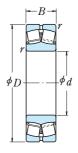
Las velocidades límite mostradas en las tablas de rodamientos deberían ajustarse según las condiciones de carga de los rodamientos. Igualmente, pueden conseguirse velocidades más altas realizando cambios en el método de lubricación, diseño de la jaula, etc. Consulte la Página A37 para información más detallada.

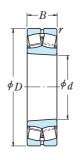
Tabla 1	Dimensiones de	las Ranuras y Orificios
	de Engrase	Unidades : mm

CyCD

CA

C


 d_{OH}

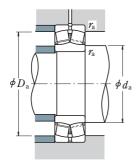

Número		Diám. Anillo Ex	Diámetro del Orificio		xt. Nominal C	Ancho Anillo E				
de Orificios	n)	(mı	dон	de Engrase W	hasta	más de				
40 011110100	hasta	más de	2.5	5	30	18				
4	180	_	3	6	40	30				
6	250	180	4	7	50	40				
6 6	315	250	5	.8	65	50				
6	400	315	6 8	10 12	80 100	65 80				
6 8	500	400	10	15	120	100				
8	630	500	12	20	160	120				
8	800	630	15	25	200	160				
8	1000	800	20	30	250	200				
8	1250	1000	20	35	315	250				
8	1600	1250	25	40	400	315				
8	2000	1600	25	40	_	400				

Y si la carga sobre los rodamientos de rodillos esféricos pasa a ser demasiado pequeña durante el funcionamiento, o si la relación de las cargas axiales y radiales es superior al valor de 'e' (mostrado en las tablas de los rodamientos), se produce un deslizamiento entre los rodillos y los caminos de rodadura, lo cual puede provocar la aparición de arañazos. Cuanto mayor sea el peso de los rodillos y la jaula mayor será esta tendencia, especialmente en los rodamientos de rodillos esféricos de gran tamaño.

Si se presupone que las cargas de los rodamientos serán muy pequeñas, consulte con NSK para seleccionar un rodamiento adecuado.

Diámetro Interior 20~55 mm

Diámetro Interior Cilíndrico


Diámetro Interior Cónico

Sin Ranura ni Orificios de Engrase

		nsiones nm)		(1	Índices Básic	os de Carga	{kgf}	Velocidad (rpi		Números de
d	D	B	γ min.	$C_{\rm r}$	C_{0r}	$C_{\rm r}$	C_{0r}	Grasa	Aceite	Diámetro Interior Cilíndrico
20	52	15	1.1	29 300	26 900	2 980	2 740	6 300	8 200	21304CDE4
25	52	18	1	37 500	37 000	3 850	3 800	7 100	9 000	22205CE4
	62	17	1.1	43 000	40 500	4 350	4 150	5 300	6 700	21305CDE4
30	62	20	1	50 000	50 000	5 100	5 100	6 000	7 500	22206CE4
	72	19	1.1	55 000	54 000	5 600	5 500	4 500	6 000	21306CDE4
35	72	23	1.1	69 000	71 000	7 050	7 200	5 300	6 700	22207CE4
	80	21	1.5	71 500	76 000	7 250	7 750	4 000	5 300	21307CDE4
40	80	23	1.1	90 500	99 500	9 200	10 100	6 000	7 500	22208EAE4
	90	23	1.5	94 500	111 000	9 600	11 300	5 300	7 000	21308EAE4
	90	33	1.5	136 000	153 000	13 900	15 600	4 500	6 000	22308EAE4
45	85	23	1.1	94 500	111 000	9 600	11 300	5 300	7 000	22209EAE4
	100	25	1.5	119 000	144 000	12 100	14 600	4 500	5 600	21309EAE4
	100	36	1.5	166 000	195 000	16 900	19 900	4 000	5 300	22309EAE4
50	90	23	1.1	99 000	119 000	10 100	12 100	5 000	6 300	22210EAE4
	110	27	2	142 000	174 000	14 500	17 800	4 300	5 300	21310EAE4
	110	40	2	197 000	234 000	20 000	23 900	3 800	4 800	22310EAE4
55	100	25	1.5	119 000	144 000	12 100	14 600	4 500	5 600	22211EAE4
	120	29	2	142 000	174 000	14 500	17 800	4 300	5 300	21311EAE4
	120	43	2	234 000	292 000	23 800	29 800	3 400	4 300	22311EAE4

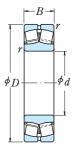
Nota (1) El sufijo K representa a rodamientos con diámetros interiores cónicos (conicidad 1 : 12).

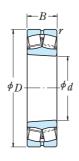
 $P = XF_r + YF_a$

$F_{\rm a}/F$?r≦e	$F_{\rm a}/I$	r > e	
X	Y	X	Y	
1	<i>Y</i> ₃	0.67	Y_2	

Carga Estática Equivalente

 $P_0 = F_r + Y_0 F_a$


Los valores de $e,\ Y_2$, Y_3 e Y_0 se muestran en la tabla siguiente.

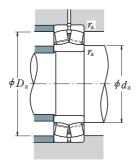

Rodamiento	D	imension	es de Tope y (mm)	Chaflán		Constante	Facto	res de (Axial	Carga	Masa (kg)
Diámetro Interior Cónico(¹)	$_{ m mín.}$ $d_{ m a}$	máx.	$_{ m m\acute{a}x.}$ $D_{ m a}$	mín.	火 a máx.	e	Y_2	Y_3	Y_0	aprox.
21304CDKE4	27	28	45	42	1	0.31	3.2	2.1	2.1	0.17
22205CKE4	31	31	46	45	1	0.35	2.9	1.9	1.9	0.17
21305CDKE4	32	34	55	51		0.29	3.4	2.3	2.3	0.26
22206CKE4 21306CDKE4	36 37	37 40	56 65	54 59	1	0.33 0.28	3.1 3.6	2.1 2.4	2.0 2.3	0.27 0.39
22207CKE4	42	43	65	63	1	0.32	3.1	2.1	2.0	0.42
21307CDKE4	44	47	71	67	1.5	0.28	3.6	2.4	2.4	0.53
22208EAKE4	47	49	73	70	1	0.28	3.6	2.4	2.4	0.50
21308EAKE4	49	54	81	75	1.5	0.25	3.9	2.7	2.6	0.73
22308EAKE4	49	52	81	77	1.5	0.35	2.8	1.9	1.9	0.98
22209EAKE4	52	54	78	75	1	0.25	3.9	2.7	2.6	0.55
21309EAKE4	54	65	91	89	1.5	0.23	4.3	2.9	2.8	0.96
22309EAKE4	54	59	91	86	1.5	0.34	2.9	2.0	1.9	1.34
22210EAKE4	57	60	83	81	1	0.24	4.3	2.9	2.8	0.61
21310EAKE4	60	72	100	98	2	0.23	4.4	3.0	2.9	1.21
22310EAKE4	60	64	100	93	2	0.35	2.8	1.9	1.9	1.78
22211EAKE4	64	65	91	89	1.5	0.23	4.3	2.9	2.8	0.81
21311EAKE4	65	72	110	98	2	0.23	4.4	3.0	2.9	1.58
22311EAKE4	65	73	110	103	2	0.34	2.9	2.0	1.9	2.3

Observaciones

- 1. El tipo EA dispone de serie de ranura y orificios de engrase.
- Las dimensiones de los adaptadores y de los manguitos de desmontaje se encuentran en las Páginas B354, B355 y B362.

Diámetro Interior 60~85 mm

Diámetro Interior Cilíndrico


Diámetro Interior Cónico

Sin Ranura ni Orificios de Engrase

		nsiones nm)		(1	Índices Básico N)	os de Carga	{kgf}	Velocidad (rpi		Números de
d	D	B	y mín.	C_{r}	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Grasa	Aceite	Diámetro Interior Cilíndrico
60	95	26	1.1	98 500	141 000	10 000	14 400	3 600	4 500	23012CE4
	110	28	1.5	142 000	174 000	14 500	17 800	4 300	5 300	22212EAE4
	130	31	2.1	190 000	244 000	19 400	24 900	3 400	4 300	21312EAE4
	130	46	2.1	271 000	340 000	27 600	35 000	3 200	4 000	22312EAE4
65	120	31	1.5	177 000	230 000	18 000	23 500	3 800	4 800	22213EAE4
	140	33	2.1	212 000	275 000	21 600	28 000	3 200	4 000	21313EAE4
	140	48	2.1	300 000	380 000	30 500	38 500	3 000	3 800	22313EAE4
70	125	31	1.5	180 000	232 000	18 300	23 600	3 600	4 500	22214EAE4
	150	35	2.1	250 000	325 000	25 400	33 500	3 000	3 800	21314EAE4
	150	51	2.1	340 000	435 000	34 500	44 000	2 800	3 400	22314EAE4
75	130	31	1.5	190 000	244 000	19 400	24 900	3 400	4 300	22215EAE4
	160	37	2.1	250 000	325 000	25 400	33 500	3 000	3 800	21315EAE4
	160	55	2.1	390 000	505 000	39 500	51 500	2 600	3 200	22315EAE4
80	140	33	2	212 000	275 000	21 600	28 000	3 200	4 000	22216EAE4
	170	39	2.1	284 000	375 000	29 000	38 000	2 800	3 600	21316EAE4
	170	58	2.1	435 000	565 000	44 000	58 000	2 400	3 000	22316EAE4
85	150	36	2	250 000	325 000	25 400	33 500	3 000	3 800	22217EAE4
	180	41	3	289 000	395 000	29 500	40 000	2 800	3 600	21317EAE4
	180	60	3	480 000	630 000	49 000	64 000	2 200	2 800	22317EAE4

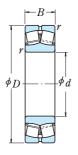
Nota (1) El sufijo K representa a rodamientos con diámetros interiores cónicos (conicidad 1 : 12).

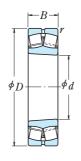
 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	Y_3	0.67	Y_2

Carga Estática Equivalente

 $P_0 = F_r + Y_0 F_a$


Los valores de $e,\ Y_2$, Y_3 e Y_0 se muestran en la tabla siguiente.

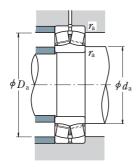

Rodamiento	I	Dimension	ies de Tope y (mm)	/ Chaflán		Constante	Facto	res de (Axial	Carga	Masa (kg)
Diámetro Interior Cónico(¹)	$_{ m mín.}$ d :	máx.	$_{ m m\acute{a}x.}$ $D_{ m a}$	mín.	火 a máx.	e	Y_2	Y_3	Y_0	aprox.
23012CKE4	67	68	88	85	1	0.26	3.9	2.6	2.5	0.68
22212EAKE4	69	72	101	98	1.5	0.23	4.4	3.0	2.9	1.1
21312EAKE4	72	87	118	117	2	0.22	4.5	3.0	3.0	1.98
22312EAKE4	72	79	118	111	2	0.34	3.0	2.0	1.9	2.89
22213EAKE4	74	80	111	107	1.5	0.24	4.2	2.8	2.7	1.51
21313EAKE4	77	94	128	126	2	0.22	4.6	3.1	3.0	2.45
22313EAKE4	77	84	128	119	2	0.33	3.0	2.0	2.0	3.52
22214EAKE4	79	84	116	111	1.5	0.23	4.3	2.9	2.8	1.58
21314EAKE4	82	101	138	135	2	0.22	4.6	3.1	3.0	3.0
22314EAKE4	82	91	138	129	2	0.33	3.0	2.0	2.0	4.28
22215EAKE4	84	87	121	117	1.5	0.22	4.5	3.0	3.0	1.64
21315EAKE4	87	101	148	134	2	0.22	4.6	3.1	3.0	3.64
22315EAKE4	87	97	148	137	2	0.33	3.0	2.0	2.0	5.26
22216EAKE4	90	94	130	126	2	0.22	4.6	3.1	3.0	2.01
21316EAKE4	92	109	158	146	2	0.23	4.4	3.0	2.9	4.32
22316EAKE4	92	103	158	145	2	0.33	3.0	2.0	2.0	6.23
22217EAKE4	95	101	140	135	2	0.22	4.6	3.1	3.0	2.54
21317EAKE4	99	108	166	142	2.5	0.24	4.3	2.9	2.8	5.2
22317EAKE4	99	110	166	155	2.5	0.33	3.1	2.1	2.0	7.23

Observaciones

- 1. El tipo EA dispone de serie de ranura y orificios de engrase.
- Las dimensiones de los adaptadores y de los manguitos de desmontaje se encuentran en las Páginas B355, B357 y B362.

Diámetro Interior 90~110 mm

Diámetro Interior Cilíndrico


Diámetro Interior Cónico

Sin Ranura ni Orificios de Engrase

		nsiones nm)		1)	Índices Básico	s de Carga	{kgf}	Velocidad (rpi		Números de
d	D	B	∤ mín.	C_{r}	C_{0r}	$C_{\rm r}$	C_{0r}	Grasa	Aceite	Diámetro Interior Cilíndrico
90	160	40	2	289 000	395 000	29 500	40 000	2 800	3 600	22218EAE4
	160	52.4	2	340 000	490 000	34 500	50 000	1 800	2 400	23218CE4
	190	43	3	330 000	450 000	33 500	46 000	2 600	3 400	21318EAE4
	190	64	3	535 000	705 000	54 500	72 000	2 200	2 600	22318EAE4
95	170	43	2.1	330 000	450 000	33 500	46 000	2 600	3 400	22219EAE4
	170	55.6	2.1	370 000	525 000	37 500	53 500	1 700	2 200	23219CAE4
	200	45	3	345 000	435 000	35 000	44 500	1 500	2 000	21319CE4
	200	67	3	590 000	780 000	60 000	79 500	2 000	2 600	22319EAE4
100	150	37	1.5	212 000	335 000	21 600	34 500	2 200	2 800	23020CDE4
	150	50	1.5	276 000	470 000	28 100	48 000	1 800	2 400	24020CE4
	165	52	2	345 000	530 000	35 500	54 000	1 700	2 200	23120CE4
	165	65	2	345 000	535 000	35 000	55 000	1 700	2 200	24120CAE4
	180	46	2.1	365 000	490 000	37 000	50 000	2 400	3 200	22220EAE4
	180	60.3	2.1	420 000	605 000	42 500	61 500	1 600	2 200	23220CE4
	215 215	47 73	3	395 000 690 000	485 000 930 000	40 500 70 500	49 500 94 500	1 400 1 900	1 900 2 400	21320CE4 22320EAE4
110	170	45	2	293 000	465 000	29 900	47 500	2 000	2 400	23022CDE4
	170	60	2	380 000	645 000	38 500	66 000	1 600	2 200	24022CE4
	180	56	2	385 000	630 000	39 500	64 000	1 600	2 000	23122CE4
	180	69	2	460 000	750 000	47 000	76 500	1 600	2 000	24122CE4
	200	53	2.1	485 000	645 000	49 500	66 000	2 200	2 800	22222EAE4
	200	69.8	2.1	515 000	760 000	52 500	77 500	1 500	1 900	23222CE4
	240	50	3	450 000	545 000	46 000	55 500	1 300	1 700	21322CAE4
	240	80	3	825 000	1 120 000	84 000	115 000	1 700	2 200	22322EAE4

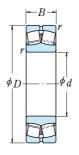
Nota (¹) El sufijo K o K30 representa a rodamientos con diámetros interiores cónicos (conicidad 1 : 12 ó 1 : 30).

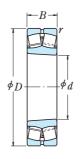
 $P = XF_r + YF_a$

$F_{\rm a}/F$?r≦e	$F_{\rm a}/I$	r > e	
X	Y	X	Y	
1	<i>Y</i> ₃	0.67	Y_2	

Carga Estática Equivalente

 $P_0 = F_r + Y_0 F_a$


Los valores de $e,\,Y_2$, Y_3 e Y_0 se muestran en la tabla siguiente.

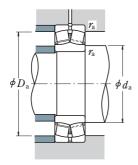

Rodamiento	I	Dimension	es de Tope y (mm)	Chaflán		Constante	Facto	res de (Axial	Carga	Masa (kg)
Diámetro Interior Cónico(¹)	$_{ m mín.}$ d :	máx.	máx. $D_{arepsilon}$	mín.	∦ a máx.	e	Y_2	Y_3	Y_0	aprox.
22218EAKE4	100	108	150	142	2	0.24	4.3	2.9	2.8	3.3
23218CKE4	100	105	150	138	2	0.32	3.2	2.1	2.1	4.51
21318EAKE4	104	115	176	152	2.5	0.24	4.3	2.9	2.8	6.1
22318EAKE4	104	115	176	163	2.5	0.33	3.1	2.1	2.0	8.56
22219EAKE4	107	115	158	152	2	0.24	4.3	2.9	2.8	4.04
23219CAKE4	107	—	158	146	2	0.32	3.1	2.1	2.0	5.33
21319CKE4	109	127	186	172	2.5	0.22	4.6	3.1	3.0	6.92
22319EAKE4	109	121	186	172	2.5	0.33	3.1	2.1	2.0	9.91
23020CDKE4	109	112	141	136	1.5	0.22	4.6	3.1	3.0	2.31
24020CK30E4	109	110	141	132	1.5	0.30	3.4	2.3	2.2	3.08
23120CKE4	110	113	155	144	2	0.30	3.4	2.3	2.2	4.38
24120CAK30E4	110	—	155	143	2	0.35	2.9	1.9	1.9	5.42
22220EAKE4	112	119	168	160	2	0.24	4.3	2.9	2.8	4.84
23220CKE4	112	118	168	155	2	0.32	3.2	2.1	2.1	6.6
21320CKE4	114	133	201	184	2.5	0.21	4.7	3.2	3.1	8.46
22320EAKE4	114	130	201	184	2.5	0.33	3.0	2.0	2.0	12.7
23022CDKE4	120	124	160	153	2	0.24	4.2	2.8	2.8	3.76
24022CK30E4	120	121	160	148	2	0.32	3.1	2.1	2.1	4.96
23122CKE4	120	127	170	158	2	0.28	3.5	2.4	2.3	5.7
24122CK30E4	120	123	170	154	2	0.36	2.8	1.9	1.8	6.84
22222EAKE4	122	129	188	178	2	0.25	4.0	2.7	2.6	6.99
23222CKE4	122	130	188	170	2	0.34	3.0	2.0	1.9	9.54
21322CAKE4	124	—	226	206	2.5	0.22	4.6	3.1	3.0	11.2
22322EAKE4	124	145	226	206	2.5	0.33	3.1	2.1	2.0	17.6

Observaciones

- 1. El tipo EA dispone de serie de ranura y orificios de engrase.
- Las dimensiones de los adaptadores y de los manguitos de desmontaje se encuentran en las Páginas B356, B357, y B362, B363.

Diámetro Interior 120~150 mm

Diámetro Interior Cilíndrico


Diámetro Interior Cónico

Sin Ranura ni Orificios de Engrase

		nsiones		()	Índices Básico	s de Carga	{kgf}	Velocidad (rp		Números de
d	D	B	∤ min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Grasa	Aceite	Diámetro Interior Cilíndrico
120	180	46	2	315 000	525 000	32 000	53 500	1 800	2 200	23024CDE4
	180	60	2	395 000	705 000	40 500	72 000	1 500	2 000	24024CE4
	200	62	2	465 000	720 000	47 500	73 500	1 400	1 800	23124CE4
	200	80	2	575 000	950 000	58 500	96 500	1 400	1 800	24124CE4
	215	58	2.1	550 000	765 000	56 000	78 000	2 000	2 600	22224EAE4
	215	76	2.1	630 000	970 000	64 500	99 000	1 300	1 700	23224CE4
	260	86	3	955 000	1 320 000	97 000	134 000	1 600	2 000	22324EAE4
130	200	52	2	400 000	655 000	40 500	67 000	1 700	2 000	23026CDE4
	200	69	2	495 000	865 000	50 500	88 000	1 400	1 800	24026CE4
	210	64	2	505 000	825 000	51 500	84 500	1 300	1 700	23126CE4
	210	80	2	590 000	1 010 000	60 000	103 000	1 300	1 700	24126CE4
	230	64	3	655 000	940 000	67 000	96 000	1 900	2 400	22226EAE4
	230	80	3	700 000	1 080 000	71 500	110 000	1 200	1 600	23226CE4
	280	93	4	995 000	1 350 000	101 000	137 000	1 300	1 600	22326CE4
140	210	53	2	420 000	715 000	43 000	73 000	1 600	1 900	23028CDE4
	210	69	2	525 000	945 000	53 500	96 500	1 300	1 700	24028CE4
	225	68	2.1	580 000	945 000	59 000	96 500	1 200	1 600	23128CE4
	225	85	2.1	670 000	1 160 000	68 500	118 000	1 200	1 600	24128CE4
	250	68	3	645 000	930 000	65 500	95 000	1 400	1 700	22228CDE4
	250	88	3	835 000	1 300 000	85 000	133 000	1 100	1 500	23228CE4
	300	102	4	1 160 000	1 590 000	118 000	162 000	1 200	1 500	22328CE4
150	225	56	2.1	470 000	815 000	48 000	83 000	1 400	1 800	23030CDE4
	225	75	2.1	590 000	1 090 000	60 500	111 000	1 200	1 500	24030CE4
	250	80	2.1	725 000	1 180 000	74 000	121 000	1 100	1 400	23130CE4
	250 270 270 320	100 73 96 108	2.1 3 3 4	975 000	1 530 000 1 120 000 1 560 000 1 690 000	91 000 78 000 99 500 125 000	156 000 114 000 159 000 172 000	1 100 1 300 1 100 1 100	1 400 1 600 1 400 1 400	24130CE4 22230CDE4 23230CE4 22330CAE4

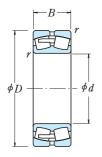
Nota (¹) El sufijo K o K30 representa a rodamientos con diámetros interiores cónicos (conicidad 1 : 12 ó 1 : 30).

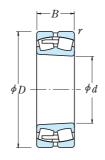
 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	Y_3	0.67	Y_2

Carga Estática Equivalente

 $P_0 = F_r + Y_0 F_a$


Los valores de $e,\ Y_2$, Y_3 e Y_0 se muestran en la tabla siguiente.

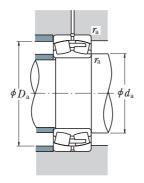

Rodam	iento		Dimension	es de Tope y (mm)	/ Chaflán		Constante	Facto	res de (Axial	Carga	Masa (kg)
	etro Interior ónico(¹)	$_{ m mín.}$ d	a máx.	máx. D	a mín.	火 a máx.	e	Y_2	Y_3	Y_0	aprox.
2402	24CDKE4 24CK30E4 24CKE4	130 130 130	134 131 138	170 170 190	163 158 175	2 2 2	0.22 0.32 0.29	4.5 3.2 3.5	3.0 2.1 2.4	2.9 2.1 2.3	4.11 5.33 7.85
2222 2322	24CK30E4 24EAKE4 24CKE4 24EAKE4	130 132 132 134	136 142 140 157	190 203 203 246	171 190 182 222	2 2 2 2.5	0.37 0.25 0.34 0.32	2.7 3.9 2.9 3.1	1.8 2.7 2.0 2.1	1.8 2.6 1.9 2.0	10 8.8 12.1 22.2
2402	26CDKE4 26CK30E4 26CKE4	140 140 140	147 143 149	190 190 200	180 175 184	2 2 2	0.23 0.31 0.28	4.3 3.2 3.6	2.9 2.2 2.4	2.8 2.1 2.4	5.98 7.84 8.69
2222 2322	26CK30E4 26EAKE4 26CKE4 26CKE4	140 144 144 148	146 152 150 166	200 216 216 262	180 204 196 236	2 2.5 2.5 3	0.35 0.26 0.34 0.34	2.9 3.8 2.9 2.9	1.9 2.6 2.0 2.0	1.9 2.5 1.9 1.9	10.7 11 14.3 28.1
2402	28CDKE4 28CK30E4 28CKE4	150 150 152	157 154 158	200 200 213	190 186 198	2 2 2	0.22 0.29 0.28	4.5 3.4 3.6	3.0 2.3 2.4	2.9 2.2 2.3	6.49 8.37 10.5
2222 2322	28CK30E4 28CDKE4 28CKE4 28CKE4	152 154 154 158	156 167 163 177	213 236 236 282	193 219 213 253	2 2.5 2.5 3	0.35 0.25 0.35 0.35	2.9 4.0 2.9 2.9	1.9 2.7 1.9 1.9	1.9 2.6 1.9 1.9	13 14.5 18.8 35.4
2403	BOCDKE4 BOCK30E4 BOCKE4	162 162 162	168 165 174	213 213 238	203 198 218	2 2 2	0.22 0.30 0.30	4.6 3.4 3.4	3.1 2.3 2.3	3.0 2.2 2.2	7.9 10.5 15.8
2223 2323	30CK30E4 30CDKE4 30CKE4 30CAKE4	162 164 164 168	169 179 176 —	238 256 256 302	212 236 230 270	2 2.5 2.5 3	0.38 0.26 0.35 0.35	2.6 3.9 2.9 2.9	1.8 2.6 1.9 1.9	1.7 2.5 1.9 1.9	19.8 18.4 24.2 41.5

Observaciones

- 1. El tipo EA dispone de serie de ranura y orificios de engrase.
- Las dimensiones de los adaptadores y de los manguitos de desmontaje se encuentran en las Páginas B357, B358, B349, y B363, B364.

Diámetro Interior 160~190 mm

Diámetro Interior Cilíndrico


Diámetro Interior Cónico

Sin Ranura y Orificios de Engrase

		nsiones nm)		(1	Índices Básico	s de Carga	{kgf}	Velocidad (rp		Números de
d	D	B	γ mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite	Diámetro Interior Cilíndrico
160	220	45	2	360 000	675 000	37 000	69 000	1 400	1 800	23932CAE4
	240	60	2.1	540 000	955 000	55 000	97 500	1 300	1 700	23032CDE4
	240	80	2.1	680 000	1 260 000	69 000	128 000	1 100	1 400	24032CE4
	270	86	2.1	855 000	1 400 000	87 000	143 000	1 000	1 300	23132CE4
	270	109	2.1	1 040 000	1 760 000	106 000	179 000	1 000	1 300	24132CE4
	290	80	3	910 000	1 320 000	93 000	135 000	1 200	1 500	22232CDE4
	290	104	3	1 100 000	1 770 000	112 000	180 000	1 000	1 300	23232CE4
	340	114	4	1 360 000	1 900 000	139 000	193 000	1 100	1 300	22332CAE4
170	230	45	2	350 000	660 000	35 500	67 500	1 400	1 800	23934BCAE4
	260	67	2.1	640 000	1 090 000	65 000	112 000	1 200	1 600	23034CDE4
	260	90	2.1	825 000	1 520 000	84 000	155 000	1 000	1 300	24034CE4
	280	88	2.1	940 000	1 570 000	96 000	160 000	1 000	1 300	23134CE4
	280	109	2.1	1 080 000	1 860 000	110 000	190 000	1 000	1 300	24134CE4
	310	86	4	990 000	1 500 000	101 000	153 000	1 100	1 400	22234CDE4
	310	110	4	1 200 000	1 910 000	122 000	195 000	900	1 200	23234CE4
	360	120	4	1 580 000	2 110 000	161 000	215 000	1 000	1 200	22334CAE4
180	250	52	2	470 000	890 000	48 000	90 500	1 200	1 600	23936CAE4
	280	74	2.1	750 000	1 270 000	76 000	129 000	1 200	1 400	23036CDE4
	280	100	2.1	965 000	1 750 000	98 500	178 000	950	1 200	24036CE4
	300	96	3	1 050 000	1 760 000	108 000	180 000	900	1 200	23136CE4
	300	118	3	1 190 000	2 040 000	121 000	208 000	900	1 200	24136CE4
	320	86	4	1 020 000	1 540 000	104 000	157 000	1 100	1 300	22236CDE4
	320	112	4	1 300 000	2 110 000	133 000	215 000	850	1 100	23236CE4
	380	126	4	1 740 000	2 340 000	177 000	238 000	950	1 200	22336CAE4
190	260	52	2	460 000	875 000	47 000	89 500	1 200	1 500	23938CAE4
	290	75	2.1	775 000	1 350 000	79 000	138 000	1 100	1 400	23038CAE4
	290	100	2.1	975 000	1 840 000	99 500	188 000	900	1 200	24038CE4
	320	104	3	1 190 000	2 020 000	121 000	206 000	850	1 100	23138CE4
	320	128	3	1 370 000	2 330 000	140 000	238 000	850	1 100	24138CE4
	340	92	4	1 140 000	1 730 000	116 000	176 000	1 000	1 200	22238CAE4
	340	120	4	1 440 000	2 350 000	147 000	240 000	800	1 100	23238CE4
	400	132	5	1 890 000	2 590 000	193 000	264 000	900	1 100	22338CAE4

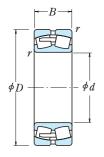
Nota (¹) El sufijo K o K30 representa a rodamientos con diámetros interiores cónicos (conicidad 1 : 12 ó 1 : 30).

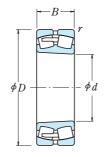
 $P = XF_r + YF_a$

$F_{\rm a}/F$?r≦e	$F_{\rm a}/F_{\rm r}{>}e$				
X	Y	X	Y			
1	<i>Y</i> ₃	0.67	Y_2			

Carga Estática Equivalente

 $P_0 = F_r + Y_0 F_a$


Los valores de $e,\,Y_2$, Y_3 e Y_0 se muestran en la tabla siguiente.

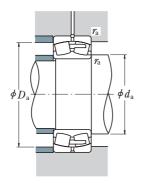

Rodamiento		Dimension	es de Tope y (mm)	Chaflán		Constante	Facto	res de (Axial	Carga	Masa (kg)
Diámetro Interior Cónico(¹)	$_{ m mín.}$ d	a máx.	máx. $D_{arepsilon}$	mín.	火 a máx.	e	Y_2	Y_3	Y_0	aprox.
23932CAKE4	170	—	210	203	2	0.18	5.6	3.8	3.7	4.97
23032CDKE4	172	179	228	216	2	0.22	4.5	3.0	2.9	9.66
24032CK30E4	172	177	228	212	2	0.30	3.4	2.3	2.2	12.7
23132CKE4	172	185	258	234	2	0.30	3.4	2.3	2.2	20.3
24132CK30E4	172	179	258	229	2	0.39	2.6	1.7	1.7	25.4
22232CDKE4	174	190	276	255	2.5	0.26	3.8	2.6	2.5	23.1
23232CKE4	174	189	276	245	2.5	0.34	2.9	2.0	1.9	30.5
22332CAKE4	178	—	322	287	3	0.35	2.9	1.9	1.9	49.3
23934BCAKE4	180	—	220	213	2	0.17	5.8	3.9	3.8	5.38
23034CDKE4	182	191	248	233	2	0.23	4.3	2.9	2.8	13
24034CK30E4	182	188	248	228	2	0.31	3.2	2.2	2.1	17.3
23134CKE4	182	194	268	245	2	0.29	3.5	2.3	2.3	21.8
24134CK30E4	182	190	268	239	2	0.37	2.7	1.8	1.8	26.6
22234CDKE4	188	206	292	270	3	0.26	3.8	2.6	2.5	28.8
23234CKE4 22334CAKE4	188 188	201	292 342	261 304	3	0.34 0.35	2.9 2.9	2.0 1.9	1.9 1.9	36.4 57.9
23936CAKE4	190		240	230	2	0.18	5.5	3.7	3.6	7.64
23036CDKE4	192		268	249	2	0.24	4.2	2.8	2.8	17.1
24036CK30E4	192		268	245	2	0.32	3.1	2.1	2.0	22.7
23136CKE4	194	206	286	260	2.5	0.30	3.4	2.3	2.2	27.5
24136CK30E4	194	202	286	255	2.5	0.37	2.7	1.8	1.8	33.1
22236CDKE4	198	212	302	278	3	0.26	3.9	2.6	2.6	30.2
23236CKE4 22336CAKE4	198 198	211	302 362	274 322	3	0.33 0.34	3.0 2.9	2.0 2.0	2.0 1.9	38.9 67
23938CAKE4 23038CAKE4 24038CK30E4	200 202 202	 210	250 278 278	240 261 253	2 2 2	0.18 0.24 0.31	5.7 4.2 3.2	3.8 2.8 2.2	3.7 2.8 2.1	8.03 17.6 24
23138CKE4	204	219	306	276	2.5	0.31	3.3	2.2	2.2	34.5
24138CK30E4	204	211	306	269	2.5	0.40	2.5	1.7	1.6	41.5
22238CAKE4	208	—	322	296	3	0.26	3.8	2.6	2.5	35.5
23238CKE4	208	222	322	288	3	0.35	2.9	1.9	1.9	47.6
22338CAKE4	212	—	378	338	4	0.34	2.9	2.0	1.9	77.6

Observaciones

Las dimensiones de los adaptadores y de los manguitos de desmontaje se encuentran en las Páginas B358 y B364.

Diámetro Interior 200~260 mm

Diámetro Interior Cilíndrico


Diámetro Interior Cónico

Sin Ranura y Orificios de Engrase

		nsiones nm)		(1	Índices Básico	os de Carga	{kgf}	Velocidad (rpi		Números de
d	D	B	γ mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite	Diámetro Interior Cilíndrico
200	280	60	2.1	570 000	1 060 000	58 000	108 000	1 100	1 400	23940CAE4
	310	82	2.1	940 000	1 700 000	96 000	174 000	1 000	1 300	23040CAE4
	310	109	2.1	1 140 000	2 120 000	116 000	216 000	850	1 100	24040CE4
	340	112	3	1 360 000	2 330 000	139 000	238 000	800	1 000	23140CE4
	340	140	3	1 570 000	2 670 000	160 000	272 000	800	1 000	24140CE4
	360	98	4	1 300 000	2 010 000	133 000	204 000	950	1 200	22240CAE4
	360	128	4	1 660 000	2 750 000	169 000	281 000	750	1 000	23240CE4
	420	138	5	2 000 000	2 990 000	204 000	305 000	850	1 000	22340CAE4
220	300	60	2.1	625 000	1 240 000	64 000	126 000	1 000	1 300	23944CAE4
	340	90	3	1 090 000	1 980 000	111 000	202 000	950	1 200	23044CAE4
	340	118	3	1 360 000	2 600 000	138 000	265 000	750	1 000	24044CE4
	370	120	4	1 570 000	2 710 000	160 000	276 000	710	950	23144CE4
	370	150	4	1 800 000	3 200 000	183 000	325 000	710	950	24144CE4
	400	108	4	1 570 000	2 430 000	160 000	247 000	850	1 000	22244CAE4
	400	144	4	2 020 000	3 400 000	206 000	350 000	670	900	23244CE4
	460	145	5	2 350 000	3 400 000	240 000	345 000	750	950	22344CAE4
240	320	60	2.1	635 000	1 300 000	65 000	133 000	950	1 200	23948CAE4
	360	92	3	1 160 000	2 140 000	118 000	218 000	850	1 100	23048CAE4
	360	118	3	1 390 000	2 730 000	141 000	278 000	710	950	24048CE4
	400	128	4	1 790 000	3 100 000	182 000	320 000	670	850	23148CE4
	400	160	4	2 130 000	3 800 000	217 000	385 000	670	850	24148CE4
	440	120	4	1 870 000	2 890 000	191 000	294 000	750	950	22248CAE4
	440	160	4	2 440 000	4 050 000	249 000	415 000	630	800	23248CAE4
	500	155	5	2 600 000	3 800 000	265 000	385 000	670	850	22348CAE4
260	360	75	2.1	930 000	1 870 000	95 000	191 000	850	1 000	23952CAE4
	400	104	4	1 430 000	2 580 000	145 000	263 000	800	950	23052CAE4
	400	140	4	1 810 000	3 500 000	185 000	360 000	630	850	24052CAE4
	440	144	4	2 160 000	3 750 000	221 000	385 000	600	800	23152CAE4
	440	180	4	2 560 000	4 700 000	261 000	480 000	600	800	24152CAE4
	480	130	5	2 180 000	3 400 000	222 000	345 000	670	850	22252CAE4
	480	174	5	2 740 000	4 550 000	279 000	460 000	560	750	23252CAE4
	540	165	6	3 100 000	4 600 000	320 000	470 000	630	800	22352CAE4

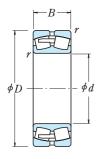
Nota (¹) El sufijo K o K30 representa a rodamientos con diámetros interiores cónicos (conicidad 1 : 12 ó 1 : 30).

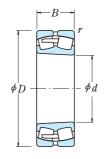
 $P = XF_r + YF_a$

$F_{\rm a}/F$	$r \leq e$	$F_{\rm a}/F_{\rm r}{>}e$				
X	Y	X	Y			
1	<i>Y</i> ₃	0.67	Y_2			

Carga Estática Equivalente

 $P_0 = F_r + Y_0 F_a$


Los valores de $e,\,Y_2$, Y_3 e Y_0 se muestran en la tabla siguiente.

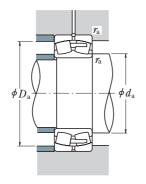

Rodamiento		Constante	Facto	res de (Axial	Carga	Masa (kg)				
Diámetro Interior Cónico(¹)	$_{ m mín.}$ d	a máx.	máx. D_{z}	mín.	∦ a máx.	e	Y_2	Y_3	Y_0	aprox.
23940CAKE4 23040CAKE4 24040CK30E4	212 212 212	 223	268 298 298	258 279 271	2 2 2	0.20 0.25 0.32	5.1 4.0 3.1	3.4 2.7 2.1	3.3 2.6 2.0	11 22.6 30.4
23140CKE4	214	232	326	293	2.5	0.31	3.2	2.2	2.1	42.7
24140CK30E4	214	226	326	290	2.5	0.39	2.6	1.8	1.7	51.3
22240CAKE4	218	—	342	315	3	0.26	3.8	2.6	2.5	42.6
23240CKE4	218	237	342	307	3	0.34	2.9	2.0	1.9	57.1
22340CAKE4	222		398	352	4	0.34	2.9	2.0	1.9	92.6
23944CAKE4 23044CAKE4 24044CK30E4	232 234 234	 244	288 326 326	278 302 296	2 2.5 2.5	0.18 0.24 0.31	5.7 4.1 3.2	3.8 2.8 2.1	3.7 2.7 2.1	12.2 29.7 40.5
23144CKE4	238	254	352	320	3	0.30	3.3	2.2	2.2	53
24144CK30E4	238	248	352	313	3	0.39	2.6	1.7	1.7	66.7
22244CAKE4	238	—	382	348	3	0.27	3.7	2.5	2.4	59
23244CKE4	238	260	382	337	3	0.35	2.9	1.9	1.9	80.4
22344CAKE4	242	—	438	391	4	0.33	3.0	2.0	2.0	116
23948CAKE4 23048CAKE4 24048CK30E4	252 254 254	 265	308 346 346	298 324 317	2 2.5 2.5	0.17 0.24 0.29	6.0 4.2 3.4	4.0 2.8 2.3	3.9 2.7 2.2	13.3 32.6 43.4
23148CKE4	258	275	382	347	3	0.30	3.3	2.2	2.2	66.9
24148CK30E4	258	268	382	341	3	0.38	2.7	1.8	1.8	79.5
22248CAKE4	258	—	422	383	3	0.27	3.7	2.5	2.4	80.2
23248CAKE4	258	_	422	372	3	0.37	2.7	1.8	1.8	106
22348CAKE4	262		478	423	4	0.32	3.2	2.1	2.1	147
23952CAKE4	272	_	348	333	2	0.19	5.4	3.6	3.5	23
23052CAKE4	278	_	382	356	3	0.25	4.1	2.7	2.7	46.6
24052CAK30E4	278	_	382	348	3	0.32	3.1	2.1	2.1	62.6
23152CAKE4	278	_	422	380	3	0.32	3.2	2.1	2.1	88.2
24152CAK30E4	278	_	422	371	3	0.39	2.6	1.7	1.7	109
22252CAKE4	282	_	458	418	4	0.27	3.7	2.5	2.5	104
23252CAKE4	282	_	458	406	4	0.37	2.7	1.8	1.8	137
22352CAKE4	288		512	462	5	0.32	3.2	2.1	2.1	180

Observaciones

Las dimensiones de los adaptadores y de los manguitos de desmontaje se encuentran en las Páginas B359 y B365.

Diámetro Interior 280~340 mm

Diámetro Interior Cilíndrico


Diámetro Interior Cónico

Sin Ranura y Orificios de Engrase

		nsiones nm)		(1	Índices Básico	os de Carga	Veloo {kgf}		es Límite n)	Números de
d	D	В	y mín.	C_{r}	$C_{0\mathrm{r}}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite	Diámetro Interior Cilíndrico
280	380	75	2.1	925 000	1 950 000	94 500	199 000	800	950	23956CAE4
	420	106	4	1 540 000	2 950 000	157 000	300 000	710	900	23056CAE4
	420	140	4	1 880 000	3 800 000	191 000	385 000	600	800	24056CAE4
	460	146	5	2 230 000	4 000 000	228 000	410 000	560	750	23156CAE4
	460	180	5	2 640 000	5 000 000	269 000	505 000	560	750	24156CAE4
	500	130	5	2 280 000	3 650 000	233 000	370 000	630	800	22256CAE4
	500	176	5	2 880 000	4 900 000	294 000	500 000	530	670	23256CAE4
	580	175	6	3 500 000	5 150 000	355 000	525 000	560	710	22356CAE4
300	420	90	3	1 230 000	2 490 000	125 000	254 000	710	900	23960CAE4
	460	118	4	1 920 000	3 700 000	196 000	375 000	670	850	23060CAE4
	460	160	4	2 310 000	4 600 000	235 000	470 000	530	710	24060CAE4
	500	160	5	2 670 000	4 800 000	273 000	490 000	500	670	23160CAE4
	500	200	5	3 100 000	5 800 000	315 000	595 000	500	670	24160CAE4
	540	140	5	2 610 000	4 250 000	266 000	430 000	600	750	22260CAE4
	540	192	5	3 400 000	5 900 000	350 000	600 000	480	630	23260CAE4
320	440	90	3	1 300 000	2 750 000	132 000	281 000	670	850	23964CAE4
	480	121	4	1 960 000	3 850 000	200 000	395 000	630	800	23064CAE4
	480	160	4	2 440 000	5 050 000	249 000	515 000	500	670	24064CAE4
	540	176	5	3 050 000	5 500 000	315 000	560 000	480	600	23164CAE4
	540	218	5	3 550 000	6 650 000	360 000	675 000	480	600	24164CAE4
	580	150	5	2 990 000	4 850 000	305 000	495 000	530	670	22264CAE4
	580	208	5	3 900 000	6 900 000	395 000	700 000	450	600	23264CAE4
340	460	90	3	1 330 000	2 840 000	136 000	289 000	630	800	23968CAE4
	520	133	5	2 280 000	4 400 000	232 000	445 000	560	710	23068CAE4
	520	180	5	2 920 000	6 050 000	298 000	615 000	480	600	24068CAE4
	580	190	5	3 600 000	6 600 000	370 000	670 000	430	560	23168CAE4
	580	243	5	4 250 000	7 900 000	430 000	810 000	430	560	24168CAE4
	620	224	6	4 400 000	7 800 000	450 000	795 000	400	530	23268CAE4

Nota (¹) El sufijo K o K30 representa a rodamientos con diámetros interiores cónicos (conicidad 1 : 12 ó 1 : 30).

Carga Dinámica Equivalente

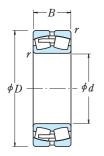
 $P = XF_r + YF_a$

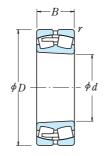
$F_{\rm a}/I$	7 _r ≦e	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	Y_3	0.67	Y_2

Carga Estática Equivalente

 $P_0 = F_r + Y_0 F_a$

Los valores de \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} e \emph{Y}_{0} se muestran en la tabla siguiente.


Rodamiento	Dimens	siones de T (mm		flán	Constante	Facto	res de Axial	Carga	Masa (kg)
Diámetro Interior Cónico(¹)	$d_{ m a}$ min.	máx. D	a mín.	火 a máx.	e	Y_2	Y_3	Y_0	aprox.
23956CAKE4	292	368	351	2	0.18	5.7	3.9	3.8	24.5
23056CAKE4	298	402	377	3	0.24	4.2	2.8	2.7	50.5
24056CAK30E4	298	402	369	3	0.31	3.3	2.2	2.2	66.4
23156CAKE4	302	438	400	4	0.30	3.3	2.2	2.2	94.3
24156CAK30E4	302	438	392	4	0.37	2.7	1.8	1.8	115
22256CAKE4	302	478	439	4	0.25	4.0	2.7	2.6	110
23256CAKE4	302	478	425	4	0.35	2.9	1.9	1.9	147
22356CAKE4	308	552	496	5	0.31	3.2	2.1	2.1	221
23960CAKE4	314	406	386	2.5	0.19	5.2	3.5	3.4	38.2
23060CAKE4	318	442	413	3	0.24	4.2	2.8	2.7	70.5
24060CAK30E4	318	442	400	3	0.32	3.1	2.1	2.0	93.6
23160CAKE4	322	478	433	4	0.31	3.3	2.2	2.2	125
24160CAK30E4	322	478	423	4	0.38	2.6	1.8	1.7	152
22260CAKE4	322	518	473	4	0.25	4.0	2.7	2.6	139
23260CAKE4	322	518	458	4	0.35	2.9	1.9	1.9	189
23964CAKE4	334	426	406	2.5	0.18	5.5	3.7	3.6	40.6
23064CAKE4	338	462	432	3	0.24	4.2	2.8	2.8	75.6
24064CAK30E4	338	462	422	3	0.31	3.3	2.2	2.2	99.7
23164CAKE4	342	518	466	4	0.31	3.2	2.1	2.1	162
24164CAK30E4	342	518	456	4	0.39	2.6	1.7	1.7	196
22264CAKE4	342	558	508	4	0.26	3.9	2.6	2.6	174
23264CAKE4	342	558	488	4	0.36	2.8	1.9	1.8	239
23968CAKE4	354	446	427	2.5	0.18	5.7	3.8	3.7	42.4
23068CAKE4	362	498	465	4	0.24	4.2	2.8	2.8	101
24068CAK30E4	362	498	454	4	0.32	3.2	2.1	2.1	135
23168CAKE4	362	558	499	4	0.31	3.2	2.1	2.1	206
24168CAK30E4	362	558	489	4	0.40	2.5	1.7	1.7	257
23268CAKE4	368	592	521	5	0.36	2.8	1.9	1.8	295

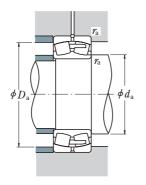

Observaciones

Las dimensiones de los adaptadores y de los manguitos de desmontaje se encuentran en las Páginas B359, B360, B365 y B366.

RODAMIENTOS DE RODILLOS ESFÉRICOS

Diámetro Interior 360~440 mm

Diámetro Interior Cilíndrico


Diámetro Interior Cónico

Sin Ranura y Orificios de Engrase

		nsiones nm)		(Índices Básicos N)	de Carga	{kgf}	Velocidade (rpn		Números de
d	D	B	γ mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite	Diámetro Interior Cilíndrico
360	480	90	3	1 390 000	3 050 000	142 000	315 000	600	750	23972CAE4
	540	134	5	2 390 000	4 700 000	244 000	480 000	530	670	23072CAE4
	540	180	5	2 930 000	6 100 000	299 000	625 000	450	600	24072CAE4
	600	192	5	3 800 000	7 100 000	390 000	725 000	400	530	23172CAE4
	600	243	5	4 200 000	8 000 000	430 000	815 000	400	530	24172CAE4
	650	232	6	4 800 000	8 550 000	490 000	870 000	380	500	23272CAE4
380	520	106	4	1 870 000	4 100 000	190 000	420 000	530	670	23976CAE4
	560	135	5	2 500 000	5 100 000	255 000	520 000	530	630	23076CAE4
	560	180	5	3 050 000	6 600 000	315 000	670 000	430	560	24076CAE4
	620	194	5	4 000 000	7 600 000	405 000	775 000	400	500	23176CAE4
	620	243	5	4 350 000	8 450 000	440 000	865 000	400	500	24176CAE4
	680	240	6	5 150 000	9 200 000	525 000	940 000	360	480	23276CAE4
400	540	106	4	1 890 000	4 250 000	193 000	435 000	530	630	23980CAE4
	600	148	5	2 970 000	5 900 000	305 000	605 000	480	600	23080CAE4
	600	200	5	3 600 000	7 600 000	370 000	775 000	400	500	24080CAE4
	650 650 720	200 250 256	6 6 6		7 900 000 10 100 000 10 400 000	420 000 505 000 590 000		380 380 340	480 480 450	23180CAE4 24180CAE4 23280CAE4
420	560	106	4	1 870 000	4 250 000	191 000	430 000	500	600	23984CAE4
	620	150	5	2 910 000	5 850 000	297 000	595 000	450	560	23084CAE4
	620	200	5	3 750 000	8 100 000	380 000	825 000	380	480	24084CAE4
	700 700 760	224 280 272	6 6 7.5		9 400 000 12 000 000 11 700 000	510 000 610 000 660 000		340 340 320	450 450 430	23184CAE4 24184CAE4 23284CAE4
440	600	118	4	2 190 000	4 800 000	223 000	490 000	450	560	23988CAE4
	650	157	6	3 150 000	6 350 000	320 000	645 000	430	530	23088CAE4
	650	212	6	4 150 000	9 100 000	425 000	930 000	360	450	24088CAE4
	720 720 790	226 280 280	6 6 7.5	6 000 000	10 300 000 12 100 000 12 800 000	540 000 7 610 000 7 705 000	1 230 000	320 320 300	430 430 400	23188CAE4 24188CAE4 23288CAE4

Nota (¹) El sufijo K o K30 representa a rodamientos con diámetros interiores cónicos (conicidad 1 : 12 ó 1 : 30).

Carga Dinámica Equivalente

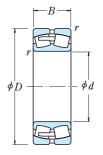
 $P = XF_r + YF_a$

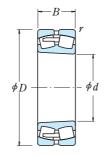
$F_{\rm a}/I$	r≤e	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	Y_3	0.67	Y_2

Carga Estática Equivalente

 $P_0 = F_r + Y_0 F_a$

Los valores de \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} e \emph{Y}_{0} se muestran en la tabla siguiente.


Rodamiento	Dimens	siones de T (mm		flán	Constante	Facto	res de Axial	Carga	Masa (kg)
Diámetro Interior Cónico(¹)	$d_{ m a}$ mín.	máx. D	a mín.	y a máx.	e	Y_2	Y_3	Y_0	aprox.
23972CAKE4	374	466	447	2.5	0.17	6.0	4.1	4.0	44.7
23072CAKE4	382	518	485	4	0.24	4.2	2.8	2.8	106
24072CAK30E4	382	518	476	4	0.32	3.2	2.1	2.1	139
23172CAKE4	382	578	520	4	0.31	3.2	2.2	2.1	217
24172CAK30E4	382	578	507	4	0.40	2.5	1.7	1.7	264
23272CAKE4	388	622	549	5	0.36	2.8	1.9	1.8	342
23976CAKE4	398	502	482	3	0.18	5.5	3.7	3.6	65.4
23076CAKE4	402	538	506	4	0.22	4.5	3.0	3.0	113
24076CAK30E4	402	538	496	4	0.29	3.4	2.3	2.3	148
23176CAKE4	402	598	540	4	0.30	3.3	2.2	2.2	229
24176CAK30E4	402	598	529	4	0.38	2.6	1.8	1.7	275
23276CAKE4	408	652	578	5	0.35	2.9	1.9	1.9	372
23980CAKE4	418	522	501	3	0.18	5.7	3.9	3.8	69.1
23080CAKE4	422	578	540	4	0.23	4.4	3.0	2.9	146
24080CAK30E4	422	578	527	4	0.31	3.3	2.2	2.2	193
23180CAKE4	428	622	569	5	0.29	3.4	2.3	2.3	257
24180CAK30E4	428	622	551	5	0.37	2.7	1.8	1.8	316
23280CAKE4	428	692	610	5	0.36	2.8	1.9	1.9	449
23984CAKE4	438	542	521	3	0.17	6.0	4.0	3.9	71.6
23084CAKE4	442	598	562	4	0.23	4.3	2.9	2.8	151
24084CAK30E4	442	598	549	4	0.31	3.2	2.2	2.1	199
23184CAKE4	448	672	607	5	0.31	3.3	2.2	2.2	341
24184CAK30E4	448	672	598	5	0.38	2.6	1.8	1.7	421
23284CAKE4	456	724	644	6	0.35	2.9	1.9	1.9	534
23988CAKE4	458	582	555	3	0.18	5.7	3.9	3.8	96.3
23088CAKE4	468	622	587	5	0.23	4.3	2.9	2.8	173
24088CAK30E4	468	622	576	5	0.31	3.2	2.1	2.1	237
23188CAKE4	468	692	627	5	0.3	3.3	2.2	2.2	360
24188CAK30E4	468	692	617	5	0.37	2.7	1.8	1.8	433
23288CAKE4	476	754	669	6	0.35	2.9	1.9	1.9	594

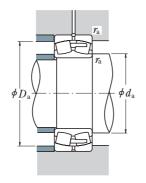

Observaciones

Las dimensiones de los adaptadores y de los manguitos de desmontaje se encuentran en las Páginas B360 y B366, 367.

RODAMIENTOS DE RODILLOS ESFÉRICOS

Diámetro Interior 460~560 mm

Diámetro Interior Cilíndrico


Diámetro Interior Cónico

Sin Ranura y Orificios de Engrase

		nsiones mm)		(Índices Básio	cos de Carga	{kgf}	Velocidade (rpm		Números de
d	D	B	γ mín.	C_{r}	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Grasa	Aceite	Diámetro Interior Cilíndrico
460	620	118	4	2 220 000	4 950 000	227 000	505 000	430	530	23992CAE4
	680	163	6	3 450 000	7 100 000	355 000	725 000	400	500	23092CAE4
	680	218	6	4 500 000	9 950 000	460 000	1 010 000	340	430	24092CAE4
	760	240	7.5	5 700 000	10 900 000	580 000	1 110 000	300	400	23192CAE4
	760	300	7.5	6 300 000	12 400 000	640 000	1 270 000	300	400	24192CAE4
	830	296	7.5	7 350 000	13 700 000	750 000	1 400 000	280	380	23292CAE4
480	650	128	5	2 580 000	5 850 000	263 000	595 000	400	500	23996CAE4
	700	165	6	3 800 000	7 950 000	385 000	810 000	400	480	23096CAE4
	700	218	6	4 600 000	10 200 000	470 000	1 040 000	320	430	24096CAE4
	790	248	7.5	6 050 000	11 700 000	620 000	1 200 000	300	380	23196CAE4
	790	308	7.5	7 150 000	14 600 000	730 000	1 490 000	300	380	24196CAE4
	870	310	7.5	7 850 000	14 400 000	805 000	1 470 000	260	360	23296CAE4
500	670	128	5	2 460 000	5 550 000	250 000	565 000	400	500	239/500CAE4
	720	167	6	3 750 000	8 100 000	385 000	825 000	380	480	230/500CAE4
	720	218	6	4 450 000	9 900 000	450 000	1 010 000	300	400	240/500CAE4
	830	264	7.5	6 850 000	13 400 000	700 000	1 360 000	280	360	231/500CAE4
	830	325	7.5	8 000 000	16 000 000	815 000	1 630 000	280	360	241/500CAE4
	920	336	7.5	9 000 000	16 600 000	915 000	1 690 000	260	320	232/500CAE4
530	710	136	5	2 930 000	6 800 000	299 000	695 000	360	450	239/530CAE4
	780	185	6	4 400 000	9 200 000	450 000	940 000	340	430	230/530CAE4
	780	250	6	5 400 000	11 800 000	550 000	1 210 000	280	360	240/530CAE4
	870	272	7.5	7 150 000	14 100 000	730 000	1 440 000	260	340	231/530CAE4
	870	335	7.5	8 500 000	17 500 000	870 000	1 790 000	260	340	241/530CAE4
	980	355	9.5	10 100 000	18 800 000	1 030 000	1 920 000	240	300	232/530CAE4
560	750	140	5	3 100 000	7 250 000	320 000	740 000	340	430	239/560CAE4
	820	195	6	5 000 000	10 700 000	510 000	1 090 000	320	400	230/560CAE4
	820	258	6	5 950 000	13 300 000	605 000	1 360 000	260	340	240/560CAE4
	920	280	7.5	7 850 000	15 500 000	800 000	1 580 000	240	320	231/560CAE4
	920	355	7.5	9 400 000	19 600 000	960 000	2 000 000	240	320	241/560CAE4
	1 030	365	9.5	10 900 000	20 500 000	1 110 000	2 090 000	220	280	232/560CAE4

Nota (¹) El sufijo K o K30 representa a rodamientos con diámetros interiores cónicos (conicidad 1 : 12 ó 1 : 30).

Carga Dinámica Equivalente

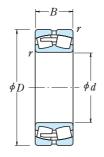
 $P = XF_r + YF_a$

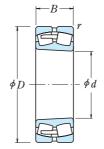
$F_{\rm a}/I$	r≤e	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	Y_3	0.67	Y_2

Carga Estática Equivalente

 $P_0 = F_r + Y_0 F_a$

Los valores de \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} e \emph{Y}_{0} se muestran en la tabla siguiente.

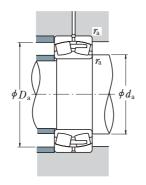

Rodamiento	Dimens	siones de T (mm		flán	Constante	Facto	res de Axial	Carga	Masa (kg)
Diámetro Interior Cónico(¹)	$d_{ m a}$ min.	máx.) _a mín.	γ a máx.	e	Y_2	Y_3	Y_0	aprox.
23992CAKE4	478	602	575	3	0.17	5.9	4.0	3.9	100
23092CAKE4	488	652	615	5	0.22	4.6	3.1	3.0	201
24092CAK30E4	488	652	604	5	0.29	3.4	2.3	2.3	266
23192CAKE4	496	724	661	6	0.31	3.3	2.2	2.2	423
24192CAK30E4	496	724	646	6	0.39	2.6	1.7	1.7	512
23292CAKE4	496	794	702	6	0.36	2.8	1.9	1.8	691
23996CAKE4	502	628	602	4	0.18	5.7	3.8	3.7	121
23096CAKE4	508	672	633	5	0.22	4.6	3.1	3.0	211
24096CAK30E4	508	672	625	5	0.30	3.4	2.3	2.2	270
23196CAKE4	516	754	688	6	0.31	3.3	2.2	2.2	475
24196CAK30E4	516	754	670	6	0.39	2.6	1.7	1.7	567
23296CAKE4	516	834	733	6	0.36	2.8	1.9	1.8	795
239/500CAKE4	522	648	622	4	0.17	6.0	4.0	3.9	124
230/500CAKE4	528	692	655	5	0.21	4.8	3.2	3.1	220
240/500CAK30E4	528	692	643	5	0.30	3.4	2.3	2.2	276
231/500CAKE4	536	794	720	6	0.31	3.2	2.2	2.1	567
241/500CAK30E4	536	794	703	6	0.39	2.6	1.7	1.7	666
232/500CAKE4	536	884	773	6	0.38	2.7	1.8	1.8	969
239/530CAKE4	552	688	659	4	0.17	6.0	4.0	3.9	149
230/530CAKE4	558	752	706	5	0.22	4.6	3.1	3.0	298
240/530CAK30E4	558	752	690	5	0.31	3.3	2.2	2.2	390
231/530CAKE4	566	834	758	6	0.30	3.3	2.2	2.2	628
241/530CAK30E4	566	834	740	6	0.38	2.6	1.8	1.7	773
232/530CAKE4	574	936	824	8	0.38	2.7	1.8	1.7	1 170
239/560CAKE4	582	728	697	4	0.16	6.1	4.1	4.0	172
230/560CAKE4	588	792	742	5	0.22	4.5	3.0	2.9	344
240/560CAK30E4	588	792	729	5	0.30	3.3	2.2	2.2	440
231/560CAKE4	596	884	804	6	0.30	3.4	2.3	2.2	727
241/560CAK30E4	596	884	782	6	0.39	2.6	1.8	1.7	886
232/560CAKE4	604	986	870	8	0.36	2.8	1.9	1.8	1 320


Observaciones

Las dimensiones de los adaptadores y de los manguitos de desmontaje se encuentran en las Páginas B361 y B367.

RODAMIENTOS DE RODILLOS ESFÉRICOS

Diámetro Interior 600~800 mm


Diámetro Interior Cilíndrico

Diámetro Interior Cónico

		nsiones nm)		1)	Índices Básico	s de Carga	{kgf}	Velocidade (rpn		Números de
d	D	В	γ mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite	Diámetro Interior Cilíndrico
600	800	150	5	3 450 000	8 100 000	350 000	830 000	320	400	239/600CAE4
	870	200	6	5 450 000	12 200 000	555 000	1 240 000	300	360	230/600CAE4
	870	272	6	6 600 000	15 100 000	675 000	1 540 000	240	320	240/600CAE4
	980	300	7.5	8 750 000	17 500 000	895 000	1 790 000	220	280	231/600CAE4
	980	375	7.5	10 400 000	21 900 000	1 060 000	2 230 000	220	280	241/600CAE4
	1 090	388	9.5	12 700 000	24 900 000	1 300 000	2 540 000	200	260	232/600CAE4
630	850	165	6	4 000 000	9 350 000	405 000	950 000	300	360	239/630CAE4
	920	212	7.5	5 900 000	12 700 000	600 000	1 300 000	280	340	230/630CAE4
	920	290	7.5	7 550 000	17 700 000	770 000	1 810 000	220	300	240/630CAE4
	1 030	315	7.5	9 600 000	19 400 000	980 000	1 970 000	200	260	231/630CAE4
	1 030	400	7.5	11 300 000	23 900 000	1 160 000	2 440 000	200	260	241/630CAE4
	1 150	412	12	13 400 000	25 600 000	1 370 000	2 610 000	180	240	232/630CAE4
670	900	170	6	4 350 000	10 300 000	445 000	1 050 000	260	340	239/670CAE4
	980	230	7.5	6 850 000	15 000 000	700 000	1 530 000	240	320	230/670CAE4
	980	308	7.5	8 450 000	19 500 000	860 000	1 990 000	200	260	240/670CAE4
	1 090	336	7.5	10 600 000	21 600 000	1 080 000	2 200 000	190	240	231/670CAE4
	1 090	412	7.5	12 400 000	26 500 000	1 270 000	2 700 000	190	240	241/670CAE4
	1 220	438	12	14 900 000	28 700 000	1 520 000	2 920 000	170	220	232/670CAE4
710	950	180	6	4 800 000	11 700 000	490 000	1 200 000	240	300	239/710CAE4
	1 030	236	7.5	7 100 000	15 800 000	725 000	1 610 000	240	280	230/710CAE4
	1 030	315	7.5	8 850 000	20 700 000	905 000	2 110 000	190	240	240/710CAE4
	1 150	438	9.5	13 900 000	30 500 000	1 410 000	3 100 000	170	220	241/710CAE4
	1 280	450	12	15 700 000	30 500 000	1 600 000	3 100 000	160	200	232/710CAE4
750	1 000	185	6	5 250 000	12 800 000	535 000	1 310 000	220	280	239/750CAE4
	1 090	250	7.5	7 750 000	17 200 000	790 000	1 750 000	220	260	230/750CAE4
	1 090	335	7.5	10 100 000	24 000 000	1 030 000	2 450 000	180	220	240/750CAE4
	1 360	475	15	17 700 000	35 500 000	1 800 000	3 600 000	140	190	232/750CAE4
800	1 060	195	6	5 600 000	13 700 000	570 000	1 400 000	220	260	239/800CAE4
	1 150	258	7.5	8 350 000	19 100 000	850 000	1 950 000	200	240	230/800CAE4
	1 150	345	7.5	10 900 000	26 300 000	1 110 000	2 680 000	160	200	240/800CAE4
	1 280	375	9.5	13 800 000	29 200 000	1 410 000	2 970 000	150	190	231/800CAE4
	1 420	488	15	20 300 000	41 000 000	2 070 000	4 150 000	130	170	232/800CAE4

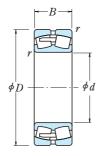
Nota (¹) El sufijo K o K30 representa a rodamientos con diámetros interiores cónicos (conicidad 1 : 12 ó 1 : 30).

Carga Dinámica Equivalente

 $P = XF_r + YF_a$

$F_{\rm a}/I$	r≤e	$F_{\rm a}/I$	r > e
X	Y	X	Y
1	Y_3	0.67	Y_2

Carga Estática Equivalente


 $P_0 = F_r + Y_0 F_a$

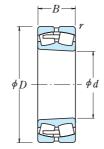
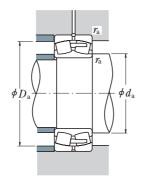

Los valores de $e,\,Y_2$, Y_3 y Y_0 se muestran en la tabla siguiente.

tabla signiente.									
Rodamiento	Dimer	isiones de (mr	Tope y Cha n)	flán	Constante	Facto	res de Axial	Carga	Masa (kg)
Diámetro Interior Cónico(¹)	$d_{ m a}$ min.	máx.	Da mín.	火 a máx.	e	Y_2	Y_3	Y_0	aprox.
239/600CAKE4	622	778	745	4	0.17	5.9	3.9	3.9	205
230/600CAKE4	628	842	794	5	0.21	4.8	3.3	3.2	389
240/600CAK30E4	628	842	772	5	0.30	3.3	2.2	2.2	529
231/600CAKE4	636	944	856	6	0.30	3.4	2.3	2.2	898
241/600CAK30E4	636	944	836	6	0.39	2.6	1.8	1.7	1 050
232/600CAKE4	644	1 046	923	8	0.36	2.8	1.9	1.8	1 590
239/630CAKE4	658	822	786	5	0.18	5.6	3.8	3.7	259
230/630CAKE4	666	884	835	6	0.22	4.7	3.1	3.1	468
240/630CAK30E4	666	884	815	6	0.30	3.3	2.2	2.2	637
231/630CAKE4	666	994	900	6	0.30	3.4	2.3	2.2	1 040
241/630CAK30E4	666	994	876	6	0.38	2.7	1.8	1.7	1 250
232/630CAKE4	684	1 096	970	10	0.36	2.8	1.9	1.8	1 850
239/670CAKE4 230/670CAKE4 240/670CAK30E4 231/670CAKE4	698 706 706 706	872 944 944 1 054	836 891 868 952	5 6 6	0.17 0.22 0.30 0.30	5.8 4.7 3.3 3.3	3.9 3.1 2.2 2.2	3.8 3.1 2.2 2.2	300 571 773 1 230
241/670CAK30E4	706	1 054	934	6	0.37	2.7	1.8	1.8	1 440
232/670CAKE4	724	1 166	1 024	10	0.37	2.7	1.8	1.8	2 210
239/710CAKE4	738	922	883	5	0.17	5.8	3.9	3.8	352
230/710CAKE4	746	994	936	6	0.22	4.6	3.1	3.0	647
240/710CAK30E4	746	994	916	6	0.29	3.4	2.3	2.2	861
241/710CAK30E4	754	1 106	981	8	0.38	2.6	1.8	1.7	1 730
232/710CAKE4	764	1 226	1 080	10	0.36	2.8	1.9	1.8	2 470
239/750CAKE4	778	972	931	5	0.17	6.0	4.1	4.0	398
230/750CAKE4	786	1 054	990	6	0.22	4.6	3.1	3.0	768
240/750CAK30E4	786	1 054	969	6	0.29	3.4	2.3	2.2	1 030
232/750CAKE4	814	1 296	1 148	12	0.36	2.8	1.9	1.8	2 980
239/800CAKE4	828	1 032	987	5	0.17	6.0	4.0	3.9	462
230/800CAKE4	836	1 114	1 045	6	0.21	4.7	3.2	3.1	870
240/800CAK30E4	836	1 114	1 029	6	0.27	3.7	2.5	2.5	1 130
231/800CAKE4	844	1 236	1 127	8	0.28	3.6	2.4	2.3	1870
232/800CAKE4	864	1 356	1 208	12	0.35	2.8	1.9	1.9	3 250

RODAMIENTOS DE RODILLOS ESFÉRICOS

Diámetro Interior 850~1400 mm


Diámetro Interior Cilíndrico

Diámetro Interior Cónico

		nsiones nm)		1)	Índices Básico	s de Carga	{kgf}	Velocidade (rpm		Números de
d	D	B	γ mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Grasa	Aceite	Diámetro Interior Cilíndrico
850	1 120	200	6	6 100 000	15 200 000	620 000	1 550 000	190	240	239/850CAE4
	1 220	272	7.5	9 300 000	21 400 000	945 000	2 190 000	180	220	230/850CAE4
	1 220	365	7.5	11 600 000	28 300 000	1 180 000	2 890 000	150	190	240/850CAE4
	1 500	515	15	22 300 000	45 500 000	2 270 000	4 650 000	120	160	232/850CAE4
900	1 180	206	6	6 600 000	16 700 000	670 000	1 700 000	180	220	239/900CAE4
	1 280	280	7.5	9 850 000	22 800 000	1 000 000	2 330 000	160	200	230/900CAE4
	1 280	375	7.5	12 800 000	31 500 000	1 300 000	3 250 000	140	180	240/900CAE4
	1 580	515	15	23 400 000	47 500 000	2 380 000	4 850 000	110	140	232/900CAE4
950	1 250	224	7.5	7 600 000	19 900 000	775 000	2 030 000	160	200	239/950CAE4
	1 360	300	7.5	11 300 000	26 500 000	1 160 000	2 710 000	150	190	230/950CAE4
	1 360	412	7.5	14 500 000	36 500 000	1 480 000	3 700 000	120	160	240/950CAE4
	1 660	530	15	24 700 000	50 500 000	2 520 000	5 150 000	100	130	232/950CAE4
1 000	1 320	236	7.5	8 200 000	21 700 000	835 000	2 210 000	150	190	239/1000CAE4
	1 420	308	7.5	11 900 000	28 100 000	1 210 000	2 860 000	140	170	230/1000CAE4
	1 420	412	7.5	15 300 000	38 500 000	1 560 000	3 950 000	110	150	240/1000CAE4
1 060	1 400	250	7.5	9 300 000	24 400 000	950 000	2 490 000	130	170	239/1060CAE4
	1 500	325	9.5	13 000 000	31 500 000	1 330 000	3 200 000	120	160	230/1060CAE4
	1 500	438	9.5	16 800 000	43 000 000	1 720 000	4 350 000	100	130	240/1060CAE4
1 120	1 580	345	9.5	15 400 000	38 000 000	1 570 000	3 850 000	110	140	230/1120CAE4
	1 580	462	9.5	18 700 000	49 500 000	1 910 000	5 050 000	95	120	240/1120CAE4
1 180	1 660	475	9.5	20 200 000	52 500 000	2 060 000	5 350 000	85	110	240/1180CAE4
1 250	1 750	500	9.5	21 000 000	59 500 000	2 140 000	6 050 000	75	100	240/1250CAE4
1 320	1 850	530	12	22 600 000	63 500 000	2 310 000	6 500 000	67	85	240/1320CAE4
1 400	1 950	545	12	24 500 000	65 000 000	2 500 000	6 650 000	60	75	240/1400CAE4

Nota (¹) El sufijo K o K30 representa a rodamientos con diámetros interiores cónicos (conicidad 1 : 12 ó 1 : 30).

Carga Dinámica Equivalente

 $P = XF_r + YF_a$

$F_{\rm a}/I$	7 _r ≦e	$F_{\rm a}/F_{\rm r}\!>\!e$					
X	Y	X	Y				
1	Y_3	0.67	Y_2				

Carga Estática Equivalente

 $P_0 = F_r + Y_0 F_a$

Los valores de \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} e \emph{Y}_{0} se muestran en la tabla siguiente.

Rodamiento	Dimer	isiones de (mr	Tope y Cha	flán	Constante	Facto	res de (Axial	Carga	Masa (kg)		
Diámetro Interior Cónico(¹)	$d_{ m a}$ min.	máx.	$D_{ m a}$ mín.	γ a máx.	e	Y_2	Y_3	Y_0	aprox.		
239/850CAKE4	878	1 092	1 046	5	0.16	6.2	4.2	4.1	523		
230/850CAKE4	886	1 184	1 109	6	0.21	4.8	3.2	3.1	1 020		
240/850CAK30E4	886	1 184	1 093	6	0.28	3.6	2.4	2.4	1 350		
232/850CAKE4	914	1 436	1 274	12	0.35	2.8	1.9	1.9	3 890		
239/900CAKE4	928	1 152	1 103	5	0.16	6.4	4.3	4.2	591		
230/900CAKE4	936	1 244	1 169	6	0.20	4.9	3.3	3.2	1 160		
240/900CAK30E4	936	1 244	1 147	6	0.28	3.6	2.4	2.4	1 520		
232/900CAKE4	964	1 516	1 354	12	0.33	3.0	2.0	2.0	4 300		
239/950CAKE4	986	1 214	1 169	6	0.16	6.3	4.2	4.1	732		
230/950CAKE4	986	1 324	1 241	6	0.21	4.8	3.2	3.2	1 400		
240/950CAK30E4	986	1 324	1 219	6	0.28	3.6	2.4	2.3	1 880		
232/950CAKE4	1 014	1 596	1 428	12	0.32	3.1	2.1	2.1	4 800		
239/1000CAKE4 230/1000CAKE4 240/1000CAK30E4	1 036 1 036 1 036	1 284 1 384 1 384	1 229 1 298 1 275	6 6	0.16 0.20 0.27	6.4 4.9 3.7	4.3 3.3 2.5	4.2 3.2 2.4	881 1 560 2 010		
239/1060CAKE4	1 096	1 364	1 302	6	0.16	6.1	4.1	4.0	1 030		
230/1060CAKE4	1 104	1 456	1 368	8	0.21	4.9	3.3	3.2	1 790		
240/1060CAK30E4	1 104	1 456	1 346	8	0.28	3.6	2.4	2.4	2 410		
230/1120CAKE4	1 164	1 536	1 444	8	0.20	5.0	3.4	3.3	2 120		
240/1120CAK30E4	1 164	1 536	1 421		0.27	3.7	2.5	2.5	2 790		
240/1180CAK30E4	1 224	1 616	1 494	8	0.27	3.7	2.5	2.4	3 180		
240/1250CAK30E4	1 294	1 706	1 579	8	0.25	4.0	2.7	2.6	3 700		
240/1320CAK30E4	1 374	1 796	1 656	10	0.26	3.9	2.6	2.6	4 400		
240/1400CAK30E4	1 454	1 896	1 767	10	0.25	4.0	2.7	2.6	4 900		

RODAMIENTOS DE EMPUJE

RODAMIENTOS DE BOLAS DE EMPUJE DE UNA DIRECCIÓN

Con Asiento Plano, Asiento de Alineación, o Arandela de Asiento de Alineación Diámetro Interior 10~100mmPáginas B206~B209

Diámetro Interior 110~360mmPáginas B210~B213

RODAMIENTOS DE BOLAS DE EMPUJE DE DOBLE DIRECCIÓN

Con Asiento Plano, Asiento de Alineación, o Arandela de Asiento de Alineación Diá

RODAMIENTOS DE RODILLOS CILÍNDRICOS DE EMPUJE RODAMIENTOS DE RODILLOS ESFÉRICOS DE EMPUJE Diámetro Interior 10~190mm Páginas B214~B219

Diámetro Interior 35~320mm Páginas B220~B223

Diámetro Interior 60~500mm Páginas B224~B229

Los Rodamientos de Bolas de Empuje de Contacto Angular se describen en las páginas B230 a B239.

DISEÑO, TIPOS Y CARACTERÍSTICAS

RODAMIENTOS DE BOLAS DE EMPUJE

Los rodamientos de bolas de empuje se clasifican en dos tipos, los de asientos planos y los de asientos de alineación, dependiendo de la forma del asiento del anillo exterior (arandela del alojamiento). Pueden soportar cargas axiales, pero no cargas radiales.

Las series de rodamientos de bolas de empuje disponibles se muestran en la Tabla 1.

Para los Rodamientos de Bolas de Empuje de una Dirección se utilizan normalmente jaulas de acero prensado y de latón mecanizado, tal como se muestra en la Tabla 2. Las jaulas de los Rodamientos de Bolas de Empuje de Doble Dirección son las mismas que las de los Rodamientos de Bolas de Empuje de una Dirección de la misma serie de diámetro.

Los índices básicos de carga mostrados en las tablas de rodamientos se basan en el tipo de jaula estándar mostrado en la Tabla 2. Si el tipo de jaula es diferente para rodamientos con el mismo número, el número de bolas puede variar; en dicho caso, el índice de carga será diferente al mostrado en las tablas de rodamientos.

Tabla 1 Series de Rodamientos de Bolas de Empuje

	Con Asiento Plano	Con Asiento de Alineación	Con Arandela del Asiento de Alineación
	511	_	
Una	512	532	532U
Dirección	513	533	533U
	514	534	534U
Doble	522	542	542U
Dirección	523	543	543U
DIRECTION	524	544	544U

Tabla 2 Jaulas Estándar para Rodamientos de Bolas de Empuje

Acero Prensado	Latón Mecanizado
51100~51152X	51156X~51172X
51200~51236X	51238X~51272X
51305~51336X	51338X~51340X
51405~51418X	51420X~51436X
53200~53236X	53238X~53272X
53305~53336X	53338X~53340X
53405~53418X	53420X~53436X

RODAMIENTOS DE RODILLOS CILÍNDRICOS DE EMPUJE

Estos rodamientos de empuje contienen rodillos cilíndricos. Sólo pueden soportar cargas axiales, pero resultan adecuados para cargas pesadas y tienen una elevada rigidez axial.

Las jaulas son de latón mecanizado.

RODAMIENTOS DE RODILLOS ESFÉRICOS DE EMPUJE

Estos rodamientos de empuje contienen rodillos convexos. Tienen capacidad de autoalineación y los errores de montaje o desviaciones del eje no tienen ninguna influencia sobre ellos. Además del tipo original, también está disponible el tipo E con jaulas prensadas y una alta capacidad de carga. La referencia del rodamiento incluye el sufijo E.

Para aplicaciones en ejes horizontales o de alta velocidad, recomendamos

las jaulas de latón mecanizado. Consulte los detalles con NSK.

Se debe utilizar lubricación por aceite incluso a bajas revoluciones, debido a la existencia de lugares de difícil acceso para el engrase, tales como el área entre la cabeza del rodillo y el reborde del anillo interior, las superficies entre la jaula y el anillo quía, etc...

Las jaulas del tipo original son de latón mecanizado.

TOLERANCIAS Y PRECISIÓN DE FUNCIONAMIENTO

RODAMIENTOS DE BOLAS DE EMPUJE	Tabla 8.6 (Páginas A72~A74)
RODAMIENTOS DE RODILLOS CILÍNDRICOS D	DE EMPUJE
Seg	ún la Tabla 8.2 (Páginas A72~A74)
RODAMIENTOS DE RODILLOS ESFÉRICOS	
DE EMPUJE	Tabla 8.7 (Páginas A75)

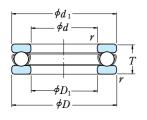
AJUSTES RECOMENDADOS

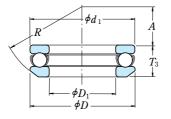
RODAMIENTOS DE BOLAS DE EMPUJE	Tabla 9.3 (Páginas A84)
	Tabla 9.5 (Páginas A85)
RODAMIENTOS DE RODILLOS CILÍNDRICOS	
DE EMPUJE	Tabla 9.3 (Páginas A84)
	Tabla 9.5 (Páginas A85)
RODAMIENTOS DE RODILLOS ESFÉRICOS	
DE EMPUJE	Tabla 9.3 (Páginas A84)
	Tabla 9.5 (Páginas A85)

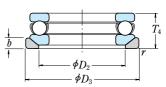
DIMENSIONES EN FUNCIÓN DEL MONTAJE

Las dimensiones relacionadas con el montaje de los rodamientos de rodillos de empuje esféricos se indican en la Tabla de Rodamientos.

Si la carga del rodamiento es elevada, es necesario diseñar el eje de manera que ofrezca un apoyo suficientemente ancho y robusto a la arandela del rodamiento.

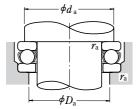

DESALINEACIÓN ADMISIBLE

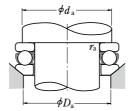

La desalineación admisible de los Rodamientos de Rodillos de Empuje Esféricos depende del tamaño, pero es de aproximadamente 0,018 a 0,036 radianes (de 1° a 2°) con cargas medias.

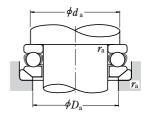

CARGA AXIAL MÍNIMA

Es necesario aplicar una cierta carga axial a los rodamientos de empuje para evitar el deslizamiento entre los elementos rodantes y los caminos de rodadura. Para más detalles, consulte la Página A99.

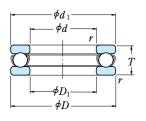
Diámetro Interior 10∼50 mm

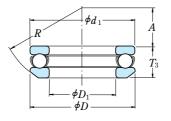

Con Asiento Plano

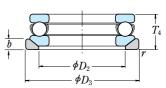

Con Asiento de Alineación


Con Arandela del Asiento de Alineación

			nsiones mm)			1)	Índices Básico N)	os de Carga	{kgf}		des Límite pm)	
d	D	T	T_3	T_4	r min.	Ca	C_{0a}	C_{a}	C_{0a}	Grasa	Aceite	Con Asiento Plano
10	24 26	9 11	— 11.6	— 13	0.3 0.6	10 100 12 800	14 000 17 100	1 030 1 300	1 420 1 740	6 700 6 000	10 000 9 000	51100 51200
12	26 28	9 11	<u> </u>	 13	0.3 0.6	10 400 13 300	15 400 19 000	1 060 1 350	1 570 1 940	6 700 5 600	10 000 8 500	51101 51201
15	28 32	9 12	 13.3	<u> </u>	0.3 0.6	10 600 16 700	16 800 24 800	1 080 1 710	1 710 2 530	6 300 5 000	9 500 7 500	51102 51202
17	30 35	9 12	 13.2	— 15	0.3 0.6	11 400 17 300	19 500 27 300	1 170 1 760	1 990 2 780	6 000 4 800	9 000 7 500	51103 51203
20	35 40	10 14	<u> </u>	<u> </u>	0.3 0.6	15 100 22 500	26 600 37 500	1 540 2 290	2 710 3 850	5 300 4 300	8 000 6 300	51104 51204
25	42 47 52 60	11 15 18 24	— 16.7 19.8 26.4	19 22 29	0.6 0.6 1	19 700 28 000 36 000 56 000	37 000 50 500 61 500 89 500	2 010 2 860 3 650 5 700	3 800 5 150 6 250 9 100	4 800 3 800 3 200 2 600	7 100 5 600 5 000 4 000	51105 51205 51305 51405
30	47 52 60 70	11 16 21 28	— 17.8 22.6 30.1	20 25 33	0.6 0.6 1	20 600 29 500 43 000 73 000	42 000 58 000 78 500 126 000	2 100 3 000 4 400 7 450	4 300 5 950 8 000 12 800	4 300 3 400 2 800 2 200	6 700 5 300 4 300 3 400	51106 51206 51306 51406
35	52 62 68 80	12 18 24 32	— 19.9 25.6 34	22 28 37	0.6 1 1 1.1	22 100 39 500 56 000 87 500	49 500 78 000 105 000 155 000	2 250 4 050 5 700 8 950	5 050 7 950 10 700 15 800	4 000 3 000 2 400 2 000	6 000 4 500 3 800 3 000	51107 51207 51307 51407
40	60 68 78 90	13 19 26 36		23 31 42	0.6 1 1 1.1	27 100 47 500 70 000 103 000	63 000 98 500 135 000 188 000	2 770 4 850 7 100 10 500	6 400 10 000 13 700 19 100	3 600 2 800 2 200 1 700	5 300 4 300 3 400 2 600	51108 51208 51308 51408
45	65 73 85 100	14 20 28 39	— 21.3 30.1 42.4	24 33 46	0.6 1 1 1.1	28 100 48 000 80 500 128 000	69 000 105 000 163 000 246 000	2 860 4 900 8 200 13 000	7 050 10 700 16 700 25 100	3 400 2 600 2 000 1 600	5 000 4 000 3 000 2 400	51109 51209 51309 51409
50	70 78 95 110	14 22 31 43	 23.5 34.3 45.6	26 37 50	0.6 1 1.1 1.5	29 000 49 000 97 500 147 000	75 500 111 000 202 000 288 000	2 960 5 000 9 950 15 000	7 700 11 400 20 600 29 400	3 200 2 400 1 800 1 400	4 800 3 600 2 800 2 200	51110 51210 51310 51410



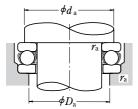


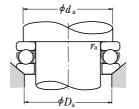


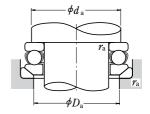
Números Rodamier	nto			[Dimensio (mm					ensione: e y Chat		_	Masa(kg aprox.	
Con Asiento de Alineación	Con Arandela del Asiento de Alineación	d_1	D_1	D_2	D_3	b	A	R	d a min.	$D_{ m a} \ { m máx}.$	∦ a máx.	Con Asiento Plano	Con Asiento de Alineación	Con Arandela del Asiento de Alineación
53200	53200 U	24 26	11 12	— 18	 28	— 3.5	— 8.5	 22	18 20	16 16	0.3 0.6	0.019 0.028	 0.029	 0.036
53201	53201 U	26 28	13 14	 20	30	— 3.5	 11.5	 25	20 22	18 18	0.3 0.6	0.021 0.031	 0.031	0.039
 53202	 53202 U	28 32	16 17	 24	— 35	- 4	<u> </u>	 28	23 25	20 22	0.3 0.6	0.023 0.043	 0.048	0.059
 53203	 53203 U	30 35	18 19	 26	 38	- 4	 16	 32	25 28	22 24	0.3 0.6	0.025 0.050	— 0.055	 0.069
 53204	 53204 U	35 40	21 22	_	<u>-</u>	-	 18	 36	29 32	26 28	0.3 0.6	0.037 0.077	 0.080	 0.096
53205 53305 53405	53205 U 53305 U 53405 U	42 47 52 60	26 27 27 27	— 36 38 42	50 55 62	5.5 6 8	— 19 21 19	40 45 50	35 38 41 46	32 34 36 39	0.6 0.6 1	0.056 0.111 0.169 0.334	0.123 0.182 0.353	 0.151 0.224 0.426
53206 53306 53406	53206 U 53306 U 53406 U	47 52 60 70	32 32 32 32	42 45 50	 55 62 75	5.5 7 9		45 50 56	40 43 48 54	37 39 42 46	0.6 0.6 1	0.064 0.137 0.267 0.519	 0.154 0.28 0.535	0.183 0.336 0.666
53207 53307 53407	53207 U 53307 U 53407 U	52 62 68 80	37 37 37 37	— 48 52 58	— 65 72 85	— 7 7.5 10	24 24 23	50 56 64	45 51 55 62	42 46 48 53	0.6 1 1	0.081 0.21 0.386 0.769	0.231 0.403 0.785	 0.292 0.488 0.967
53208 53308 53408	53208 U 53308 U 53408 U	60 68 78 90	42 42 42 42	55 60 65	72 82 95	— 7 8.5 12	— 28.5 28 26	56 64 72	52 57 63 70	48 51 55 60	0.6 1 1	0.12 0.27 0.536 1.1	0.289 0.581 1.12	0.355 0.704 1.38
53209 53309 53409	53209 U 53309 U 53409 U	65 73 85 100	47 47 47 47	 60 65 72	— 78 90 105	— 7.5 10 12.5	— 26 25 29	56 64 80	57 62 69 78	53 56 61 67	0.6 1 1	0.143 0.31 0.672 1.46	0.333 0.702 1.53	— 0.419 0.888 1.87
53210 53310 53410	53210 U 53310 U 53410 U	70 78 95 110	52 52 52 52	 62 72 80	82 100 115	— 7.5 11 14	— 32.5 28 35	 64 72 90	62 67 77 86	58 61 68 74	0.6 1 1 1.5	0.153 0.378 0.931 1.94	 0.404 1.01 1.98	 0.504 1.27 2.41

Diámetro Interior 55~100 mm

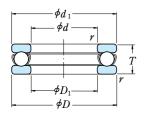
Con Asiento Plano

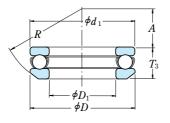

Con Asiento de Alineación

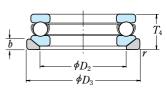

Con Arandela del Asiento de Alineación


			nsiones mm)			1)	Índices Básico	os de Carga	{kgf}	Velocidad (rp		Com
d	D	T	T_3	T_4	∤ min.	Ca	C_{0a}	C_{a}	C_{0a}	Grasa	Aceite	Con Asiento Plano
55	78	16	—	—	0.6	35 000	93 000	3 600	9 500	2 800	4 300	51111
	90	25	27.3	30	1	70 000	159 000	7 150	16 200	2 200	3 200	51211
	105	35	39.3	42	1.1	115 000	244 000	11 800	24 900	1 600	2 400	51311
	120	48	50.5	55	1.5	181 000	350 000	18 500	35 500	1 300	1 900	51411
60	85	17	—	—	1	41 500	113 000	4 250	11 500	2 600	4 000	51112
	95	26	28	31	1	71 500	169 000	7 300	17 200	2 000	3 000	51212
	110	35	38.3	42	1.1	119 000	263 000	12 100	26 800	1 600	2 400	51312
	130	51	54	58	1.5	202 000	395 000	20 600	40 500	1 200	1 800	51412
65	90	18	—	—	1	42 000	117 000	4 300	12 000	2 400	3 800	51113
	100	27	28.7	32	1	75 500	189 000	7 700	19 200	1 900	2 800	51213
	115	36	39.4	43	1.1	123 000	282 000	12 500	28 700	1 500	2 400	51313
	140	56	60.2	65	2	234 000	495 000	23 800	50 500	1 100	1 700	51413
70	95	18	—	—	1	43 500	127 000	4 450	12 900	2 400	3 600	51114
	105	27	28.8	32	1	74 000	189 000	7 550	19 200	1 900	2 800	51214
	125	40	44.2	48	1.1	137 000	315 000	14 000	32 000	1 400	2 000	51314
	150	60	63.6	69	2	252 000	555 000	25 700	56 500	1 000	1 500	51414
75	100	19	—	—	1	43 500	131 000	4 450	13 400	2 200	3 400	51115
	110	27	28.3	32	1	78 000	209 000	7 950	21 300	1 800	2 800	51215
	135	44	48.1	52	1.5	159 000	365 000	16 200	37 500	1 300	1 900	51315
	160	65	69	75	2	254 000	560 000	25 900	57 000	950	1 400	51415
80	105	19	—	—	1	45 000	141 000	4 600	14 400	2 200	3 400	51116
	115	28	29.5	33	1	79 000	218 000	8 050	22 300	1 800	2 600	51216
	140	44	47.6	52	1.5	164 000	395 000	16 700	40 000	1 300	1 900	51316
	170	68	72.2	78	2.1	272 000	620 000	27 800	63 500	900	1 300	51416
85	110	19	—	—	1	46 500	150 000	4 700	15 300	2 200	3 200	51117
	125	31	33.1	37	1	96 000	264 000	9 800	26 900	1 600	2 400	51217
	150	49	53.1	58	1.5	207 000	490 000	21 100	50 000	1 100	1 700	51317
	180	72	77	83	2.1	310 000	755 000	31 500	77 000	850	1 300	51417 X
90	120	22	—		1	60 000	190 000	6 150	19 400	1 900	3 000	51118
	135	35	38.5	42	1.1	114 000	310 000	11 600	31 500	1 400	2 200	51218
	155	50	54.6	59	1.5	214 000	525 000	21 900	53 500	1 100	1 700	51318
	190	77	81.2	88	2.1	330 000	825 000	33 500	84 000	800	1 200	51418 X
100	135	25	—	—	1	86 000	268 000	8 750	27 300	1 700	2 600	51120
	150	38	40.9	45	1.1	135 000	375 000	13 700	38 500	1 300	2 000	51220
	170	55	59.2	64	1.5	239 000	595 000	24 300	61 000	1 000	1 500	51320
	210	85	90	98	3	370 000	985 000	38 000	100 000	710	1 100	51420 X

Nota (1) El diámetro exterior d_1 de las arandelas del eje de todas las referencias de rodamientos marcadas con X es menor que el diámetro exterior D de las arandelas del alojamiento.



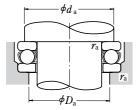


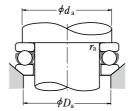


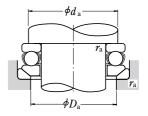
Números Rodamie	nto (†)			[Dimensio (mm					siones d aflán (n			Masa(kg aprox.)
Con Asiento de Alineación	Con Arandela del Asiento de Alineación	d_1	D_1	D_2	D_3	b	A	R	$d_{ m a}$ mín.	$D_{ m a}$ máx.	∤ a máx.	Con Asiento Plano	Con Asiento de Alineación	Con Arandela del Asiento de Alineación
53211 53311 53411	53211 U 53311 U 53411 U	78 90 105 120	57 57 57 57	72 80 88	95 110 125	— 9 11.5 15.5	— 35 30 28	72 80 90	69 76 85 94	64 69 75 81	0.6 1 1 1.5	0.227 0.599 1.31 2.58	— 0.656 1.45 2.59	— 0.819 1.78 3.16
53212 53312 53412	53212 U 53312 U 53412 U	85 95 110 130	62 62 62 62	78 85 95	100 115 135	— 9 11.5 16	— 32.5 41 34	72 90 100	75 81 90 102	70 74 80 88	1 1 1 1.5	0.281 0.673 1.4 3.16		0.897 1.83 3.91
53213 53313 53413	53213 U 53313 U 53413 U	90 100 115 140	67 67 67 68	82 90 100	105 120 145	— 9 12.5 17.5	— 40 38.5 40	80 90 112	80 86 95 110	75 79 85 95	1 1 1 2	0.324 0.756 1.54 4.1	— 0.812 1.67 4.22	0.989 2.04 5.13
53214 53314 53414	53214 U 53314 U 53414 U	95 105 125 150	72 72 72 73	— 88 98 110	110 130 155	— 9 13 19.5	— 38 43 34	80 100 112	85 91 103 118	80 84 92 102	1 1 1 2	0.346 0.793 2.0 5.05	0.866 2.2 5.12	1.05 2.64 6.21
53215 53315 53415	53215 U 53315 U 53415 U	100 110 135 160	77 77 77 78	92 105 115	115 140 165	9.5 15 21	— 49 37 42	90 100 125	90 96 111 125	85 89 99 110	1 1 1.5 2	0.389 0.845 2.6 6.15	1.27 2.8 6.23	— 1.11 3.42 7.58
53216 53316 53416	53216 U 53316 U 53416 U	105 115 140 170	82 82 82 83	98 110 125	120 145 175	 10 15 22	46 50 36	90 112 125	95 101 116 133	90 94 104 117	1 1 1.5 2	0.417 0.931 2.74 7.21	1.01 2.94 7.33	— 1.23 3.55 8.9
53217 53317 53417 >	 53217 U 53317 U (53417 XU	110 125 150 177	87 88 88 88	105 115 130	130 155 185	— 11 17.5 23	52 43 47	100 112 140	100 109 124 141	95 101 111 124	1 1 1.5 2	0.44 1.22 3.57 8.51	1.35 3.78 8.72	1.63 4.67 10.4
53218 53318 53418 >	 53218 U 53318 U (53418 XU	120 135 155 187	92 93 93 93	110 120 140	140 160 195	— 13.5 18 25.5	45 40 40	100 112 140	108 117 129 149	102 108 116 131	1 1 1.5 2	0.646 1.69 3.83 10.2	1.89 4.11 10.3	2.38 5.09 12.4
53220 53320 53420 >	53220 U 53320 U 53420 XU	135 150 170 205	102 103 103 103	125 135 155	155 175 220	— 14 18 27	52 46 50	112 125 160	121 130 142 165	114 120 128 145	1 1 1.5 2.5	0.96 2.25 4.98 14.8	2.49 5.31 15	3.03 6.37 18.1

Diámetro Interior 110 \sim 190 mm

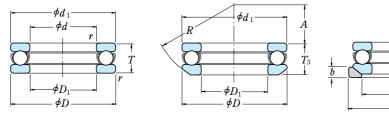
Con Asiento Plano


Con Asiento de Alineación


Con Arandela del Asiento de Alineación

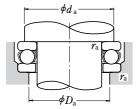

			ensiones mm)			(Índices Básicos N)	{kgf}	Velocidad (rp	Con		
d	D	T	T_3	T_4	y mín.	Ca	C_{0a}	$C_{\rm a}$	C_{0a}	Grasa	Aceite	Asiento Plano
110	145 160 190 230	25 38 63 95	— 40.2 67.2 99.7	— 45 72 109	1 1.1 2 3	88 000 136 000 282 000 415 000	288 000 395 000 755 000 1 150 000	8 950 13 900 28 800 42 000	29 400 40 000 77 000 118 000	1 700 1 300 900 630	2 400 1 900 1 300 950	51122 51222 51322) 51422)
120	155 170 210 250	25 39 70 102	— 40.8 74.1 107.3	 46 80 118	1 1.1 2.1 4	90 000 141 000 330 000 480 000	310 000 430 000 930 000 1 400 000	9 150 14 400 33 500 49 000	31 500 44 000 95 000 142 000	1 600 1 200 800 600	2 400 1 800 1 200 900	51124 51224 51324) 51424)
130	170 190 225 270	30 45 75 110	— 47.9 80.3 115.2	53 86 128	1 1.5 2.1 4	105 000 183 000 350 000 525 000	350 000 550 000 1 030 000 1 590 000		36 000 56 000 105 000 162 000	1 400 1 100 750 530	2 000 1 600 1 100 800	51126 51226) 51326) 51426)
140	180 200 240 280	31 46 80 112	— 48.6 84.9 117	55 92 131	1 1.5 2.1 4	107 000 186 000 370 000 550 000	375 000 575 000 1 130 000 1 750 000		38 500 59 000 115 000 178 000	1 300 1 000 670 530	2 000 1 500 1 000 800	51128) 51228) 51328) 51428)
150	190 215 250 300	31 50 80 120	— 53.3 83.7 125.9	60 92 140	1 1.5 2.1 4		400 000 735 000 1 200 000 2 010 000		41 000 75 000 123 000 205 000	1 300 950 670 480	1 900 1 400 1 000 710	51130 2 51230 2 51330 2 51430 2
160	200 225 270 320	31 51 87 130		61 100 150	1 1.5 3 5		425 000 805 000 1 570 000 2 210 000		43 500 82 000 160 000 226 000	1 200 900 600 450	1 900 1 400 900 670	51132) 51232) 51332) 51432)
170	215 240 280 340	34 55 87 135	— 58.7 91.3 141	65 100 156	1.1 1.5 3 5	135 000 280 000 465 000 715 000	510 000 915 000 1 570 000 2 480 000		52 000 93 000 160 000 253 000	1 100 850 600 430	1 700 1 300 900 630	51134) 51234) 51334) 51434)
180	225 250 300 360	34 56 95 140	58.2 99.3 148.3	66 109 164	1.1 1.5 3 5	136 000 284 000 480 000 750 000	530 000 955 000 1 680 000 2 730 000		54 000 97 000 171 000 278 000	1 100 800 560 400	1 700 1 200 850 600	51136) 51236) 51336) 51436)
190	240 270 320	37 62 105	— 65.7 111	73 121	1.1 2 4	172 000 320 000 550 000	655 000 1 110 000 1 960 000		67 000 113 000 199 000	1 000 750 500	1 600 1 100 750	51138) 51238) 51338)

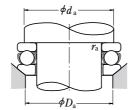
Nota (1) El diámetro exterior d_1 de las arandelas del eje de todas las referencias de rodamientos marcadas con X es menor que el diámetro exterior D de las arandelas del alojamiento.

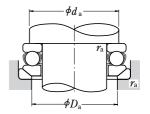


Números de Rodamiento (1) Con Con			l	Dimensi (mm					siones d aflán (n		0	Masa(kg aprox.	
Con Con Asiento de Arandela di Alineación Asiento de Alineaciór	a_1	D_1	D_2	D_3	b	A	R	d a mín.	$D_{ m a}$ máx.	y a máx.	Con Asiento Plano	Con Asiento de Alineación	Con Arandela del Asiento de Alineación
		112 113 113 113	— 135 150 170	— 165 195 240	— 14 20.5 29	— 65 51 59	— 125 140 180	131 140 158 181	124 130 142 159	1 1 2 2.5	1.04 2.42 7.19 20	 2.65 7.55 20.5	— 3.2 9.1 24.3
		122 123 123 123	— 145 165 185	175 220 260	— 15 22 32	— 61 63 70	125 160 200	141 150 173 196	134 140 157 174	1 1 2 3	1.12 2.7 9.7 26.2		— 3.58 12.4 31.3
53226 X 53226 X 53326 X 53426 X 53426 X	U 220	132 133 134 134	160 177 200	195 235 280	— 17 26 38	— 67 53 58	140 160 200	154 166 186 212	146 154 169 188	1 1.5 2 3	1.68 3.95 12.1 32.3	 4.35 12.7 32.4	
53228 X 53228 X 53328 X 53428 X 53428 X	U 235	142 143 144 144	170 190 206	210 250 290	— 17 26 38	— 87 68 83	160 180 225	164 176 199 222	156 164 181 198	1 1.5 2 3	1.83 4.3 14.2 34.7	 4.74 16.3 34.8	5.89 19.5 41.4
53230 X 53230 X 53330 X 53330 X 53430 X 53430 X	U 245	152 153 154 154	180 200 225	225 260 310	— 20.5 26 41	— 79 89.5 69	160 200 225	174 189 209 238	166 176 191 212	1 1.5 2 3	1.95 5.52 15 43.5	 6.09 17.3 43.8	— 7.82 20.5 51.9
53232 X 53232 X 53332 X 53432 X 53432 X	U 265	162 163 164 164	190 215 240	235 280 330	— 21 29 41.5	— 74 77 84	160 200 250	184 199 225 254	176 186 205 226	1 1.5 2.5 4	2.07 6.04 19.6 52.7	 6.78 22.3 52.9	— 8.7 26.7 62
53234 X 53234 X 53334 X 53434 X 53434 X	U 275	172 173 174 174	200 220 255	250 290 350	— 21.5 29 46	— 91 105 74	180 225 250	197 212 235 269	188 198 215 241	1 1.5 2.5 4	2.72 7.41 20.3 61.2	— 8.21 23.2 61.3	 10.5 28 73
53236 X 53236 X 53336 X 53336 X 53436 X 53436 X	295 U 355	183 183 184 184	210 240 270	260 310 370	— 21.5 32 46.5	— 112 91 97	200 225 280	207 222 251 285	198 208 229 255	1 1.5 2.5 4	2.79 7.94 25.9 70.5	— 8.57 29.2 72.1	 10.8 34.9 84.9
53238 X 53238 X 53338 X 53338 X		193 194 195	230 255	280 330	— 23 33	98 104	200 250	220 238 266	210 222 244	1 2 3	3.6 11.8 36.5	— 12.9 38.1	 15.7 44.7

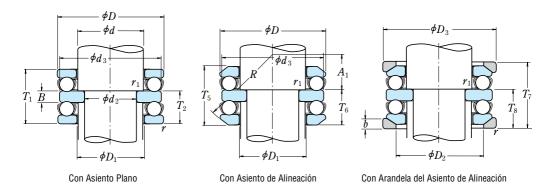
Diámetro Interior 200~360 mm

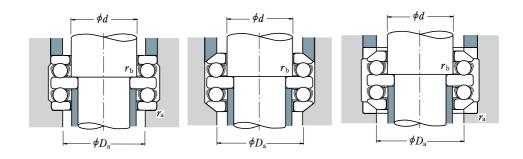



Con Asiento Plano	Con Asiento de Alineación	Con Arandela del Asiento de Alineación

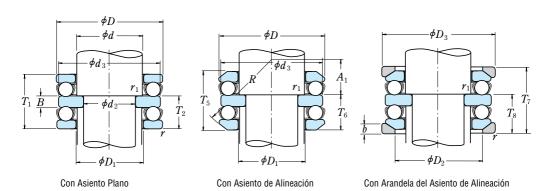

			ensiones mm)			1)	Índices Básicos N)	de Carga	{kgf}	Velocidad (rp		0
d	D	T	T_3	T_4	∤ min.	Ca	C_{0a}	C_{a}	C_{0a}	Grasa	Aceite	Con Asiento Plano
200	250 280 340	37 62 110	— 65.3 118.4	— 74 130	1.1 2 4	173 000 315 000 600 000	675 000 1 110 000 2 220 000	17 600 32 500 61 500	69 000 113 000 227 000	1 000 710 480	1 500 1 100 710	51140 X 51240 X 51340 X
220	270 300	37 63	— 65.6	— 75	1.1 2	179 000 325 000	740 000 1 210 000	18 200 33 500	75 500 123 000	950 670	1 500 1 000	51144 X 51244 X
240	300 340	45 78	— 81.6	<u> </u>	1.5 2.1	229 000 420 000	935 000 1 650 000	23 400 43 000	95 000 168 000	850 560	1 200 850	51148 X 51248 X
260	320 360	45 79	— 82.8	93	1.5 2.1	233 000 435 000	990 000 1 800 000	23 800 44 500	101 000 184 000	800 560	1 200 850	51152 X 51252 X
280	350 380	53 80	— 85	<u> </u>	1.5 2.1	315 000 450 000	1 310 000 1 950 000	32 000 46 000	134 000 199 000	710 530	1 000 800	51156 X 51256 X
300	380 420	62 95	 100.5	<u> </u>	2 3	360 000 540 000	1 560 000 2 410 000	36 500 55 000	159 000 246 000	600 450	900 670	51160 X 51260 X
320	400 440	63 95	 100.5	 112	2	365 000 585 000	1 660 000 2 680 000	37 500 59 500	169 000 273 000	600 450	900 670	51164 X 51264 X
340	420 460	64 96	 100.3	 113	2 3	375 000 595 000	1 760 000 2 800 000	38 500 60 500	179 000 285 000	560 430	850 630	51168 X 51268 X
360	440 500	65 110	— 116.7	— 130	2 4	385 000 705 000	1 860 000 3 500 000	39 000 72 000	190 000 355 000	560 380	800 560	51172 X 51272 X

Nota (1) El diámetro exterior d_1 de las arandelas del eje de todas las referencias de rodamientos marcadas con X es menor que el diámetro exterior D de las arandelas del alojamiento.

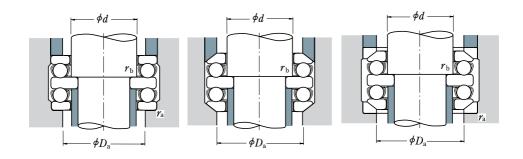



Números o Rodamient				[Dimensio (mm					siones d naflán (n		Con	Masa(kg aprox. Con) Con
Asiento de Alineación	Arandela del Asiento de Alineación	d_1	D_1	D_2	D_3	b	A	R	$d_{ m a}$ mín.	$D_{ m a}$ máx.	y a máx.	Asiento Plano		
	53240 XU 53340 XU	247 277 335	203 204 205	— 240 270	— 290 350	— 23 38	— 125 92	225 250	230 248 282	220 232 258	1 2 3	3.75 12.3 43.6	— 13.4 46.2	— 16.1 54.8
 53244 X	 53244 XU	267 297	223 224	 260	310	 25	— 118	 225	250 268	240 252	1 2	4.09 13.6	— 14.9	— 18
 53248 X	 53248 XU	297 335	243 244	 290	 350	30	 122	 250	276 299	264 281	1.5 2	6.55 23.7	 25.6	 30.7
 53252 X	 53252 XU	317 355	263 264	305	 370	30	 152	 280	296 319	284 301	1.5 2	7.01 25.1	 27.3	 33.2
 53256 X	 53256 XU	347 375	283 284	 325	390	<u> </u>	 143	 280	322 339	308 321	1.5 2	12 27.1	 30.3	 37
53260 X	53260 XU	376 415	304 304	360	— 430	 34	— 164	320	348 371	332 349	2 2.5	17.2 43.5	— 47.7	— 56.1
 53264 X	 53264 XU	396 435	324 325	380	— 450	 36	— 157	 320	368 391	352 369	2 2.5	18.6 45	— 49.9	— 59.4
53268 X	53268 XU	416 455	344 345	 400	 470	 36	 199	360	388 411	372 389	2 2.5	19.9 47.9	 52.7	— 62
 53272 X	 53272 XU	436 495	364 365	— 430	— 510	— 43	— 172	— 360	408 442	392 418	2 3	21.5 68.8	— 76.3	— 90.9

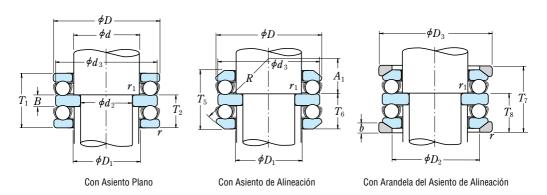
Diámetro Interior 10∼55 mm


				nsiones nm)					dices Básico	•	{kgf}	Veloci Límite		R	úmeros de odamiento
d_2	d	D	T_1	T_5	T_7	r mín.	γ 1 mín.	Ca	C_{0a}	$C_{\rm a}$	C_{0a}	Grasa	Aceite	Con Asiento Plano	Con Asiento de Alineación
10	15	32	22	24.6	28	0.6	0.3	16 700	24 800	1 710	2 530	4 800	7 100	52202	54202
15	20 25	40 60	26 45	27.4 49.8	32 55	0.6 1	0.3 0.6	22 500 56 000	37 500 89 500	2 290 5 700	3 850 9 100	4 000 2 400	6 000 3 600	52204 52405	54204 54405
20	25 25 30	47 52 70	28 34 52	31.4 37.6 56.2	36 42 62	0.6 1 1	0.3 0.3 0.6	28 000 36 000 73 000	50 500 61 500 126 000	2 860 3 650 7 450	5 150 6 250 12 800	3 400 3 000 2 200	5 300 4 500 3 200	52205 52305 52406	54205 54305 54406
25	30 30 35	52 60 80	29 38 59	32.6 41.2 63	37 46 69	0.6 1 1.1	0.3 0.3 0.6	29 500 43 000 87 500	58 000 78 500 155 000	3 000 4 400 8 950	5 950 8 000 15 800		5 000 4 000 2 800	52206 52306 52407	54206 54306 54407
30	35 35 40	62 68 68	34 44 36	37.8 47.2 38.6	42 52 44	1 1 1	0.3 0.3 0.6	39 500 56 000 47 500	78 000 105 000 98 500		7 950 10 700 10 000		4 300 3 600 3 800	52207 52307 52208	54207 54307 54208
	40 40	78 90	49 65	54 69.4	59 77	1 1.1	0.6 0.6	70 000 103 000	135 000 188 000		13 700 19 100	2 000 1 700	3 000 2 400	52308 52408	54308 54408
35	45 45 45	73 85 100	37 52 72	39.6 56.2 78.8	45 62 86	1 1 1.1	0.6 0.6 0.6	48 000 80 500 128 000	105 000 163 000 246 000	4 900 8 200 13 000			3 600 2 800 2 200	52209 52309 52409	54209 54309 54409
40	50 50 50	78 95 110	39 58 78	42 64.6 83.2	47 70 92	1 1.1 1.5	0.6 0.6 0.6	49 000 97 500 147 000	111 000 202 000 288 000		11 400 20 600 29 400	2 400 1 700 1 400	3 400 2 600 2 000	52210 52310 52410	54210 54310 54410
45	55 55 55	90 105 120	45 64 87	49.6 72.6 92	55 78 101	1 1.1 1.5	0.6 0.6 0.6	70 000 115 000 181 000	159 000 244 000 350 000		16 200 24 900 35 500	2 000 1 500 1 200	3 000 2 400 1 800	52211 52311 52411	54211 54311 54411
50	60 60 65	95 110 130 140	46 64 93 101	50 70.6 99 109.4	56 78 107 119	1 1.1 1.5 2	0.6 0.6 0.6 1	71 500 119 000 202 000 234 000	169 000 263 000 395 000 495 000				3 000 2 200 1 700 1 600	52212 52312 52412 52413	54212 54312 54412 54413
55	65 65 70	100 115 105	47 65 47	50.4 71.8 50.6	57 79 57	1 1.1 1	0.6 0.6 1	75 500 123 000 74 000	189 000 282 000 189 000	12 500	19 200 28 700 19 200	1 900 1 500 1 800	2 800 2 200 2 800	52213 52313 52214	54213 54313 54214
	70 70	125 150	72 107	80.4 114.2	88 125	1.1 2	1 1	137 000 252 000	315 000 555 000	14 000 25 700		1 300 1 000	2 000 1 500	52314 52414	54314 54414

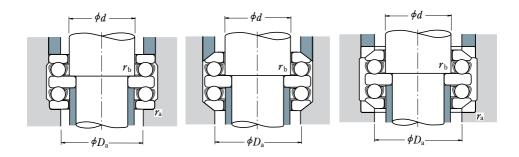
					Dii	nensior (mm)	ies						ension e y Cha		Con	Masa(kg) aprox. Con	Con
Con Arandela del Asiento de Alineación	d_3	D_1	D_2	D_3	T_2	T_6	T_8	В	b	A_1	R	$D_{ m a}$ máx.	(mm) γ_a máx.	∤ rb máx.	Asiento Plano	Asiento de Alineación	Arandela del Asiento de Alineación
54202 U	32	17	24	35	13.5	14.8	16.5	5	4	10.5	28	24	0.6	0.3	0.081	0.090	0.113
54204 U	40	22	30	42	16	16.7	19	6	5	16	36	30	0.6	0.3	0.148		0.185
54405 U	60	27	42	62	28	30.4	33	11	8	15	50	42	1	0.6	0.641		0.825
54205 U	47	27	36	50	17.5	19.2	21.5	7	5.5	16.5	40	36	0.6	0.3	0.213	0.35	0.293
54305 U	52	27	38	55	21	22.8	25	8	6	18	45	38	1	0.3	0.324		0.434
54406 U	70	32	50	75	32	34.1	37	12	9	16	56	50	1	0.6	0.978		1.27
54206 U	52	32	42	55	18	19.8	22	7	5.5	20	45	42	0.6	0.3	0.254		0.345
54306 U	60	32	45	62	23.5	25.1	27.5	9	7	19.5	50	45	1	0.3	0.483		0.621
54407 U	80	37	58	85	36.5	38.5	41.5	14	10	18.5	64	58	1	0.6	1.43		1.83
54207 U	62	37	48	65	21	22.9	25	8	7	21	50	48	1	0.3	0.406	0.744	0.57
54307 U	68	37	52	72	27	28.6	31	10	7.5	21	56	52	1	0.3	0.71		0.915
54208 U	68	42	55	72	22.5	23.8	26.5	9	7	25	56	55	1	0.6	0.543		0.713
54308 U	78	42	60	82	30.5	33	35.5	12	8.5	23.5	64	60	1	0.6	1.04	1.13	1.38
54408 U	90	42	65	95	40	42.2	46	15	12	22	72	65	1	0.6	1.98	2.02	2.54
54209 U	73	47	60	78	23	24.3	27	9	7.5	23	56	60	1	0.6	0.606	0.652	0.823
54309 U	85	47	65	90	32	34.1	37	12	10	21	64	65	1	0.6	1.28	1.34	1.71
54409 U	100	47	72	105	44.5	47.9	51.5	17	12.5	23.5	80	72	1	0.6	2.71	2.85	3.53
54210 U	78	52	62	82	24	25.5	28	9	7.5	30.5	64	62	1	0.6	0.697	0.75	0.949
54310 U	95	52	72	100	36	39.3	42	14	11	23	72	72	1	0.6	1.78	1.94	2.46
54410 U	110	52	80	115	48	50.6	55	18	14	30	90	80	1.5	0.6	3.51	3.59	4.45
54211 U	90	57		95	27.5	29.8	32.5	10	9	32.5	72	72	1	0.6	1.11	1.22	1.55
54311 U	105	57		110	39.5	43.8	46.5	15	11.5	25.5	80	80	1	0.6	2.43	2.7	3.35
54411 U	120	57		125	53.5	56	60.5	20	15.5	22.5	90	88	1.5	0.6	4.66	4.68	5.82
54212 U	95	62	85	100	28	30	33	10	9	30.5	72	78	1	0.6	1.22	1.33	1.66
54312 U	110	62		115	39.5	42.8	46.5	15	11.5	36.5	90	85	1	0.6	2.59	2.82	3.45
54412 U	130	62		135	57	60	64	21	16	28	100	95	1.5	0.6	5.74	5.82	7.24
54413 U	140	68		145	62	66.2	71	23	17.5	34	112	100	2	1	7.41	7.66	9.47
54213 U	100	67	90	105	28.5	30.2	33.5	10	9	38.5	80	82	1	0.6	1.34	1.45	1.81
54313 U	115	67		120	40	43.4	47	15	12.5	34.5	90	90	1	0.6	2.8	3.06	3.8
54214 U	105	72		110	28.5	30.3	33.5	10	9	36.5	80	88	1	1	1.44	1.59	1.95
54314 U	125	72	98	130	44	48.2	52	16	13	39	100	98	1 2	1	3.67	4.07	4.95
54414 U	150	73	110	155	65.5	69.1	74.5	24	19.5	28.5	112	110		1	8.99	9.12	11.3


Diámetro Interior 60~130 mm

				nsiones nm)					lices Básicos	de Carga	{kgf}	Veloci Límite			lúmeros de amiento ⁽¹⁾
d_2	d	D	T_1	T_5	T_7	γ mín.	$ m \emph{Y}_1$ mín.	Ca	C_{0a}	$C_{\rm a}$	C_{0a}	Grasa	Aceite	Con Asiento Plano	Con Asiento de Alineación
60	75 75 75	110 135 160	47 79 115	49.6 87.2 123	57 95 135	1 1.5 2	1 1 1	78 000 159 000 254 000	209 000 365 000 560 000	7 950 16 200 25 900	21 300 37 500 57 000	1 200	1 800	52215 52315 52415	54215 54315 54415
65	80 80 80 85	115 140 170 180	48 79 120 128	51 86.2 128.4 138	58 95 140 150	1 1.5 2.1 2.1	1 1 1 1.1	79 000 164 000 272 000 310 000	218 000 395 000 620 000 755 000	8 050 16 700 27 800 31 500	22 300 40 000 63 500 77 000	1 200 850	1 800 1 300	52216 52316 52416 52417 X	54216 54316 54416 (54417 X
70	85 85 90	125 150 190	55 87 135	59.2 95.2 143.4	67 105 157	1 1.5 2.1	1 1 1.1	96 000 207 000 330 000	264 000 490 000 825 000	9 800 21 100 33 500	26 900 50 000 84 000	1 100	1 600	52217 52317 52418 X	54217 54317 (54418 X
75 80	90 90 100	135 155 210	62 88 150	69 97.2 160	76 106 176	1.1 1.5 3	1 1 1.1	114 000 214 000 370 000	310 000 525 000 985 000	11 600 21 900 38 000	31 500 53 500 100 000	1 100	1 600	52218 52318 52420 X	54218 54318 (54420 X
85 90	100 100 110	150 170 230	67 97 166	72.8 105.4 —	81 115 —	1.1 1.5 3	1 1 1.1	135 000 239 000 415 000	375 000 595 000 1 150 000	13 700 24 300 42 000	38 500 61 000 118 000		1 500	52220 52320 52422 X	54220 54320 (—
95	110 110 120	160 190 250	67 110 177	71.4 118.4 —	81 128 —	1.1 2 4	1 1 1.5	136 000 282 000 515 000	395 000 755 000 1 540 000	13 900 28 800 52 500	40 000 77 000 157 000		1 300	52222 52322 X 52424 X	54222 (54322 X (—
100	120 120 130	170 210 270	68 123 192	71.6 131.2 —	82 143 —	1.1 2.1 4	1.1 1.1 1.5	141 000 330 000 525 000	430 000 930 000 1 590 000	14 400 33 500 53 500	44 000 95 000 162 000		1 100	52224 52324 X 52426 X	54224 (54324 X (—
110	130 130 140	190 225 280	80 130 196	85.8 — —	96 — —	1.5 2.1 4	1.1 1.1 1.5		550 000 1 030 000 1 750 000		56 000 105 000 178 000		1 100	52226 X 52326 X 52428 X	
120	140 140 150	200 240 300	81 140 209	86.2 —	99 — —	1.5 2.1 4	1.1 1.1 2		575 000 1 130 000 2 010 000		59 000 115 000 205 000		1 000	52228 X 52328 X 52430 X	
130	150 150 160	215 250 320	89 140 226	95.6 — —	109 — —	1.5 2.1 5	1.1 1.1 2		735 000 1 200 000 2 210 000		75 000 123 000 226 000	900 630 430		52230 X 52330 X 52432 X	

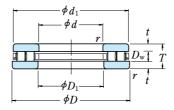

Nota (1) El diámetro exterior d_3 de las arandelas del eje de todas las referencias de rodamientos marcadas con X es menor que el diámetro exterior D de las arandelas del alojamiento.

					Dir	mensio (mm)	nes						ension e y Ch	aflán	0	Masa(kg aprox.	
Con Arandela del Asiento de Alineación	d_3	D_1	D_2	D_3	T_2	T_6	T_8	В	b	A_1	R	$D_{ m max.}$	(mm) γ_a máx.	Y b máx.		Con Asiento de Alineación	Con Arandela del Asiento de Alineación
54215 U 54315 U 54415 U	110 135 160	77 77 78	105	115 140 165	28.5 48.5 70.5	29.8 52.6 74.5	33.5 56.5 80.5	10 18 26	9.5 15 21	47.5 32.5 36.5	90 100 125	92 105 115	1 1.5 2	1 1 1	1.54 4.74 10.8		
54216 U 54316 U 54416 U 54417 XU	115 140 170 179.5	82 82 83 88	110 125	120 145 175 185	29 48.5 73.5 78.5	30.5 52.1 77.7 83.5	34 56.5 83.5 89.5	10 18 27 29	10 15 22 23	45 45.5 30.5 40.5	90 112 125 140	98 110 125 130	1 1.5 2 2	1 1 1 1	1.66 4.99 12.6 15.4		
54217 U 54317 U 54418 XU	125 150 189.5	88 88 93		130 155 195	33.5 53 82.5	35.6 57.1 86.7	39.5 62 93.5	12 19 30	11 17.5 25.5	49.5 39 34.5	100 112 140	105 115 140	1 1.5 2	1 1 1	2.26 6.38 17.5		3.02 10.5 22.5
54218 U 54318 U 54420 XU	135 155 209.5	93 93 103	110 120 155	160	38 53.5 91.5	41.5 58.1 96.5	45 62.5 104.5	14 19 33	13.5 18 27	42 36.5 43.5	100 112 160	110 120 155	1 1.5 2.5	1 1 1	3.09 6.79 26.8		
54220 U 54320 U —	150 170 229	103 103 113	125 135 —	155 175 —	41 59 101.5	43.9 63.2 —	48 68 —	15 21 37	14 18 —	49 42 —	112 125 —	125 135 159	1 1.5 2.5	1 1 1	4.08 8.82 35.6		
54222 U 54322 XU —	160 189.5 249	113 113 123	135 150 —	165 195 —	41 67 108.5	43.2 71.2 —	48 76 —	15 24 40	14 20.5 —	62 47 —	125 140 —	135 150 174	1 2 3	1 1 1.5	4.39 12.7 47.6	4.83 13.5 —	5.94 16.6 —
54224 U 54324 XU —	170 209.5 269	123 123 134	145 165 —	175 220 —	41.5 75 117	43.3 79.1 —	48.5 85 —	15 27 42	15 22 —	58.5 58 —	125 160 —	145 165 188	1 2 3	1 1 1.5	4.92 17.6 57.8	2 5.4 16.4 —	6.68 22.9 —
54226 XU — —	189.5 224 279	133 134 144	160 —	195 —	49 80 120	51.9 — —	57 — —	18 30 44	17 —	63 —	140 —	160 169 198	1.5 2 3	1 1 1.5	7.43 21.5 62.4	8.24 —	10.2 —
54228 XU — —	199.5 239 299	143 144 153	170 —	210 —	49.5 85.5 127.5	52.1 — —	58.5 —	18 31 46	17 —	83.5 — —	160 —	170 181 212	1.5 2 3	1 1 2	8.0° 24.8 77.8	8.87 — —	11.2 — —
54230 XU — —	214.5 249 319	153 154 164	180 — —	225 — —	54.5 85.5 138	57.8 — —	64.5 —	20 31 50	20.5 — —	74.5 — —	160 —	180 191 226	1.5 2 4	1 1 2	10.4 30.3 93.6	11.5 — —	15 — —

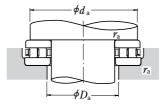

Diámetro Interior 135~190 mm

				nsiones nm)					idices Básicos (N)	de Carga	{kgf}	Veloci Límite			ímeros de miento (1)
d_2	d	D	T_1	T_5	T_7	γ mín.	γ 1 mín.	Ca	$C_{0\mathrm{a}}$	$C_{\rm a}$	C_{0a}	Grasa	Aceite	Con Asiento Plano	Con Asiento de Alineación
135	170	340	236	_	_	5	2.1	715 000	2 480 000	73 000	253 000	400	600	52434 X	_
140	160 160 180	225 270 360	90 153 245	97.4 — —	110 —	1.5 3 5	1.1 1.1 3	249 000 475 000 750 000	805 000 1 570 000 2 730 000	25 400 48 500 76 500	82 000 160 000 278 000	850 600 380	900	52232 X 52332 X 52436 X	54232 X — —
150	170 170 180 180	240 280 250 300	97 153 98 165	104.4 — 102.4 —	117 — 118 —	1.5 3 1.5 3	1.1 1.1 2 3	280 000 465 000 284 000 480 000	915 000 1 570 000 955 000 1 680 000	28 500 47 500 28 900 49 000	93 000 160 000 97 000 171 000	800 560 800 530	850	52234 X 52334 X 52236 X 52336 X	_
160	190 190	270 320	109 183	116.4 —	131	2 4	2	320 000 550 000	1 110 000 1 960 000	32 500 56 000	113 000 199 000	710 480		52238 X 52338 X	54238 X —
170	200 200	280 340	109 192	115.6 —	133	2 4	2	315 000 600 000	1 110 000 2 220 000	32 500 61 500	113 000 227 000	710 450		52240 X 52340 X	54240 X —
190	220	300	110	115.2	134	2	2	325 000	1 210 000	33 500	123 000	670	1 000	52244 X	54244 X

Nota (1) El diámetro exterior d_3 de las arandelas del eje de todas las referencias de rodamientos marcadas con X es menor que el diámetro exterior D de las arandelas del alojamiento.

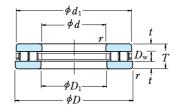


					Dir	nensior (mm)	ies						ension e y Cha			Masa(kç aprox.	g)
Con Arandela del Asiento de Alineación	d_3	D_1	D_2	D_3	T_2	T_6	T_8	В	b	A_1	R	$D_{ m a}$ máx.	(mm) γ_a máx.	∤ ′b máx.	Con Asiento Plano	Con Asiento de Alineación	Con Arandela del Asiento de Alineación
_	339	174	_	_	143	_	_	50	_	_	_	240	4	2	110	_	_
54232 XU — —	224.5 269 359	163 164 184	190 —	235 — —	55 93 148.5	58.7 — —	65 — —	20 33 52	21 — —	70 — —	160 —	190 205 254	1.5 2.5 4	1 1 2.5	11.2 35.1 126	12.7 — —	16.5 — —
54234 XU 54236 XU	239.5 279 249 299	173 174 183 184	200 210 —	250 — 260 —	59 93 59.5 101	62.7 — 61.7 —	69 — 69.5 —	21 33 21 37	21.5 — 21.5 —	87 — 108.5 —	180 — 200 —	200 215 210 229	1.5 2.5 1.5 2.5	1 1 2 2.5	13.6 40.8 14.8 46.3	16.1	19.8 — 20.6 —
54238 XU —	269 319	194 195	230	280 —	66.5 111.5	70.2 —	77.5 —	24 40	23	93.5 —	200	230 244	2	2	22.1 113	22.2 —	29.8 —
54240 XU —	279 339	204 205	240 —	290 —	66.5 117	69.8 —	78.5 —	24 42	23 —	120.5 —	225 —	240 258	2 3	2	23.1 78.4	23.2	30.6
54244 XU	299	224	260	310	67	69.6	79	24	25	114	225	260	2	2	25.2	27.8	34.1


RODAMIENTOS DE RODILLOS CILÍNDRICOS DE EMPUJE -

Diámetro Interior 35 \sim 130 mm

	Dimens (mi				icos de Carga		des Límite om)
d	D	T	γ mín.	Ca	C_{0a}	Grasa	Aceite
35	80	32	1.1	95 500	247 000	1 000	3 000
40	78	22	1	63 000	194 000	1 200	3 600
45	65	14	0.6	33 000	100 000	1 700	5 000
	85	24	1	71 000	233 000	1 100	3 400
50	110	27	1.1	139 000	470 000	900	2 800
	95	27	1.1	113 000	350 000	1 000	3 000
55	105	30	1.1	134 000	450 000	900	2 600
60	95	26	1	99 000	325 000	1 000	3 000
	110	30	1.1	139 000	480 000	850	2 600
65	100	27	1	110 000	325 000	950	2 800
	115	30	1.1	145 000	515 000	850	2 600
70	150	36	2	259 000	935 000	670	2 000
	125	34	1.1	191 000	635 000	750	2 200
75	100	19	1	63 500	221 000	1 100	3 400
	135	36	1.5	209 000	735 000	710	2 200
80	115	28	1	120 000	420 000	900	2 600
	140	36	1.5	208 000	740 000	710	2 000
85	110	19	1	75 000	298 000	1 100	3 200
	125	31	1	151 000	485 000	800	2 400
	150	39	1.5	257 000	995 000	630	1 900
90	120	22	1	96 000	370 000	950	3 000
	155	39	1.5	250 000	885 000	630	1 900
100	170	42	1.5	292 000	1 110 000	560	1 700
110	160	38	1.1	228 000	855 000	630	1 900
	190	48	2	390 000	1 490 000	500	1 500
120	170	39	1.1	233 000	895 000	600	1 800
	210	54	2.1	505 000	1 930 000	450	1 400
130	190	45	1.5	300 000	1 090 000	530	1 600
	225	58	2.1	585 000	2 370 000	430	1 300
	270	85	4	895 000	3 300 000	320	950


Números de			nsiones nm)		Dimension	nes de Tope (mm)	y Chaflán	Masa (kg)
Rodamiento	d_1	D_1	$D_{ m w}$	t	d a min.	$D_{ m a}$ máx.	火 a máx.	aprox.
35 TMP 14	80	37	12	10	71	46	1	0.97
40 TMP 93	78	42	8	7	71	48	1	0.525
45 TMP 11	65	47	6	4	60	49	0.6	0.144
45 TMP 93	85	47	8	8	78	53	1	0.665
50 TMP 74	109	52	11	8	100	61	1	1.52
50 TMP 93	93	52	11	8	89	57	1	0.94
55 TMP 93	105	55.2	11	9.5	98	63	1	1.28
60 TMP 12	95	62	10	8	88	67	1	0.735
60 TMP 93	110	62	11	9.5	103	68	1	1.36
65 TMP 12	100	67	12.5	7.25	93	71	1	0.805
65 TMP 93	115	65.2	11	9.5	108	73	1	1.44
70 TMP 74	149	72	15	10.5	137	84	2	3.8
70 TMP 93	125	72	14	10	117	78	1	1.95
75 TMP 11	100	77	8	5.5	96	79	1	0.41
75 TMP 93	135	77	14	11	125	84	1.5	2.42
80 TMP 12	115	82	11	8.5	109	86	1	1.02
80 TMP 93	138	82	14	11	130	91	1.5	2.54
85 TMP 11	110	87	7.5	5.75	105	89	1	0.46
85 TMP 12	125	88	14	8.5	118	92	1	1.36
85 TMP 93	148	87	14	12.5	140	95	1.5	3.2
90 TMP 11	119	91.5	9	6.5	114	95	1	0.725
90 TMP 93	155	90.2	16	11.5	144	101	1.5	3.3
100 TMP 93	170	103	16	13	159	110	1.5	4.25
110 TMP 12	160	113	15	11.5	150	119	1	2.66
110 TMP 93	190	113	19	14.5	179	120	2	6.15
120 TMP 12	170	123	15	12	160	129	1	2.93
120 TMP 93	210	123	22	16	199	129	2	8.55
130 TMP 12	187	133	19	13	177	142	1.5	4.5
130 TMP 93	225	133	22	18	214	140	2	10.4
130 TMP 94	270	133	32	26.5	254	150	3	26.2

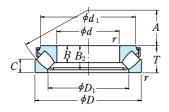
Observaciones

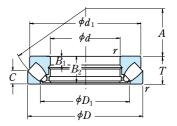
Si los rodamientos de rodillos cilíndricos de empuje no se muestran en la tabla anterior, consulte con NSK.


RODAMIENTOS DE RODILLOS CILÍNDRICOS DE EMPUJE -

Diámetro Interior 140∼320 mm

	Dimension (m	es Globales m)			iicos de Carga (N)		les Límite om)
d	D	T	∤ mín.	Ca	C_{0a}	Grasa	Aceite
140	200	46	2	285 000	1 120 000	500	1 500
	240	60	2.1	610 000	2 360 000	400	1 200
	280	85	4	990 000	3 800 000	300	900
150	215	50	2	375 000	1 500 000	480	1 400
	250	60	2.1	635 000	2 510 000	400	1 200
160	200	31	1	173 000	815 000	630	1 900
	270	67	3	745 000	3 150 000	360	1 100
170	240	55	1.5	485 000	1 960 000	430	1 300
	280	67	3	800 000	3 500 000	340	1 000
180	300	73	3	1 000 000	4 000 000	320	950
	360	109	5	1 640 000	6 200 000	240	710
190	270	62	3	705 000	2 630 000	360	1 100
	320	78	4	1 080 000	4 500 000	300	900
200	250	37	1.1	365 000	1 690 000	500	1 500
	340	85	4	1 180 000	5 150 000	280	800
220	270	37	1.1	385 000	1 860 000	480	1 500
	300	63	2	770 000	3 100 000	340	1 000
240	300	45	1.5	435 000	2 160 000	400	1 200
	340	78	2.1	965 000	4 100 000	280	850
260	320	45	1.5	460 000	2 350 000	400	1 200
	360	79	2.1	995 000	4 350 000	280	850
280	350	53	1.5	545 000	2 800 000	340	1 000
	380	80	2.1	1 050 000	4 750 000	260	800
300	380	62	2	795 000	4 000 000	300	900
	420	95	3	1 390 000	6 250 000	220	670
320	400 440	63 95	2 3	820 000 1 420 000	4 250 000 6 550 000	300 220	900 670

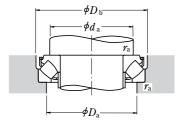

Números de			ensiones mm)		Dimension	y Chaflán	Masa (kg)	
Rodamiento	d_1	D_1	$D_{ m w}$	t	d₄ min.	$D_{ m a}$ máx.	火 a máx.	aprox.
140 TMP 12	197	143	17	14.5	188	153	2	4.85
140 TMP 93	240	143	25	17.5	226	154	2	12.2
140 TMP 94	280	143	32	26.5	262	158	3	27.5
150 TMP 12	215	153	19	15.5	202	163	2	6.15
150 TMP 93	250	153	25	17.5	236	165	2	12.8
160 TMP 11	200	162	11	10	191	168	1	2.21
160 TMP 93	265	164	25	21	255	173	2.5	16.9
170 TMP 12	237	173	22	16.5	227	182	1.5	8.2
170 TMP 93	280	173	25	21	265	183	2.5	17.7
180 TMP 93	300	185	32	20.5	284	194	2.5	22.5
180 TMP 94	354	189	45	32	335	205	4	58.2
190 TMP 12	266	195	30	16	255	200	2.5	11.8
190 TMP 93	320	195	32	23	303	205	3	27.6
200 TMP 11	247	203	17	10	242	207	1	4.1
200 TMP 93	340	205	32	26.5	322	218	3	34.5
220 TMP 11	267	223	17	10	262	227	1	4.5
220 TMP 12	297	224	30	16.5	287	232	2	13.5
240 TMP 11	297	243	18	13.5	288	251	1.5	7.2
240 TMP 12	335	244	32	23	322	258	2	23.3
260 TMP 11	317	263	18	13.5	308	272	1.5	7.75
260 TMP 12	355	264	32	23.5	342	276	2	25.2
280 TMP 11	347	283	20	16.5	335	294	1.5	11.6
280 TMP 12	375	284	32	24	362	296	2	27.2
300 TMP 11	376	304	25	18.5	365	315	2	16.7
300 TMP 12	415	304	38	28.5	398	322	2.5	42
320 TMP 11	396	324	25	19	385	335	2	18
320 TMP 12	435	325	38	28.5	418	340	2.5	44.5

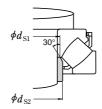

Observaciones

Si los rodamientos de rodillos cilíndricos de empuje no se muestran en la tabla anterior, consulte con NSK.

RODAMIENTOS DE RODILLOS ESFÉRICOS DE EMPUJE

Diámetro Interior 60~200 mm



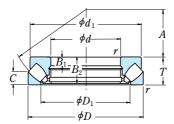


Dimensiones (mm)			(1	Índices Básicos N)	de Carga	{kgf}	Velocidades Límite (rpm)	Números de	
d	D	T	r mín.	C_{a}	C_{0a}	C_{a}	C_{0a}	Aceite	Rodamiento
60	130	42	1.5	330 000	885 000	33 500	90 000	2 600	29412 E
65	140	45	2	405 000	1 100 000	41 500	112 000	2 400	29413 E
70	150	48	2	450 000	1 240 000	46 000	126 000	2 400	29414 E
75	160	51	2	515 000	1 430 000	52 500	146 000	2 200	29415 E
80 85	170 150 180	54 39 58	2.1 1.5 2.1	575 000 330 000 630 000	1 600 000 1 040 000 1 760 000	58 500 34 000 64 500	163 000 106 000 179 000	2 000 2 400 1 900	29416 E 29317 E 29417 E
90	155	39	1.5	350 000	1 080 000	35 500	110 000	2 200	29318 E
	190	60	2.1	695 000	1 950 000	70 500	199 000	1 800	29418 E
100	170	42	1.5	410 000	1 280 000	41 500	131 000	2 000	29320 E
	210	67	3	840 000	2 400 000	86 000	245 000	1 600	29420 E
110	190	48	2	530 000	1 710 000	54 000	174 000	1 800	29322 E
	230	73	3	1 010 000	2 930 000	103 000	299 000	1 500	29422 E
120	210	54	2.1	645 000	2 100 000	65 500	214 000	1 600	29324 E
	250	78	4	1 160 000	3 400 000	119 000	350 000	1 400	29424 E
130	225	58	2.1	740 000	2 450 000	75 500	250 000	1 500	29326 E
	270	85	4	1 330 000	3 900 000	135 000	400 000	1 200	29426 E
140	240	60	2.1	840 000	2 810 000	85 500	287 000	1 400	29328 E
	280	85	4	1 370 000	4 200 000	140 000	425 000	1 200	29428 E
150	250	60	2.1	870 000	2 900 000	89 000	296 000	1 400	29330 E
	300	90	4	1 580 000	4 900 000	162 000	500 000	1 100	29430 E
160	270	67	3	1 010 000	3 400 000	103 000	345 000	1 300	29332 E
	320	95	5	1 740 000	5 400 000	178 000	550 000	1 100	29432 E
170	280	67	3	1 050 000	3 500 000	107 000	355 000	1 200	29334 E
	340	103	5	1 680 000	5 800 000	171 000	595 000	1 000	29434
180	300	73	3	1 230 000	4 200 000	125 000	430 000	1 100	29336 E
	360	109	5	1 870 000	6 500 000	190 000	660 000	900	29436
190	320	78	4	1 370 000	4 700 000	140 000	480 000	1 100	29338 E
	380	115	5	2 100 000	7 450 000	215 000	760 000	850	29438
200	280	48	2	540 000	2 310 000	55 000	236 000	1 500	29240
	340	85	4	1 570 000	5 450 000	160 000	555 000	1 000	29340 E
	400	122	5	2 290 000	8 150 000	234 000	835 000	800	29440

Nota $inom{1}{4}$ Para aplicaciones de cargas altas, debería seleccionarse un valor de $m{d}^a$ lo bastante elevado de forma que se asegure el correcto apoyo del eje.

Carga Dinámica Equivalente $P = 1.2F_{\rm r} + F_{\rm a} \label{eq:Particle}$

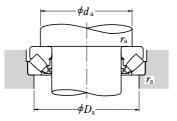
Carga Estática Equivalente


 $P_0 = 2.8F_r + F_a$

Sin embargo, debe cumplirse $F_r/F_a \le 0.55$.

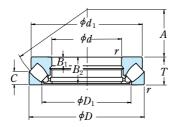
			nsiones nm)			Manguito	iones del Espaciador im)	Din		es de To in (mm)		Masa (kg)
d_1	D_1	B,B_1	B_2	C	A	d S1 máx.	, d ≤2 máx.	$d_{\mathrm{min.}}^{(^{1})}$	$D_{ m a}$ máx.	$D_{ m b}$ mín.	火 a máx.	aprox.
114.5	89	27	38	20	38	67	67	90	108	133	1.5	2.55
121.5	93	29.5	40.5	22	42	72	72	100	115	143	2	3.2
131.5	102	31	43	24	44	78	78	105	125	153	2 2	3.9
138	107	33.5	46	25	47	83	83	115	132	163		4.65
148	114.5	35	48.5	27	50	89	89	120	140	173	2	5.55
134.5	112	24.5	35.5	19	50	91	91	115	135	153	1.5	2.7
156.5	124	37	51.5	28	54	95	95	130	150	183	2	6.55
139.5	118	24.5	35	19	52	97	97	120	140	158	1.5	2.83
165.5	129.5	39	54.5	29	56	100	100	135	157	193	2	7.55
152	128	26.2	38	20.8	58	107	107	130	150	173	1.5	3.6
185	144	43	59.5	33	62	111	111	150	175	214	2.5	10.3
169.5	142.5	30.3	43.5	24	64	117	117	145	165	193	2	5.25
200	157	47	64.5	36	69	121	129	165	190	234	2.5	13.3
187.5	156.5	34	48.5	27	70	130	130	160	180	214	2	7.3
215	171	50.5	69.5	38	74	132	142	180	205	254	3	16.6
203.5	168.5	37	53.5	28	76	141	143	170	195	229	2	8.95
235	185	54	74.5	42	81	143	153	195	225	275		21.1
216.5	179	38.5	54	30	82	148	154	185	205	244	2	10.4
244.5	195.5	54	74.5	42	86	153	162	205	235	285		22.2
224	190	38	54.5	29	87	158	163	195	215	254	2	10.8
266	209	58	81	44	92	164	175	220	250	306		27.3
243	203	42	60	33	92	169	176	210	235	275	2.5	14.3
278	224.5	60.5	84.5	46	99	175	189	230	265	326	4	32.1
252	214.5	42.2	60.5	32	96	178	188	220	245	285	2.5	14.8
310	243	37	99	50	104	—	—	245	285	—	4	43.5
270 330	227 255	46 39	65.5 105	36 52	103 110	189 —	195	235 260	260 300	306	2.5 4	19 52
288.5 345	244 271	49 41	69 111	38 55	110 117	200	211	250 275	275 320	326 —	3 4	23 60
266 306.5 365	236 257 280	15 53.5 43	46 75 117	24 41 59	108 116 122	211 —	 224 	235 265 290	255 295 335	346 —	2 3 4	8.55 28.5 69

RODAMIENTOS DE RODILLOS ESFÉRICOS DE EMPUJE


Diámetro Interior 220~420 mm

		nsiones nm)		Índices Básicos de Carga (N) {kgf}				Velocidades Límite (rpm)	Números de
d	D	T	γ mín.	C_{a}	C_{0a}	C_{a}	C_{0a}	Aceite	Rodamiento
220	300 360 420	48 85 122	2 4 6	560 000 1 340 000 2 350 000	2 500 000 5 200 000 8 650 000	57 000 137 000 240 000	255 000 530 000 880 000	1 400 950 800	29244 29344 29444
240	340 380 440	60 85 122	2.1 4 6	800 000 1 360 000 2 420 000	3 450 000 5 400 000 9 100 000	82 000 139 000 247 000	350 000 550 000 930 000	1 200 950 750	29248 29348 29448
260	360 420 480	60 95 132	2.1 5 6	855 000 1 700 000 2 820 000	3 850 000 6 800 000 10 700 000	87 500 173 000 287 000	395 000 695 000 1 090 000	1 200 800 710	29252 29352 29452
280	380 440 520	60 95 145	2.1 5 6	885 000 1 830 000 3 400 000	4 100 000 7 650 000 13 100 000	90 000 187 000 345 000	420 000 780 000 1 330 000	1 100 800 630	29256 29356 29456
300	420 480 540	73 109 145	3 5 6	1 160 000 2 190 000 3 500 000	5 150 000 9 100 000 13 700 000	118 000 224 000 355 000	525 000 925 000 1 390 000	950 710 630	29260 29360 29460
320	440 500 580	73 109 155	3 5 7.5	1 190 000 2 230 000 3 650 000	5 450 000 9 400 000 14 600 000	122 000 227 000 370 000	555 000 960 000 1 490 000	950 670 560	29264 29364 29464
340	460 540 620	73 122 170	3 5 7.5	1 230 000 2 640 000 4 400 000	5 750 000 11 200 000 17 400 000		590 000 1 140 000 1 780 000	900 630 530	29268 29368 29468
360	500 560 640	85 122 170	4 5 7.5	1 550 000 2 670 000 4 200 000	7 300 000 11 500 000 17 200 000		745 000 1 180 000 1 750 000	800 600 500	29272 29372 29472
380	520 600 670	85 132 175	4 6 7.5	1 620 000 3 300 000 4 800 000	7 800 000 14 500 000 19 500 000		795 000 1 480 000 1 990 000	800 560 480	29276 29376 29476
400	540 620 710	85 132 185	4 6 7.5	1 640 000 3 250 000 5 400 000	8 000 000 14 500 000 22 100 000		815 000 1 480 000 2 250 000	750 530 450	29280 29380 29480
420	580 650 730	95 140 185	5 6 7.5	2 010 000 3 500 000 5 650 000	9 800 000 15 700 000 23 500 000	355 000	1 000 000 1 600 000 2 400 000	670 500 450	29284 29384 29484

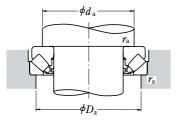
Nota (¹) Para aplicaciones de cargas altas, debería seleccionarse un valor de da lo bastante elevado de forma que se asegure el correcto apoyo del eje.



Carga Dinámica Equivalente $P=1.2F_{\rm r}+F_{\rm a}$ Carga Estática Equivalente $P_0=2.8F_{\rm r}+F_{\rm a}$ Sin embargo, debe cumplirse $F_{\rm r}/F_{\rm a}\!\leq\!0.55$.

		Dimen (m	Dimen: Ch	siones de naflán (mr	Tope y n)	Masa (kg)			
d_1	D_1	B_1	B_2	C	A	$d_{\mathrm{a}^{(^1)}}$ mín.	$D_{ m a} \atop m máx.}$	火 a máx.	aprox.
285	254	15	46	24	117	260	275	2	9.2
335	280	29	81	41	125	285	315	3	33
385	308	43	117	58	132	310	355	5	74
325	283	19	57	30	130	285	305	2	16.5
355	300	29	81	41	135	300	330	3	35.5
405	326	43	117	59	142	330	375	5	79
345	302	19	57	30	139	305	325	2	18
390	329	32	91	45	148	330	365	4	48.5
445	357	48	127	64	154	360	405	5	105
365	323	19	57	30	150	325	345	2	19
410	348	32	91	46	158	350	390	4	52.5
480	384	52	140	68	166	390	440	5	132
400	353	21	69	38	162	355	380	2.5	30
450	379	37	105	50	168	380	420	4	74
500	402	52	140	70	175	410	460	5	140
420	372	21	69	38	172	375	400	2.5	32.5
470	399	37	105	53	180	400	440	4	77
555	436	55	149	75	191	435	495	6	175
440	395	21	69	37	183	395	420	2.5	33.5
510	428	41	117	59	192	430	470	4	103
590	462	61	164	82	201	465	530	6	218
480	423	25	81	44	194	420	455	3	51
525	448	41	117	59	202	450	495	4	107
610	480	61	164	82	210	485	550	6	228
496	441	27	81	42	202	440	475	3	52
568	477	44	127	63	216	480	525	5	140
640	504	63	168	85	230	510	575	6	254
517	460	27	81	42	212	460	490	3	55
590	494	44	127	64	225	500	550	5	150
680	536	67	178	89	236	540	610	6	306
553	489	30	91	46	225	490	525	4	72
620	520	48	135	68	235	525	575	5	170
700	556	67	178	89	244	560	630	6	323

RODAMIENTOS DE RODILLOS ESFÉRICOS DE EMPUJE


Diámetro Interior 440∼500 mm

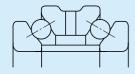
Dimensiones				Índices Básicos de Carga				Velocidades	Números de
(mm)				(N) {kgf}				Límite (rpm)	
d	D	T	γ mín.	C_{a}	C_{0a}	C_{a}	C_{0a}	Aceite	Rodamiento
440	600	95	5	2 030 000	10 100 000	207 000	1 030 000	670	29288
	680	145	6	3 750 000	16 700 000	380 000	1 710 000	480	29388
	780	206	9.5	6 550 000	27 200 000	665 000	2 770 000	400	29488
460	620	95	5	2 060 000	10 300 000	210 000	1 050 000	670	29292
	710	150	6	4 100 000	18 400 000	420 000	1 880 000	450	29392
	800	206	9.5	6 750 000	28 600 000	690 000	2 920 000	380	29492
480	650	103	5	2 370 000	12 100 000	241 000	1 240 000	600	29296
	730	150	6	4 150 000	19 000 000	425 000	1 940 000	450	29396
	850	224	9.5	7 200 000	31 000 000	730 000	3 150 000	360	29496
500	670 750 870	103 150 224	5 6 9.5	2 390 000 4 350 000 7 850 000	12 400 000 20 400 000 33 000 000	244 000 445 000 800 000	1 270 000 2 080 000 3 350 000	450	292/500 293/500 294/500

Nota (¹) Para aplicaciones de cargas altas, debería seleccionarse un valor de da lo bastante elevado de forma que se asegure el correcto apoyo del eje.

Carga Dinámica Equivalente $P=1.2F_{\rm r}+F_{\rm a}$ Carga Estática Equivalente $P_0=2.8F_{\rm r}+F_{\rm a}$ Sin embargo, debe cumplirse $F_{\rm r}/F_{\rm a}\!\leq\!0.55$.

		Dimen (m		siones de naflán (mr		Masa (kg)			
d_1	D_1	B_1	B_2	С	A	$d_{\scriptscriptstyle m a}^{(^1)}$	$D_{ m a}$ máx.	γ a máx.	aprox.
575	508	30	91	49	235	510	545	4	77
645	548	49	140	70	245	550	600	5	190
745	588	74	199	100	260	595	670	8	407
592	530	30	91	46	245	530	570	4	80
666	567	51	144	72	257	575	630	5	210
765	608	74	199	100	272	615	690	8	420
624	556	33	99	55	259	555	595	4	97
690	590	51	144	72	270	595	650	5	215
810	638	81	216	108	280	645	730	8	545
645	574	33	99	55	268	575	615	4	100
715	611	51	144	74	280	615	670	5	220
830	661	81	216	107	290	670	750	8	560

RODAMIENTOS DE BOLAS DE EMPUJE DE CONTACTO ANGULAR

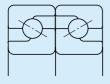

RODAMIENTOS DE BOLAS DE EMPUJE DE CONTACTO ANGULAR DE DOBLE DIRECCIÓN RODAMIENTOS DE BOLAS DE CONTACTO ANGULAR PARA HUSILLOS

Diámetro Interior 35~280 mm Páginas B234~B237

Diámetro Interior 15~ 60 mm...... Páginas B238~B239

DISEÑO, TIPOS Y CARACTERÍSTICAS

RODAMIENTOS DE BOLAS DE EMPUJE DE CONTACTO ANGULAR DE DOBLE DIRECCIÓN


Los rodamientos de bolas de empuje de contacto angular de doble dirección están especialmente diseñados para los cabezales principales de máquina herramienta.

Comparado con los rodamientos de bolas de empuje de las series 511, este tipo contiene más bolas de menor diámetro y tiene un ángulo de contacto de 60°. Consecuentemente, la influencia de la fuerza centrífuga es menor y pueden soportar mayores velocidades con una mayor rigidez.

Los rodamientos de las Series 20 y 29 tienen el mismo diámetro interior y exterior que los rodamientos de rodillos cilíndricos de doble hilera de las Series NN30 y NN49 respectivamente, y ambos se utilizan para cargas axiales elevadas.

Las jaulas son de bronce mecanizado.

También existen las series BTR, BAR de rodamientos de bolas de contacto angular de alta rigidez adecuados para elevadas velocidades que se pueden substituir fácilmente por estos rodamientos de bolas de contacto angular de doble dirección Para más detalles, consulte con NSK.

RODAMIENTOS DE BOLAS DE CONTACTO ANGULAR PARA HUSILLOS

Los rodamientos de este tipo están especialmente diseñados para los husillos de bolas de alta precisión NSK. Suelen usarse en combinaciones de más de dos rodamientos con precarga. Sú ángulo de contacto es de 60°. Para más detalles, consulte el Catálogo CAT No. E1254 RODAMIENTOS DE SUPERPRECISIÓN.

Sus iaulas son de poliamida moldeada.

TOLERANCIAS Y PRECISIÓN DE FUNCIONAMIENTO

RODAMIENTOS DE BOLAS DE EMPUJE DE CONTACTO ANGULAR
DE DOBLE DIRECCIÓN......Tabla 1

RODAMIENTOS DE BOLAS DE CONTACTO ANGULAR
PARA HUSILLOS....

Tahla 2

Las dimensiones del chaflán límite de los rodamientos de ambos tipos cumple con los valores indicados en la Tabla 8.9.1 (Página A78).

Tabla 1 Tolerancias para Rodamientos de Bolas de Empuje de Contacto Angular de Doble Dirección (Clase 7 (1))

Tabla 1. 1 Tolerancias para el Diámetro Interior y Precisión de Funcionamiento del Rodamiento

Unidades : μm

Diámetro Intel d (mr		Δd mp		∆Ts		$ extit{K}_{ia}$ (or $ extit{K}_{ea}$)	Sd	Sia (O Sea)
más de	hasta	alta	baja	alta	baja	máx.	máx.	máx.
_	30	0	- 5	0	- 300	5	4	3
30	50	0	- 5	0	- 400	5	4	3
50	80	0	- 8	0	- 500	6	5	5
80	120	0	- 8	0	- 600	6	5	5
120	180	0	-10	0	- 700	8	8	5
180	250	0	-13	0	- 800	8	8	6
250	315	0	-15	0	- 900	10	10	6
315	400	0	-18	0	-1200	10	12	7

Nota (¹) La Clase 7 es un estándar NSK.

Tabla 1. 2 Tolerancias para el Diámetro exterior

Unidades : µm

Diámetro Exterior Nominal ΔD_s D (mm)más de hasta alta baja -25 30 50 - 41 50 80 -30 - 49 - 58 80 120 -36 120 180 -43 - 68 -50 - 79 180 250 250 315 -56 - 88 315 400 -62 - 98 400 500 -68 -108500 630 -76-120

Los símbolos de las tablas se describen en la Página A59.

Tabla 2 Tolerancias de los Rodamientos de Bolas de Empuje de Contacto Angular y Precisión de Funcionamiento para Husillos (Clase 7A (¹))

Tabla 2. 1	Tolerancias y Límites para Anillo Interior y Exterior	Unidades : um
	,	Unidades : um

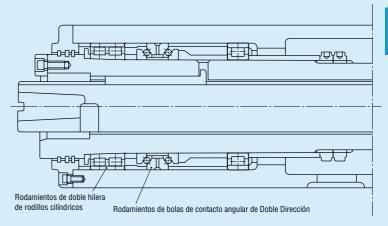
									отпаааоо : дип
Diámetro Interior Nominal d (mm)		Δd mp		Δ_{Bs} (or $ extit{Δ}_{ extit{C} ext{s}}$)	$V_{B{ m s}}$ (or $V_{C{ m s}}$)	Kia	Sd	Sia
más de	hasta	alta	baja	alta	baja	máx.	máx.	máx.	máx.
10	18	0	-4	0	- 80	1.5	2.5	4	2.5
18	30	0	-5	0	-120	1.5	3	4	2.5
30	50	0	-6	0	-120	1.5	4	4	2.5
50	80	0	-7	0	-150	1.5	4	5	2.5

Nota (1) La Clase 7A es un estándar NSK.

AJUSTES RECOMENDADOS

RODAMIENTOS DE BOLAS DE EMPUJE DE CONTACTO ANGULAR DE DOBLE DIRECCIÓN

El anillo interior y el eje deben estar en contacto ligero sin juegos ni interferencias, y entre los anillos exteriores y alojamientos debe tenerse un ajuste holgado. Para una disposición de rodamientos con rodamientos de rodillos cilíndricos de doble hilera, las tolerancias para el diámetro exterior deben ser f6 para conseguir un ajuste holgado.


RODAMIENTOS DE BOLAS DE CONTACTO ANGULAR PARA HUSILLOS

Se aconseja una tolerancia de h5 para ejes y de H6 para diámetros interiores del alojamiento.

JUEGO INTERNO Y PRECARGA

Para producir una precarga apropiada en los rodamientos al montarlos, se aconsejan los siguientes juegos internos axiales.

RODAMIENTOS DE BOLAS DE EMPUJE DE CO	NTACTO
ANGULAR DE DOBLE HILERA	Juego C7
RODAMIENTOS DE BOLAS DE CONTACTO ANO	GULAR
PARA HUSILLOS	Juego C10

Ejemplo de Aplicación de Rodamientos de Bolas de Empuje de Contacto Angular de Doble Dirección

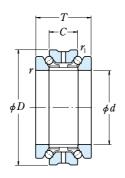
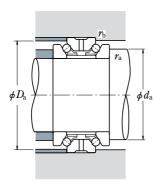

(Husillo Principal de Máquina Herramienta)

Tabla 2. 2 Tolerancias Precisión de Funcionamiento de las Arandelas del

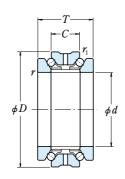
			Alojar	niento	Unidades : μm
Diámetro Exte)] Ds	K ea	Sea
más de	hasta	alta	baja	máx.	máx.
30 50	50 80	0	-6 -7	5 5	2.5 2.5
80	120	0	-8	5	2.5

RODAMIENTOS DE BOLAS DE EMPUJE DE CONTACTO ANGULAR DE DOBLE DIRECCIÓN


Diámetro Interior 35~150 mm

		Dimens (mr				(Índices Básic N)	os de Carga	{kgf}		des Límite pm)
d	$D^{(1)}$	T	С	γ min	$ eals_{ ext{min}}^{2}$	Ca	C_{0a}	C_{a}	C_{0a}	Grasa	Aceite
35	62	34	17	1	0.6	22 800	53 500	2 330	5 450	10 000	11 000
40	68	36	18	1	0.6	23 600	59 000	2 410	6 050	9 000	10 000
45	75	38	19	1	0.6	26 300	67 500	2 680	6 900	8 000	9 000
50	80	38	19	1	0.6	27 200	74 000	2 780	7 550	7 000	8 000
55	90	44	22	1.1	0.6	33 500	94 000	3 450	9 550	6 300	6 900
60	95	44	22	1.1	0.6	35 000	102 000	3 550	10 400	5 900	6 500
65	100	44	22	1.1	0.6	36 000	110 000	3 700	11 300	5 500	6 100
70	110	48	24	1.1	0.6	49 500	146 000	5 050	14 900	5 000	5 600
75	115	48	24	1.1	0.6	50 000	152 000	5 100	15 500	4 800	5 300
80	125	54	27	1.1	0.6	59 000	181 000	6 000	18 500	4 400	4 900
85	130	54	27	1.1	0.6	59 500	189 000	6 050	19 300	4 200	4 700
90	140	60	30	1.5	1	78 500	246 000	8 000	25 100	4 000	4 400
95	145	60	30	1.5	1	79 500	256 000	8 100	26 100	3 800	4 200
100	140	48	24	1.1	0.6	55 000	196 000	5 600	20 000	3 800	4 200
	150	60	30	1.5	1	80 500	267 000	8 200	27 200	3 600	4 000
105	145	48	24	1.1	0.6	56 500	208 000	5 750	21 300	3 600	4 000
	160	66	33	2	1	91 500	305 000	9 350	31 000	3 400	3 800
110	150	48	24	1.1	0.6	57 000	215 000	5 800	21 900	3 500	3 900
	170	72	36	2	1	103 000	350 000	10 500	35 500	3 300	3 600
120	165	54	27	1.1	0.6	66 500	256 000	6 800	26 100	3 200	3 600
	180	72	36	2	1	106 000	375 000	10 800	38 000	3 000	3 400
130	180	60	30	1.5	1	79 500	315 000	8 100	32 500	3 000	3 300
	200	84	42	2	1	134 000	455 000	13 600	46 500	2 800	3 100
140	190	60	30	1.5	1	91 500	365 000	9 350	37 500	2 800	3 100
	210	84	42	2	1	145 000	525 000	14 800	53 500	2 600	2 900
150	210	72	36	2	1	116 000	465 000	11 800	47 500	2 500	2 800
	225	90	45	2.1	1.1	172 000	620 000	17 500	63 500	2 400	2 700

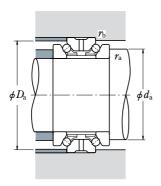
Nota (1) La tolerancia exterior es f6.



Números de los	Dimer	nsiones de	e Tope y C	Chaflán	Masa (kg)
Rodamientos	d_{a}	D_{a}	r a máx.	∤ ′ _b máx.	aprox.
35 TAC 20X+L	46	58	1	0.6	0.375
40 TAC 20X+L	51	63	1	0.6	0.460
45 TAC 20X+L	57	70	1	0.6	0.580
50 TAC 20X+L	62	75	1	0.6	0.625
55 TAC 20X+L	69	84	1	0.6	0.945
60 TAC 20X+L	74	89	1	0.6	1.000
65 TAC 20X+L	79	94	1	0.6	1.080
70 TAC 20X+L	87	104	1	0.6	1.460
75 TAC 20X+L	92	109	1	0.6	1.550
80 TAC 20X+L	99	117	1	0.6	2.110
85 TAC 20X+L	104	122	1	0.6	2.210
90 TAC 20X+L	110	131	1.5	1	2.930
95 TAC 20X+L	115	136	1.5	1	3.050
100 TAC 29X+L	117	134	1	0.6	1.950
100 TAC 20X+L	120	141	1.5	1	3.200
105 TAC 29X+L	122	139	1	0.6	2.040
105 TAC 20X+L	127	150	2	1	4.100
110 TAC 29X+L	127	144	1	0.6	2.120
110 TAC 20X+L	134	158	2	1	5.150
120 TAC 29X+L	139	157	1	0.6	2.940
120 TAC 20X+L	144	168	2	1	5.500
130 TAC 29X+L	150	170	1.5	1	3.950
130 TAC 20X+L	160	187	2	1	8.200
140 TAC 29D+L	158	182	1.5	1	4.200
140 TAC 20D+L	167	198	2	1	8.750
150 TAC 29D+L	172	200	2	1	6.600
150 TAC 20D+L	178	213	2	1	10.700

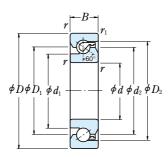
Observaciones Los diámetros interiores nominales y los diámetros exteriores para los rodamientos de las series 20X · 20D y 29X · 29D son los mismos que para los rodamientos de las series NN30 y NNU49 · NN49 respectivamente.

RODAMIENTOS DE BOLAS DE EMPUJE DE CONTACTO ANGULAR DE DOBLE DIRECCIÓN

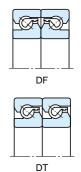

Diámetro Interior 160∼280 mm

		Dimens (mr				Índices Básicos de Carga (N) {kg				Velocidades Límite (rpm)		
d	$D^{(1)}$	T	С	∤ min	$ eals_{ ext{min}}^{1}$	C_{a}	C_{0a}	C_{a}	C_{0a}	Grasa	Aceite	
160	220 240	72 96	36 48	2 2.1	1 1.1	118 000 185 000	490 000 680 000	12 100 18 900	50 000 69 500	2 400 2 300	2 700 2 500	
170	230 260	72 108	36 54	2 2.1	1 1.1	120 000 218 000	520 000 810 000	12 300 22 200	53 000 82 500	2 300 2 100	2 500 2 400	
180	250 280	84 120	42 60	2 2.1	1 1.1	158 000 281 000	655 000 1 020 000	16 100 28 700	67 000 104 000	2 100 2 000	2 400 2 200	
190	260 290	84 120	42 60	2 2.1	1 1.1	161 000 285 000	695 000 1 060 000	16 400 29 000	71 000 108 000	2 000 1 900	2 300 2 100	
200	280 310	96 132	48 66	2.1 2.1	1.1 1.1	204 000 315 000	855 000 1 180 000	20 800 32 000	87 000 120 000	1 900 1 800	2 100 2 000	
220	300	96	48	2.1	1.1	210 000	930 000	21 400	95 000	1 800	2 000	
240	320	96	48	2.1	1.1	213 000	980 000	21 700	100 000	1 700	1 800	
260	360	120	60	2.1	1.1	315 000	1 390 000	32 000	141 000	1 500	1 700	
280	380	120	60	2.1	1.1	320 000	1 470 000	32 500	150 000	1 400	1 600	

Nota (1) La tolerancia exterior es f6.



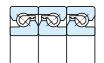
Números de los	Dim	ensiones ⁻ (m		aflán	Masa (kg)
Rodamientos	d_{a}	D_{a}	∤ a máx.	∤ b máx.	Aprox.
160 TAC 29D+L 160 TAC 20D+L	182 191	210 228	2 2	1 1	7.000 13.000
170 TAC 29D+L 170 TAC 20D+L	192 206	219 245	2 2	1 1	7.350 17.700
180 TAC 29D+L 180 TAC 20D+L	207 220	238 264	2 2	1 1	10.700 23.400
190 TAC 29D+L 190 TAC 20D+L	217 230	247 274	2 2	1 1	11.200 24.400
200 TAC 29D+L 200 TAC 20D+L	230 245	267 291	2 2	1 1	15.700 31.500
220 TAC 29D+L	250	287	2	1	17.000
240 TAC 29D+L	270	307	2	1	18.300
260 TAC 29D+L	300	344	2	1	31.500
280 TAC 29D+L	320	364	2	1	33.500


Observaciones Los diámetros interiores nominales y los diámetros exteriores para los rodamientos de las series 20X · 20D y 29X · 29D son los mismos que para los rodamientos de las series NN30 y NNU49 · NN49 respectivamente.

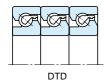
RODAMIENTOS PARA SOPORTE DE HUSILLOS DE BOLAS

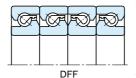
Diámetro Interior 15∼60 mm

Combinación de doble hilera



	Dir	nensior (mm)	nes				ensiones mm)		Velocidades (rpi		Números de los	Masa (kg)
d	D	В	∤ min	% 1 min	d_1	d_2	D_1	D_2	Grasa	Aceite	Rodamientos	aprox.
15 17 20 25	47 47 47 62	15 15 15 15	1 1 1 1	0.6 0.6 0.6 0.6	27.2 27.2 27.2 37	34 34 34 45	34 34 34 45	39.6 39.6 39.6 50.7	6 000 6 000 6 000 4 500	8 000 8 000 8 000 6 000	15 TAC 47B 17 TAC 47B 20 TAC 47B 25 TAC 62B	0.144 0.144 0.135 0.252
30 35	62 72	15 15	1 1	0.6 0.6	39.5 47	47 55	47 55	53.2 60.7	4 300 3 600	5 600 5 000	30 TAC 62B 35 TAC 72B	0.224 0.31
40	72 90	15 20	1 1	0.6 0.6	49 57	57 68	57 68	62.7 77.2	3 600 3 000	4 800 4 000	40 TAC 72B 40 TAC 90B	0.275 0.674
45 50	75 100 100	15 20 20	1 1 1	0.6 0.6 0.6	54 64 67.5	62 75 79	62 75 79	67.7 84.2 87.7	3 200 2 600 2 600	4 300 3 600 3 400	45 TAC 75B 45 TAC 100B 50 TAC 100B	0.27 0.842 0.778
55 60	100 120 120	20 20 20	1 1 1	0.6 0.6 0.6	67.5 82 82	79 93 93	79 93 93	87.7 102.2 102.2	2 600 2 200 2 200	3 400 3 000 3 000	55 TAC 100B 55 TAC 120B 60 TAC 120B	0.714 1.23 1.16


Nota (1) Estos valores se aplican cuando se usa la precarga estándar (C10).


Combinación de tres hileras

DFD

Combinación de Cuatro Hileras

DFT

Carga Dinámica Equivalente

 $P_a=XF_r+YF_a$

	Hileras	Dos F	lileras	Tr	es Hiler	as	Cuatro Hileras		
Comb	inación	DF	DT	DFD D		DTD	DFT	DFF	DFT
e=2.17	Carga Axial permitida por	Una Hilera	Dos Hileras	Una Hilera	Dos Hileras	Tres Hileras	Una Hilera	Dos Hileras	Tres Hileras
$F_a/F_r \leq e$	Х	1.9	_	1.43	2.33	_	1.17	2.33	2.53
	Y	0.55	_	0.77	0.35	_	0.89	0.35	0.26
$F_a/F_r > e$	Х	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
u 1	Υ	1	1	1	1	1	1	1	1

	Índices Básicos de Carga C_{a}				Carga axial límite						
Permitido hiler DF (N)	a	Permitido Hiler DT, DFD (N)	as	Permitido Hilera DTD, I (N)	as	Permitido Hiler DF (N)	a	Permitido Hiler DT, DFD (N)	as	Permitido Hiler DTD, (N)	as
21 900 21 900 21 900 28 500	2 240 2 240 2 240 2 910	35 500 35 500 35 500 46 500	3 650 3 650 3 650 4 700	47 500 47 500 47 500 61 500	4 850 4 850 4 850 6 250	26 600 26 600 26 600 40 500	2 710 2 710 2 710 2 710 4 150	53 000 53 000 53 000 81 500	5 400 5 400 5 400 8 300	79 500 79 500 79 500 122 000	8 150 8 150 8 150 12 500
29 200	2 980	47 500	4 850	63 000	6 400	43 000	4 400	86 000	8 800	129 000	13 200
31 000	3 150	50 500	5 150	67 000	6 850	50 000	5 100	100 000	10 200	150 000	15 300
31 500	3 250	51 500	5 250	68 500	7 000	52 000	5 300	104 000	10 600	157 000	16 000
59 000	6 000	95 500	9 750	127 000	13 000	89 500	9 150	179 000	18 300	269 000	27 400
33 000	3 350	53 500	5 450	71 000	7 250	57 000	5 800	114 000	11 600	170 000	17 400
61 500	6 300	100 000	10 200	133 000	13 600	99 000	10 100	198 000	20 200	298 000	30 500
63 000	6 400	102 000	10 400	136 000	13 800	104 000	10 600	208 000	21 200	310 000	32 000
63 000	6 400	102 000	10 400	136 000	13 800	104 000	10 600	208 000	21 200	310 000	32 000
67 500	6 850	109 000	11 200	145 000	14 800	123 000	12 600	246 000	25 100	370 000	37 500
67 500	6 850	109 000	11 200	145 000	14 800	123 000	12 600	246 000	25 100	370 000	37 500

RODAMIENTOS DE AGUJAS

CORONAS DE AGUJAS	Diámetro del Círculo Inscrito 5~100mm Páginas B248~B251
Grupos de Rodillos de Agujas y de Jaulas para Bielas	Diámetro del Círculo Inscrito 12~ 30mm Páginas B252~B253
CASQUILLOS DE AGUJAS	
Con Jaula	Diámetro del Círculo Inscrito 4~ 55mm Páginas B254~B259
Completas sin Jaula	Diámetro del Círculo Inscrito 8~ 55mm Páginas B254~B259
RODAMIENTOS DE AGUJAS MACIZOS	Diámetro del Círculo Inscrito 9~390mm Páginas B260~B269
RODAMIENTOS DE AGUJAS DE EMPUJE	Diámetro Interior 10~100mm Páginas B270~B271
RODILLOS-GUIA CON MUÑEQUILLA	Diámetro Exterior 16~ 90mm Páginas B272~B273
SEGUIDORES DE RODILLO	Diámetro Interior 5~ 50mm Páginas B274~B275

DISEÑO Y TIPOS

Existen muchos diseños y tipos de rodamientos de agujas.

El catálogo específico, CAT. Nº E1419 de Rodamientos de Agujas NSK, muestra los rodamientos que aparecen en la Tabla 1. En este catálogo se muestran ejemplos representativos seleccionados. (mostrados con en la Tabla 1) Consulte los detalles en el catálogo especificado.

Para la selección de los rodamientos, póngase en contacto con NSK.

FBN, FBNP Coronas de Agujas WJC W.J **FWJC** FJ, FJH FJL MFJ, MFJH MFJL J.JH MJ, MJH MF. MFH Casquillos de B, BH M. MH Agujas FJT, FJTT **MFJT** FIR **FJP** FJLT, FJLTT JP **MFJLT RNA 48 RNA 49** Rodamientos de **RNA 59** Cono Agujas Macizos **RNA 69** RNAF RNA...TT HJ Rodamientos de Aquias de Empuje FB Arandelas de Apoyo NTA TRA TRD TRB TRC de Empuje. Tipo F C Tipo P ← Tipo A Rodillos de Aquias (Consulte la página B350) Tipo T □ Tipo C <

□ Tipo M □ Rodillos Guía con FC.J Muñeguilla CR YCRS YCR Rodamientos de Aquias para Juntas NSA Universales Embragues de RC **RCB FCB** Rodillos de Copa Estirada

Tabla 1 Tipos de Rodamientos de Agujas

PRECISIÓN DIMENSIONAL · PRECISIÓN DE FUNCIONAMIENTO

CASQUILLOS DE AGUJAS

La forma correcta y precisión dimensional del anillo exterior de los rodamientos de agujas sólo se consiguen ensamblando a presión el casquillo en el alojamiento adecuado con la interferencia apropiada. Por lo tanto, el diámetro del círculo inscrito del rodillo se mide después de ensamblarse a presión en un en un calibre de interiores.

La dimensión del anillo y la tolerancia del diámetro del círculo inscrito de los rodillos se muestran en las Tablas 2 y 3.

La Tabla 2 es aplicable a los casquillos de agujas (series métricas), y la Tabla 3 muestra la tolerancia del diámetro del círculo inscrito del rodillo basado en la Normativa ISO. En los rodamientos garantizados por la Normativa ISO, realice el pedido añadiendo un símbolo "-1" al final del número del rodamiento.

Tabla 2 Dimensiones del Calibrador de Inspección (Métrica General) de los Casquillos de Agujas.

(FJ, FJH, MFJ, MFJH (F, FH, MF, MFH

			Unidades mm
Diámetro del Círculo Inscrito	Diamono		libre
del Rodillo Nominal, $F_{ m w}$	Calibrador del Anillo	Pasa	No Pasa
4	7. 996	4. 023	4. 048
5	8. 996	5. 023	5. 048
6	9. 996	6. 028	6. 053
7	10. 995	7. 031	7. 056
8	11. 995	8. 031	8. 056
9	12. 995	9. 031	9. 056
10	13. 995	10. 031	10. 056
12	15. 995	12. 031	12. 056
FH 12	17. 995	12. 031	12. 056
13	18. 993	13. 034	13. 059
14	19. 993	14. 034	14. 059
15	20. 993	15. 034	15. 059
16	21. 993	16. 034	16. 059
17	22. 972	17. 013	17. 038
18	23. 972	18. 013	18. 038
20	25. 972	20. 013	20. 038
22	27. 972	22. 013	22. 038
25	31. 967	25. 013	25. 038
28	34. 967	28. 013	28. 038
30	36. 967	30. 013	30. 038
35	41. 967	35. 013	35. 043
40	46. 967	40. 013	40. 043
45	51. 961	45. 013	45. 043
50	57. 961	50. 013	50. 043
55	62. 961	55. 013	55. 043

Observaciones

Esta dimensión del calibrador sirve para la Inspección del diámetro mínimo, $F_{\rm wmin}$, del diámetro del círculo inscrito del rodillo.

Tabla 3 Calibre del Anillo de los Casquillos de Agujas y Tolerancia del Diámetro del Círculo Inscrito del Rodillo (Normativa ISO)

FJ, FJH, MFJ y MFJH Unidades mm

	(F, FH, MF y		Unidades mm
Diámetro del Círculo Inscrito del Rodillo	Círculo Inscrito Interior del		Diámetro del Círculo Rodillo, Fwmin (1)
Nominal, $F_{ m w}$	Anillo	mín.	máx.
4	7. 984	4. 010	4. 028
5	8. 984	5. 010	5. 028
6	9. 984	6. 010	6. 028
7	10. 980	7. 013	7. 031
8	11. 980	8. 013	8. 031
H 8	13. 980	8. 013	8. 031
9	12. 980	9. 013	9. 031
H 9	14. 980	9. 013	9. 031
10	13. 980	10. 013	10. 031
H 10	15. 980	10. 013	10. 031
12	15. 980	12. 016	12. 034
H 12	17. 980	12. 016	12. 034
13	18. 976	13. 016	13. 034
14	19. 976	14. 016	14. 034
15	20. 976	15. 016	15. 034
16	21. 976	16. 016	16. 034
17	22. 976	17. 016	17. 034
18	23. 976	18. 016	18. 034
20	25. 976	20. 020	20. 041
22	27. 976	22. 020	22. 041
25	31. 972	25. 020	25. 041
28	34. 972	28. 020	28. 041
30	36. 972	30. 020	30. 041
35	41. 972	35. 025	35. 050
40	46. 972	40. 025	40. 050
45	51. 967	45. 025	45. 050
50	57. 967	50. 025	50. 050
55	62. 967	55. 030	55. 060

Nota $egin{array}{ll} 1 & \text{Si utiliza un cilindro en vez de un anillo interior,} \\ F_{\text{wmin}} & \text{es el diámetro del cilindro para el cual el juego} \\ & \text{interno es cero en como mínimo una dirección radial.} \\ & (F_{\text{wmin}} & \text{es el diámetro mínimo de cada diámetro de circulo inscrito si se asume un desvío.}) \\ \end{array}$

Observaciones Para medir el diámetro del círculo inscrito del rodillo, utilice los siguientes calibres de tapón:

Pasa: Las mismas dimensiones que la tolerancia mínima del diámetro del círculo inscrito del rodillo F_{wmin} .

No pasa: Las dimensiones deberían ser la tolerancia máxima del diámetro del círculo inscrito del rodillo, F_{wmin} , más 0.002 mm.

RODAMIENTOS DE AGUJAS MACIZOS...... Tabla 8. 2 (páginas A60-63)

La tolerancia del diámetro del círculo inscrito del rodillo para los rodamientos de agujas macizos sin anillos interiores se muestra en la Tabla 4.

Tabla 4 Diámetro del Círculo Inscrito para Rodamientos

de Ag	ujas Macizos	Ur	nidades μm
Diámetro de Inscrito Nom (mm	inal, $F_{ m w}$	Desviación (F6) Mínimo, $F_{ m wmin}$, del Círculo Inscrito d $\Delta F_{ m w}$	del Diámetro el Rodillo $F_{ m wmin}{}^{(1)}$
más de	incl	alta	baja
6	10	+ 22	+13
10	18	+ 27	+16
18	30	+ 33	+20
30	50	+ 41	+25
50	80	+ 49	+30
80	120	+ 58	+36
120	180	+ 68	+43
180	250	+ 79	+50
250	315	+ 88	+56
315	400	+ 98	+62
400	500	+108	+68

Nota (1) Si utiliza un cilindro en vez de un anillo interior, $F_{
m w\,min}$ es el diámetro del cilindro para el cual el juego interno es cero en como mínimo una dirección radial. (Fwmin es el diámetro mínimo de cada diámetro de círculo inscrito si se asume un desvío.)

RODILLOS-GUIA CON MUÑEQUILLA - SEGUIDORES DE RODILLO Tabla 8. 2 (páginas A60-63)

La clase de la zona de tolerancia del diámetro del puntal d los rodillos-quía es h7, y la tolerancia del ancho ensamblado del anillo interior de los seguidores de rodillo se muestra en la tabla de rodamientos.

Estas tolerancias se aplican a los rodamientos antes del tratamiento superficial.

Las Tolerancias Dimensionales del Rodillo-guía con muñequilla se aplica siempre al rodamiento antes del tratamiento superficial.

AJUSTE RECOMENDADO Y JUEGO INTERNO DEL RODAMIENTO **CORONAS DE AGUJAS**

El ajuste recomendado de la jaula y el rodillo en condiciones normales de funcionamiento se muestra en la Tabla 5. Combinando jaula y rodillo, eje y alojamiento, se obtiene el juego interno radial adecuado. Sin embargo, el ajuste y el juego interno radial de la jaula y el rodillo para la biela debería determinarse según el tipo de motor, características, condiciones de transmisión, etc. Consulte los detalles en el catálogo especificado.

Tabla 5 Tolerancias de Ajuste para Ejes y Diámetros Interiores del Alojamiento

	Tolerancia de Ajuste			
Condiciones de Funcionamiento	e	diámetro interior		
	<i>F</i> _w ≦50mm	<i>F</i> _w >50mm	del alojamiento	
Alta Precisión, Movimiento Oscilatorio	js5 (j5)	h5		
Normal	h5	g5	G6	
Alta Temperatura, Gran Desviación del Eje y Error de Montaje de los Rodamientos	f6			

CASOUILLOS DE AGUJAS

Para los tipos FJ, FJH y MFJH y los tipos F, FH y MFH, si se aplica la tolerancia de ajuste como eje:h6, y diámetro interior del alojamiento: N7 (si el alojamiento es de acero grueso), en condiciones normales de funcionamiento, se obtendrá el juego interno radial adecuado. Si el anillo exterior gira, el ajuste de eje: f6, el diámetro interior del alojamiento: R7, y el alojamiento es de una aleación ligera o de acero con un grosor inferior a 6 mm, el diámetro interior del alojamiento debería ser inferior a N7 en 0.013 – 0.025 mm.

RODAMIENTOS DE AGUJAS MACIZOS

Ajuste recomendado para rodamientos de agujas macizos con anillos interiores

Tabla 9. 2 (Página A84)

Tabla 9. 4 (Página A85)

Juego interno de los rodamientos de agujas macizos con anillos interiores

Tabla 9. 14 (Página A91)

Sin embargo, para los rodamientos de agujas de una anchura mayor y con rodillos de agujas largas, los rodamientos con un juego CN no son necesariamente habituales, pero frecuentemente se selecciona un juego mayor. Para los rodamientos de agujas macizos sin anillo interior, puede seleccionar el juego interno radial mostrado en la Tabla 6 seleccionando la clase de tolerancia del eje, que se ajusta al rodamiento.

Tabla 6 Tolerancias de Ajuste y Juego Interno Radial de los Ejes Montados con Rodamientos de Agujas Macizos sin Anillos Interiores

	Diámetro d Inscrito de Nominal <i>I</i> más de	el Rodillo	C2	CN	C3	C4
ľ	6	180	k5	g5	f6	e6
	180	315	j6	f6	e6	d6
	315	490	h6	e6	d6	с6

RODAMIENTOS DE AGUJAS DE EMPUJE

El Ajuste Recomendado de los Rodamientos de Agujas de Empuje y del Camino de Rodadura de Empuje se muestra en la Tabla 7.

Tabla 7 Ajuste Recomendado de Rodamientos de Agujas de Empuje y del Camino de Rodadura de Empuje

				Unidades mm
Clasificación		Jaula o guía	Clase de tolera	ıncia o tolerancia de la dimensión
Glasificacion	Tipo	de la pista de rodadura	Eje	Diámetro interior del alojamiento
Jaula del Rodamiento de	ENITA	Diámetro Interior	h8	D _c (1)+más de 1.0
Agujas de Empuje y Grupos de Rodillos de Agujas	FNTA	Exterior	_	H10
• ,	FTRA~FTRE	Diámetro Interior	h8	D _c (1)+más de 1.0
Anillos de Rodamientos de Empuje	FINATOFINE	Exterior	_	H10

Nota (1) D_c representa el diámetro exterior de la jaula.

Observaciones Si el diámetro exterior guía la jaula, es necesario como mínimo endurecer la superficie para evitar el desgaste del diámetro interior del alojamiento.

RODILLOS-GUÍA CON MUÑEQUILLA · SEGUIDORES DE RODILLO

Los ajustes recomendados para el área de montaje de los puntales de rodillos-guía con muñequilla se muestran en la Tabla 8. Los ajustes recomendados para el eje del rodillos-guía con rodillos se muestran en la Tabla 9.

Los rodillos-guía con muñequilla se utilizan con un montaje en voladizo, por lo que si es posible deberían fijarse con poco juego de la superficie de ajuste.

Normalmente se utiliza un rodillo-guía con rodillos con rotación del anillo exterior, por lo que el ajuste eje es con ajuste holgado. En caso de que el rodillo-guía con rodillos deba soportar cargas pesadas, es recomendable utilizar el eje de tratamiento de endurecimiento por temple, y con ajuste apretado.

Consulte los detalles en el catálogo especificado.

Tabla 8 Ajuste Recomendado para la Parte de Montaje del Puntal de los Rodillos-quía con Muñequilla

Tipo	Tolerancia de Ajuste del Orificio de Montaje
FCR, FCRS	IS7 (I7)
FCJ, FCJS	JS/ (J/)

Tabla 9 Ajustes Recomendados del Eje de los Seguidores de Rodillo

Carga	Tolerancia de Ajuste del Eje
Carga Ligera/Carga Normal Carga Pesada	g6 o h6 k6

ESPECIFICACIONES DEL EJE Y DEL ALOJAMIENTO

Las especificaciones del eje y del alojamiento para los rodamientos de agujas radiales, que se utilizan en condiciones normales de funcionamiento, se muestran en la Tabla 10.

Tabla 10 Especificaciones del Eje y el Alojamiento de los Rodamientos de Agujas Radiales (Coronas de Agujas/Casquillos de Agujas/ Rodamientos Macizos)

Categoría	Ej	je	Diámetro Interior del Alojamiento		
Galegoria	Superficie de la Pista de Rodadura	Superficie de Ajuste	Superficie de la Pista de Rodadura	Superficie de Ajuste	
Tolerancia del Error de Redondez	$\frac{\text{IT3}}{2}$	$\frac{\text{IT3}}{2} \sim \frac{\text{IT4}}{2}$	$\frac{\text{IT3}}{2}$	$\frac{\text{IT4}}{2} \sim \frac{\text{IT5}}{2}$	
Tolerancia de cilindricidad	$\frac{\text{IT3}}{2}$	$\frac{\text{IT3}}{2} \sim \frac{\text{IT4}}{2}$	$\frac{\text{IT3}}{2}$	$\frac{\text{IT4}}{2} \sim \frac{\text{IT5}}{2}$	
Rugosidad $R_{a}(\mu m)$	0.4	0.8	0.8	1.6	
Dureza	HRC58 a 64 es necesaria una capa endurecedora de grosor suficiente	_	HRC58 a 64 es necesaria una capa endurecedora de grosor suficiente	_	

Observaciones

- Para las especificaciones del eje y del alojamiento de los grupos de rodillos de agujas y de jaulas para la biela, consulte el catálogo especificado.
- Estas son recomendaciones generales por el método del radio.
 Para el valor de la tolerancia estándar (IT), consulte el Apéndice 11 (página C22).

Las especificaciones de la Superficie de la Pista de Rodadura de los Rodamientos de Empuie se muestran en la Tabla 11.

Tabla 11 Especificaciones de la Superficie de la Pista de Rodadura de los Rodamientos de Empuie

Ortogonalidad A	0.5/1000 incl. (mm/mm)	
Ortogonalidad B	1.0/1000 incl. (mm/mm)	
Rugosidad Ra	0.4 (µm)	_
Dureza	HRC58 a 64 (de HRC60 a 64 es favorable)	_

ÁNGULOS LÍMITE DE INCLINACIÓN

El ángulo límite de inclinación de los rodamientos de agujas radiales en condiciones normales de carga es de 0,001 radianes (3.4') aproximadamente. Consulte los detalles en el catálogo específico.

CARGA ADMISIBI F DF I A PISTA

La carga admisible de la pista viene determinada por la resistencia o dureza a la compresión. La carga admisible de la pista mostrada en la tabla de rodamientos es el valor de una pista fabricada con acero y una dureza de HRC40. La Tabla 12 indica el coeficiente de carga admisible de la pista para cada dureza.

La carga admisible de la pista para cada dureza puede obtenerse multiplicando el coeficiente de carga admisible de la pista correspondiente a cada dureza.

GRASA PRF API ICADA

Los rodillos-guía con muñequilla/seguidores de rodillo con retén están prelubricados con grasa con base de jabón de litio. El intervalo de temperatura de funcionamiento es de -10 a +110°C. Si los rodillos-guía con muñequilla/seguidores de rodillo no tienen retén, aplique un lubricante adecuado.

CARGA MÁXIMA ADMISIBLE Y PAR MÁXIMO DE LA ABRAZADERA DE RODILLOS-GUÍA CON MUNEOUILLA.

La Carga radial máxima que puede soportar el rodillo-guía con muñequilla viene determinada por la resistencia del rodamiento y la resistencia a la cortadura del puntal, más que por el índice de Carga para los rodamientos de agujas. Este valor aparece en la tabla de rodamientos como la Carga máxima admisible.

El puntal del rodillo-guía con muñequilla recibe estrés de flexión y de tensión desde la Carga del rodamiento, por lo que el par de la abrazadera del tornillo no debería ser superior al valor mostrado en la tabla de rodamientos.

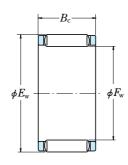
VELOCIDAD I ÍMITE

Las velocidades límite de los rodamientos se muestran en las tablas de los rodamientos. Sin embargo, según la condición de carga del rodamiento, las velocidades límite son necesarias para compensar. Igualmente, si mejora el método de lubricación también aumentará la velocidad límite. Consulte los detalles en la página A37.

Tabla 12 Coeficiente de Carga Admisible de la Pista

Dureza (HRC)	Coeficiente
20	0.4
25	0.5
30	0.6
35	0.8
40	1.0
45	1.4
50	1.9
55	2.6
58	3.2

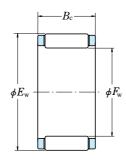
FWF • FWJ Diámetro del Círculo Inscrito 5~22 mm



Dime	nsiones Glo (mm)		(Índices Básico N)	os de Carga	{kgf}	Velocidad (rp	
$F_{ m W}$	$E_{ m W}$	$Bc^{\stackrel{-0.2}{-0.55}}$	C_{r}	$C_{0\mathrm{r}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	Grasa	Aceite
5 6	8 9 9	8 8 10	2 330 2 200 3 350	1 860 1 780 3 050	237 224 340	189 182 310	60 000 48 000 48 000	95 000 75 000 75 000
7	10	8	2 840	2 560	290	261	40 000	67 000
	10	10	3 650	3 550	375	360	40 000	67 000
8	11	10	3 950	4 000	400	410	34 000	56 000
	11	13	4 750	5 150	485	525	34 000	56 000
9	12	10	3 750	3 850	380	395	30 000	50 000
	12	13	5 100	5 750	520	585	30 000	50 000
10	13	10	3 950	4 300	405	435	28 000	45 000
	13	13	5 400	6 350	550	650	28 000	45 000
	14	13	6 500	6 750	660	690	28 000	45 000
12	15	10	4 350	5 100	445	520	22 000	36 000
	15	13	5 950	7 600	605	775	22 000	36 000
	16	13	7 350	8 350	750	850	22 000	38 000
14	18	10	6 750	7 750	690	790	19 000	32 000
	18	13	8 050	9 750	820	995	19 000	32 000
	20	17	13 400	14 600	1 370	1 490	20 000	32 000
15	19	10	7 050	8 400	720	855	18 000	28 000
	19	13	8 400	10 500	860	1 070	18 000	28 000
	21	17	13 400	14 800	1 370	1 510	19 000	30 000
16	20	10	7 350	9 000	750	920	17 000	26 000
	20	13	8 800	11 300	895	1 150	17 000	26 000
	22	17	14 700	16 900	1 500	1 720	17 000	28 000
17	21	10	7 650	9 650	780	985	16 000	26 000
	21	13	10 200	14 000	1 040	1 420	16 000	26 000
	23	17	15 100	17 800	1 540	1 810	16 000	26 000
18	22	10	7 900	10 300	805	1 050	15 000	24 000
	22	13	9 450	12 900	965	1 310	15 000	24 000
	24	17	17 400	21 600	1 770	2 210	15 000	24 000
20	24	10	8 000	10 700	815	1 090	13 000	20 000
	24	13	9 700	13 700	990	1 400	13 000	20 000
	26	17	18 000	23 200	1 830	2 370	14 000	22 000
22	26	10	8 600	12 200	880	1 240	12 000	19 000
	26	13	10 300	15 300	1 050	1 560	12 000	19 000
	28	17	17 300	22 700	1 760	2 310	12 000	20 000

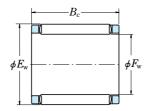
Nota (*) Estos rodamientos tienen jaulas de poliamida. La temperatura de funcionamiento máxima admisible para estos rodamientos es de 100°C para el funcionamiento continuo y de 120°C para periodos cortos.

Números de	Masa
Rodamientos	(g)
	aprox.
* FBNP-588	1.0
* FBNP-698	1.2
* FBNP-6910	1.5
* FBNP-7108 * FBNP-71010	1.3
* FBNP-81110	1.6 1.8
* FBNP-81113	2.6
* FBNP-91210	2.0
* FBNP-91213	2.6
FBN-101310	2.2
FBN-101313	2.9
FWF-101413	4.0
FBN-121510	2.6
FBN-121513	3.4
FWF-121613	4.6
FWF-141810	4.1
FWF-141813	5.3
FWF-142017	11
FWF-151910	4.3
FWF-151913	5.6
FWF-152117	12
FWF-162010	4.6
FWF-162013	6.0
FWF-162217	12
FWF-172110	4.8
FWJ-172113	6.3
FWF-172317	14
FWF-182210	5.1
FWF-182213	6.6
FWJ-182417	14
FWF-202410	5.6
FWF-202413	7.3
FWJ-202617	15
FWF-222610	6.1
FWF-222613	7.9
FWF-222817	16


FWF • FWJ Diámetro del Círculo Inscrito 25~100 mm

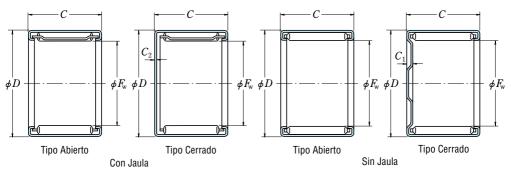
Dime	ensiones Glo (mm)		Índices Básicos de Carga			{kgf}	Velocidades Límite (rpm)		
$F_{ m W}$	$E_{ m W}$	$Bc^{-0.2}_{-0.55}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Grasa	Aceite	
25	29	10	9 350	14 100	950	1 440	10 000	17 000	
	29	13	11 300	18 000	1 150	1 830	10 000	17 000	
	31	17	19 200	26 800	1 950	2 740	10 000	17 000	
28	33	13	13 700	20 400	1 400	2 080	9 500	15 000	
	33	17	17 600	28 300	1 800	2 890	9 500	15 000	
	34	17	19 900	29 100	2 020	2 970	9 500	15 000	
30	35	13	14 000	21 600	1 430	2 200	8 500	14 000	
	35	17	18 700	31 500	1 910	3 200	8 500	14 000	
	37	20	26 000	38 000	2 650	3 850	9 000	14 000	
32	37	13	15 100	24 400	1 540	2 480	8 000	13 000	
	37	17	18 500	31 500	1 880	3 200	8 000	13 000	
	39	20	27 300	41 000	2 780	4 200	8 500	13 000	
35	40	13	14 900	24 600	1 520	2 500	7 500	12 000	
	40	17	20 500	37 000	2 090	3 750	7 500	12 000	
	42	20	30 000	47 500	3 050	4 850	7 500	12 000	
40	45	17	21 000	40 000	2 150	4 050	6 300	10 000	
	45	27	32 000	68 000	3 250	6 900	6 300	10 000	
	48	25	40 500	66 500	4 150	6 800	6 700	10 000	
45	50	17	21 600	43 000	2 200	4 350	5 600	9 000	
	50	27	34 000	77 500	3 500	7 900	5 600	9 000	
	53	25	44 000	77 000	4 500	7 850	5 600	9 500	
50	55	20	26 900	59 000	2 750	6 050	5 000	8 000	
	55	27	35 000	83 000	3 600	8 450	5 000	8 000	
	58	25	48 500	90 500	4 950	9 200	5 300	8 500	
55	61	20	31 000	64 000	3 150	6 500	4 500	7 500	
	61	30	47 000	109 000	4 750	11 100	4 500	7 500	
	63	25	50 000	97 500	5 100	9 950	4 800	7 500	
60	66	20	33 000	71 500	3 350	7 300	4 300	6 700	
	66	30	50 000	122 000	5 100	12 400	4 300	6 700	
	68	25	52 000	105 000	5 300	10 700	4 300	6 700	
65	73	30	61 000	132 000	6 200	13 400	4 000	6 300	
70	78	30	63 000	140 000	6 400	14 300	3 600	6 000	
75	83	30	65 000	151 000	6 650	15 400	3 400	5 600	
80	88	30	69 000	166 000	7 050	17 000	3 200	5 000	
85	93	30	71 000	176 000	7 250	17 900	3 000	4 800	
90	98	30	70 000	177 000	7 150	18 000	2 800	4 500	
95	103	30	69 500	177 000	7 100	18 100	2 600	4 300	
100	108	30	75 500	201 000	7 700	20 500	2 400	4 000	

Números de Rodamientos	Masa (g)
	aprox.
FWF-252910 FWF-252913 FWF-252913 FWF-253117 FWF-283313 FWF-283317 FWF-303513 FWF-303517A FWF-303517A FWF-303770 FWF-323920 FWF-323920 FWF-354013 FWF-354017 FWF-354017 FWF-404527 FWF-404527 FWF-404527 FWF-4050527 FWF-455017 FWF-455017 FWF-455017 FWF-455017 FWF-455017 FWF-455017 FWF-455027 FWF-505520 FWF-505520 FWF-505520 FWF-505520 FWF-505520 FWF-5056325 FWF-566325 FWF-566325 FWF-606620 FWF-606620 FWF-606620 FWF-606625 FWF-606625	aprox. 6.9 8.9 18 13 16 20 14 18 30 14 19 32 16 20 34 23 36 56 26 41 62 37 50 77 53 81 85 57 87 87 91 120
FWF-707830 FWF-758330 FWF-808830 FWF-859330 FWF-909830 FWF-910330 FWF-10010830	125 135 145 150 160 175 185


Grupos de Rodillos de Agujas y de Jaulas para los Extremos Mayores de las Bielas Diámetro del Círculo Inscrito $12\sim30~\mathrm{mm}$

Dim	ensiones Glob (mm)			Índices Bás (N)	icos de Carga	{kgf}	Números de	Masa (g)
$F_{ m W}$	$E_{ m W}$	$Bc^{-0.2}_{-0.4}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Rodamientos	aprox.
12 14	16 19 20	10 10 12	6 100 7 800 8 900	6 500 8 050 8 600	620 795 910	665 820 880	FWF-121610-E FWF-141910-E FWF-142012-E	4.0 6.2 8.3
15	19	9	5 650	6 250	575	640	FWF-15199-E	4.1
	20	10	7 300	7 600	745	775	FWF-152010-E	6.0
	21	10	7 950	7 500	810	765	FWF-152110-E	8.5
16	21	11	8 650	9 600	880	980	FWF-162111-E	7.5
	22	12	9 500	9 600	965	980	FWF-162212-E	9.5
18	23	14	11 800	14 800	1 200	1 510	FWF-182314-E	10
	24	12	10 000	10 600	1 020	1 080	FWF-182412-E	11
20	26	12	12 200	14 100	1 250	1 440	FWF-202612-E	13
	26	17	16 800	21 200	1 710	2 160	FWF-202617-E	17
	28	18	18 100	19 400	1 840	1 970	FWF-202818-E	25
22	28	14	13 900	17 100	1 420	1 740	FWF-222814-E	14
	29	15	16 300	19 000	1 660	1 930	FWF-222915-E	19
	32	16	19 700	19 400	2 010	1 970	FWF-223216-E	31
23 24	31 30 30 31	16 15 17 20	17 600 15 600 17 900 21 600	19 400 20 300 24 300 27 800	1 800 1 590 1 830 2 200	1 980 2 070 2 480 2 840	FWF-233116-E FWF-243015-E FWF-243017-E FWF-243120-E	23 17 19 30
25	32	16	17 700	21 900	1 810	2 230	FWF-253216-E	24
28	35	16	18 400	23 700	1 880	2 410	FWF-283516-E	25
29.75	36.75	16.5	19 600	26 000	1 990	2 650	FWF-293616Z-E	28
30	37	16	21 900	30 500	2 230	3 100	FWF-303716-E	29
	38	18	25 500	34 000	2 600	3 450	FWF-303818-E	35

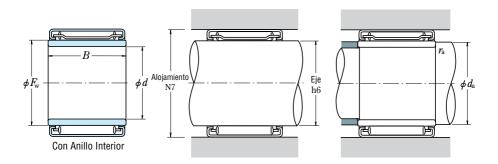
Grupos de Rodillos de Agujas y de Jaulas para los Extremos Menores de las Bielas Diámetro del Círculo Inscrito $9{\sim}19~\mathrm{mm}$



Din	nensiones Glot (mm)			Índices Básic	os de Carga	{kgf}	Números de	Masa (g)
$F_{ m W}$	$E_{ m W}$	$Bc^{-0.2}_{c^{-0.4}}$	C_{r}	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Rodamientos	aprox.
9	12	11.5	4 300	4 650	440	475	FBN-91211Z-E	3.5
10	14	12.7	5 900	5 950	605	610	FBN-101412Z-E	5.0
12	15 16 16 16	14.3 13 15.5 16	6 400 7 250 8 500 8 500	8 400 8 200 10 000 10 000	655 740 865 865	855 835 1 020 1 020	FBN-121514Z-E FBN-121613-E FBN-121615Z-E FBN-121616-E	4.8 6.4 7.0 7.5
14	18 18 18 18	12 16.5 18 20	6 950 9 250 10 700 9 550	8 050 11 600 14 000 12 000	710 945 1 090 975	820 1 180 1 430 1 230	FBN-141812-E FBN-141816Z-E FBN-141818-E FBN-141820-E1	6.5 8.5 11.5 13
15	19 21	18 18	11 300 12 900	15 300 13 900	1 150 1 310	1 560 1 420	FBN-151918-E FBN-152118-E	11 13
16	20 20 21	22 23.5 20	13 700 14 900 14 200	20 000 22 300 18 100	1 400 1 520 1 450	2 040 2 280 1 840	FBN-162022-E FBN-162023Z-E FBN-162120-E	14 15 16
17	21	23	14 800	22 500	1 510	2 290	FBN-172123-E	16
18	22 22 22	17 22 23.6	11 500 14 200 15 400	16 500 21 600 24 100	1 170 1 440 1 570	1 680 2 200 2 460	FBN-182217-E FBN-182222-E FBN-182223Z-E	12 15 16
19	23	23.7	16 000	25 800	1 630	2 630	FBN-192323Z-E	17

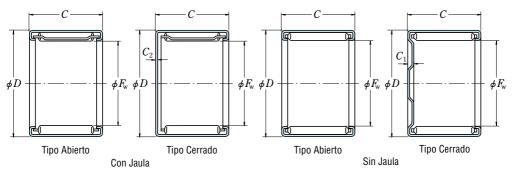
CASQUILLOS DE AGUJAS

FJ • MFJ (Con Jaula) F • MF (Sin Jaula)


Diámetro del Círculo Inscrito 4~16 mm

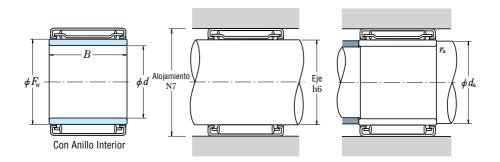
Dim		nes Glob	ales	Índices I de Carga I		Cargas L	_ímite {kgf}	Velocidad (rp			Números de
$F_{ m W}$	D	$C^{-0.25}$	C_1, C_2 máx.	(N) <i>C</i>	{kgf}	$P_{ m max}$		Grasa	Aceite	Co Abierto	n Jaula Cerrado
4 5 6 7	8 9 10 11	8 9 9	0.8 0.8 0.8 0.8	1 720 1 860 2 320 2 550	175 190 237 260	675 745 985 1 110	69 76 101 113	45 000 43 000 36 000 30 000	75 000 71 000 56 000 48 000	* FJP-48 FJ-59 FJ-69 FJ-79	MFJ-59 MFJ-69 MFJ-79
8	12 14 14	10 10 10	0.8 1.0 1.9	2 840 4 300 5 550	289 435 565	1 270 1 770 2 980	130 180 305	26 000 28 000 6 300	43 000 45 000 10 000	FJ-810 FJH-810 —	MFJ-810 MFJH-810 —
9	13 15 15	10 10 10	0.8 1.0 1.8	3 300 4 550 6 100	335 465 625	1 600 1 910 3 350	163 194 340	22 000 24 000 6 000	36 000 40 000 10 000	FJ-910 FJH-910 —	MFJ-910 MFJH-910 —
10	14 16 16	10 10 10	0.8 1.0 1.9	3 500 4 900 6 650	360 500 680	1 760 2 100 3 700	179 214 375	20 000 22 000 5 600	32 000 34 000 9 000	FJ-1010 FJH-1010 —	MFJ-1010 MFJH-1010
12	16 18 18	10 12 12	0.8 1.0 1.9	4 150 6 450 9 000	420 655 920	2 210 3 050 5 700	225 310 580	17 000 17 000 4 500	26 000 28 000 7 500	FJ-1210 FJH-1212	MFJ-1210 MFJH-1212 —
13	19 19	12 12	1.0 1.9	6 950 9 550	710 975	3 400 6 100	345 625	16 000 4 300	26 000 7 100	FJ-1312 —	MFJ-1312 —
14	20 20 20 20	12 12 16 16	1.0 2.2 1.0 2.2	6 500 9 450 9 500 13 300	665 965 970 1 360	3 250 6 350 5 300 9 850	335 645 540 1 000	15 000 3 800 15 000 3 800	24 000 6 000 24 000 6 000	FJ-1412 FJ-1416	MFJ-1412 MFJ-1416
15	21 21 21	12 12 14	1.0 1.8 1.8	7 650 10 300 12 400	780 1 050 1 270	3 900 6 900 8 800	400 705 895	14 000 3 800 3 800	22 000 6 000 6 000	FJ-1512 — —	MFJ-1512 —
	21 21	16 16	1.0 1.8	11 000 14 500	1 120 1 480	6 200 10 700	635 1 090	14 000 3 800	22 000 6 000	FJ-1516 —	MFJ-1516 —
16	22 22 22 22	12 12 16 16	1.0 2.2 1.0 2.2	7 100 10 200 10 400 14 400	725 1 040 1 060 1 460	3 750 7 100 6 050 11 100	380 725 620 1 130	12 000 3 400 12 000 3 400	20 000 5 300 20 000 5 300	FJ- <u>1</u> 612 FJ- <u>1</u> 616	MFJ-1612 MFJ-1616

Nota (*) Estos rodamientos tienen jaulas de poliamida. La temperatura de funcionamiento máxima admisible para estos rodamientos es de 100°C para el funcionamiento continuo y de 120°C para periodos cortos.



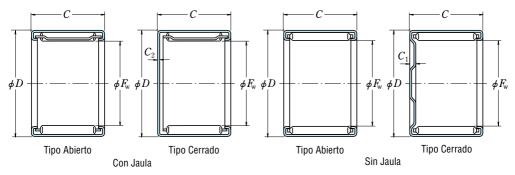
Rodamientos		En caso de (que se u	tilice un a	anillo inter	ior	Masa Si Inte		
Sin Ja Abierto	ula Cerrado	$ \begin{array}{c cccc} {\sf N\'u\'meros\ de} & {\sf D\'imensiones} & {\sf D\'imensiones\ del\ Tor} \\ {\sf Rodamientos} & {\sf Globales\ (mm)} & {\sf y\ Chafl\'an\ (mm)} \\ {\sf del\ Anillo\ Interior} & {\sf d} & {\sf B} & {\sf d}_{\tt a}({\sf m\'in.}) & {\it r}_{\tt a}({\sf m\'a}) \\ \end{array} $				flán (mm)	(g) aprox.		
_ _ _	=	= = =	_ _ _	_ _ _	_ _ _	_ _ _	1.3 1.7 2.2 2.3	1.9 2.4 2.7	
<u>–</u> FH-810	<u>—</u> MFH-810	=		_	=	_ _ _	2.7 5.2 6.0	3.2 5.5 6.3	
<u>—</u> FH-910	<u></u> MFH-910	=	<u>-</u>	=	=	_	3.2 5.7 6.4	3.6 6.1 6.8	
<u>–</u> FH-1010	<u>_</u> MFH-1010	FIR-71010 FIR-71010 FIR-71010	7 7 7	10.5 10.5 10.5	9 9 9	0.3 0.3 0.3	3.6 6.1 6.9	4.1 6.6 7.3	
<u>–</u> FH-1212	<u>_</u> MFH-1212	FIR-81210 FIR-81212 FIR-81212	8 8 8	10.5 12.5 12.5	10 10 10	0.3 0.3 0.3	4.1 7.7 10	4.5 8.2 11	
 F-1312	 MF-1312	FIR-101312 FIR-101312	10 10	12.5 12.5	12 12	0.3 0.3	8.6 11	9.5 12	
F-1412 F-1416	MF-1412 MF-1416	FIR-101412 FIR-101412 FIR-101416 FIR-101416	10 10 10 10	12.5 12.5 16.5 16.5	12 12 12 12	0.3 0.3 0.3 0.3	10 12 13 18	11 14 14 19	
 F-1512 F-1514	MF-1512 MF-1514	FIR-121512 FIR-121512	12 12 —	12.5 12.5 —	14 14 —	0.3 0.3 —	10 12 15	11 14 16	
<u></u> F-1516	<u></u> MF-1516	FIR-121516 FIR-121516	12 12	16.5 16.5	14 14	0.3 0.3	13 17	14 18	
F-1612 F-1616	MF-1612 MF-1616	FIR-121612 FIR-121612 FIR-121616 FIR-121616	12 12 12 12	12.5 12.5 16.5 16.5	14 14 14 14	0.3 0.3 0.3 0.3	11 14 14 18	12 15 15 20	

CASQUILLOS DE AGUJAS


FJ • MFJ (Con Jaula) F • MF (Sin Jaula)

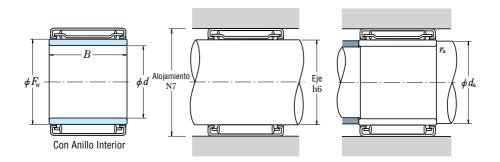
Diámetro del Círculo Inscrito 17~28 mm

Dim		nes Glot mm) 0		Índices Ba de Carga D	inámica	Cargas L (N)	_ímite {kgf}	Velocidad (rp			ros de Jaula
F_{W}	D	$C^{-0.25}$	C_1, C_2 máx.	(N) <i>C</i> r	{kgf}	$P_{ m ma}$	ıx	Grasa	Aceite	Abierto	Cerrado
17	23 23 23 23	12 12 16 16	1.0 1.8 1.0 1.8	8 450 11 300 12 100 15 800	860 1 150 1 230 1 610	4 450 7 750 7 100 12 000	455 790 720 1 220	12 000 3 400 12 000 3 400	19 000 5 600 19 000 5 600	FJ-1712 — FJ-1716	MFJ-1712 MFJ-1716
18	24 24 24 24	12 12 16 16	1.0 2.2 1.0 2.2	7 650 10 900 11 200 15 300	780 1 110 1 140 1 560	4 200 7 900 6 800 12 300	430 805 695 1 250	11 000 3 000 11 000 3 000	18 000 5 000 18 000 5 000	FJ-1812 FJ-1816	MFJ-1812 — MFJ-1816 —
20	26 26 26	12 12 16	1.0 2.2 1.0	8 150 11 500 11 900	835 1 170 1 210	4 650 8 700 7 550	475 885 770	10 000 2 800 10 000	16 000 4 500 16 000	FJ-2012 FJ-2016	MFJ-2012 — MFJ-2016
	26 26 26	16 20 20	2.2 1.0 2.2	16 200 15 300 20 500	1 650 1 560 2 090	13 500 10 500 18 300	1 380 1 070 1 870	2 800 10 000 2 800	4 500 16 000 4 500	FJ-2020	MFJ-2020
22	28 28 28	12 12 16	1.0 2.2 1.0	8 650 12 100 12 600	880 1 230 1 290	5 150 9 500 8 350	525 970 850	9 000 2 400 9 000	14 000 4 000 14 000	FJ-2212 — FJ-2216	MFJ-2212 — MFJ-2216
	28 28 28	16 20 20	2.2 1.0 2.2	17 100 16 200 21 600	1 740 1 660 2 200	14 800 11 500 20 000	1 510 1 180 2 040	2 400 9 000 2 400	4 000 14 000 4 000	FJ-2220	MFJ-2220
25	32 32 32	16 16 20	1.0 2.5 1.0	15 200 20 200 19 800	1 550 2 060 2 020	9 350 16 200 13 100	955 1 650 1 340	8 000 2 800 8 000	13 000 4 500 13 000	FJ-2516 — FJ-2520	MFJ-2516 MFJ-2520
	32 32 32	20 26 26	2.5 1.0 2.5	25 900 26 200 34 000	2 640 2 670 3 450	22 200 18 800 31 500	2 260 1 920 3 200	2 800 8 000 2 800	4 500 13 000 4 500	FJ-2526	MFJ-2526
28	35 35 35	16 16 20	1.0 2.5 1.0	15 600 21 300 20 500	1 590 2 170 2 090	9 950 17 900 14 200	1 020 1 820 1 450	7 100 2 400 7 100	11 000 4 000 11 000	FJ-2816 FJ-2820	MFJ-2816 MFJ-2820
	35 35 35	20 26 26	2.5 1.0 2.5	27 300 26 900 35 500	2 780 2 750 3 650	24 600 20 200 34 500	2 510 2 060 3 550	2 400 7 100 2 400	4 000 11 000 4 000	FJ-2826 —	MFJ-2826



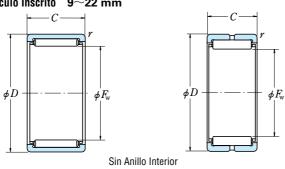
Rodami	entos	En caso de	que se ι	ıtilice un	anillo inter	ior		Sin Anillo
Sin Ja Abierto	ula Cerrado	Números de Rodamientos del Anillo Interior		Dimensiones Globales (mm) d B		es del Tope flán (mm) Ya(máx.)	(ap	erior g) rox.
Abletto	Gerrauo	uel Allillo Iliteriol	и	Б	$d_{ m a}$ (mín.)	ya(IIIax.)	Abierto	Cerrado
F-1712 F-1716	MF-1712 MF-1716	_ _ _		=	<u>-</u>	=	10 14 14 18	11 15 16 20
F-1812	MF-1812	FIR-151812 FIR-151812 FIR-151816	15 15 15	12.5 12.5 16.5	17 17 17	0.3 0.3 0.3	12 14 16	14 16 18
F-1816	MF-1816	FIR-151816	15	16.5	17	0.3	19	22
F-2012	MF-2012	FIR-172012 FIR-172012 FIR-172016	17 17 17	12.5 12.5 16.5	19 19 19	0.3 0.3 0.3	13 17 17	15 19 19
F-2016 F-2020	MF-2016 MF-2020	FIR-172016 FIR-172020 FIR-172020	17 17 17	16.5 20.5 20.5	19 19 19	0.3 0.3 0.3	22 22 28	25 24 30
F-2212	MF- <u>2</u> 212	FIR-172212 FIR-172212 FIR-172216	17 17 17	12.5 12.5 16.5	19 19 19	0.3 0.3 0.3	14 18 19	17 21 22
F-2216 F-2220	MF-2216 — MF-2220	FIR-172216 FIR-172220 FIR-172220	17 17 17	16.5 20.5 20.5	19 19 19	0.3 0.3 0.3	24 23 30	27 26 33
<u></u> F-2516	MF- <u>2</u> 516	FIR-202516 FIR-202516 FIR-202520	20 20 20	16.5 16.5 20.5	22 22 22	0.3 0.3 0.3	24 31 31	27 35 34
F-2520 F-2526	MF-2520 MF-2526	FIR-202520 FIR-202526 FIR-202526	20 20 20	20.5 26.5 26.5	22 22 22	0.3 0.3 0.3	40 40 52	43 43 55
F-2816	MF-2816	FIR-222816 FIR-222816 FIR-222820	22 22 22	16.5 16.5 20.5	24 24 24	0.3 0.3 0.3	27 35 34	31 40 38
F-2820 F-2826	MF-2820 MF-2826	FIR-222820 FIR-222826 FIR-222826	22 22 22	20.5 26.5 26.5	24 24 24	0.3 0.3 0.3	44 45 57	48 49 62

CASQUILLOS DE AGUJAS


FJ • MFJ (Con Jaula) F • MF (Sin Jaula)

Diámetro del Círculo Inscrito 30~55 mm

Dim		nes Glob	ales	Índices B de Carga D	inámica	Cargas I	_ímite {kgf}	Velocidad (rp		Con	Números de
F_{W}	D	$C^{-0.25}$	C_1, C_2 máx.	(N) <i>C</i> _r	{kgf}	$P_{ m ma}$	ıx	Grasa	Aceite	Abierto	Cerrado
30	37 37 37	16 16 20	1.0 2.5 1.0	15 600 22 100 19 400	1 590 2 250 1 970	10 100 18 900 13 300	1 030 1 930 1 360	6 700 2 400 6 700	10 000 3 800 10 000	FJ- <u>3</u> 016L FJ-3020	MFJ-3016 MFJ-3020
	37 37 37	20 26 26	2.5 1.0 2.5	28 400 26 000 37 000	2 900 2 660 3 800	26 200 19 500 37 000	2 670 1 990 3 750	2 400 6 700 2 400	3 800 10 000 3 800	FJ-3026	MFJ-3026
35	42 42 42	16 16 20	1.0 2.5 1.0	18 100 24 000 23 600	1 850 2 450 2 410	12 800 22 000 17 900	1 300 2 240 1 830	5 600 2 000 5 600	9 000 3 400 9 000	FJ-3516 — FJ-3520	MFJ-3516 — MFJ-3520
	42 42 42	20 26 26	2.5 1.0 2.5	31 000 31 500 40 000	3 150 3 200 4 100	30 000 25 800 42 500	3 100 2 630 4 350	2 000 5 600 2 000	3 400 9 000 3 400	FJ- <u>3</u> 526	MFJ-3526
40	47 47 47	16 16 20	1.0 2.5 1.0	18 600 25 700 23 500	1 890 2 620 2 400	13 600 24 900 18 500	1 390 2 540 1 890	4 800 1 800 4 800	7 500 3 000 7 500	FJ-4016 — FJ-4020	MFJ-4016 — MFJ-4020
	47 47	20 26	2.5 1.0	32 500 31 500	3 350 3 200	34 000 26 900	3 450 2 740	1 800 4 800	3 000 7 500	 FJ-4026	 MFJ-4026
45	52 52 52 52	16 16 20 20	1.0 2.5 1.0 2.5	19 900 27 300 25 500 35 000	2 030 2 790 2 600 3 550	15 400 27 800 21 200 38 500	1 570 2 840 2 160 3 900	4 300 1 600 4 300 1 600	6 700 2 600 6 700 2 600	FJ-4516 — FJ-4520 —	MFJ-4516 — MFJ-4520 —
50	58 58 58 58	20 20 24 24	1.1 2.8 1.1 2.8	28 900 39 500 36 000 48 000	2 940 4 050 3 700 4 900	23 100 41 500 30 500 53 000	2 350 4 250 3 150 5 400	3 800 1 700 3 800 1 700	6 300 2 800 6 300 2 800	FJ-5020L FJ-5024 —	MFJ-5020 MFJ-5024
55	63 63 63 63	20 20 24 24	1.1 2.8 1.1 2.8	30 000 41 500 37 500 50 500	3 100 4 250 3 850 5 150	25 100 45 500 33 500 58 000	2 560 4 650 3 400 5 950	3 400 1 600 3 400 1 600	5 600 2 400 5 600 2 400	FJ-5520 FJ-5524 	MFJ-5520 — MFJ-5524 —

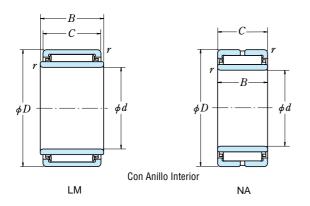


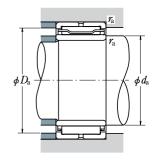
Rodamientos	En caso de	Masa Sin Anillo Interior					
Sin Jaula	Números de Rodamientos	Global	nsiones es (mm)	y Cha	es del Tope flán (mm)	apr	g) ·ox.
Abierto Cerrado	del Anillo Interior	d	В	$d_{ m a}$ (mín.)	∦ a(máx.)	Abierto	Cerrado
F-3016 MF-3016	<u> </u>	<u></u>	<u></u>	 27	0.3	26 35 35	31 40 39
F-3020 MF-3020 F-3026 MF-3026	FIR-253020 FIR-253026 FIR-253026	25 25 25	20.5 26.5 26.5	27 27 27	0.3 0.3 0.3	46 46 61	51 50 66
F-3516 MF-3516	<u>-</u> FIR-303520	<u>—</u> 30	<u> </u>	<u> </u>	<u> </u>	32 53 41	38 60 45
F-3520 MF-3520 F-3526 MF-3526	FIR-303520 FIR-303526 FIR-303526	30 30 30	20.5 26.5 26.5	34 34 34	0.6 0.6 0.6	42 54 70	49 58 76
F-4016 MF-4016	 FIR-354020	<u>-</u> 35	<u></u>	39	0.6	34 48 46	43 56 51
F-4020 MF-4020 —	FIR-354020 FIR-354026	35 35	20.5 26.5	39 39	0.6 0.6	60 60	69 65
F-4516 MF-4516 F-4520 MF-4520	<u>-</u> FIR-404520 FIR-404520	<u>-</u> 40 40	<u></u>	 44 44	0.6 0.6	39 53 53 67	50 64 59 78
F-5020 MF-5020 F-5024 MF-5024	FIR-455020 	45 — —	20.5 	49 	0.6	56 81 69 98	71 95 84 110
F-5520 MF-5520 F-5524 MF-5524	_ _ _	_ _ _	_ = =	=	_ _ _	60 88 72 105	79 105 90 125

RODAMIENTOS DE AGUJAS MACIZOS

RLM • LM RNA • NA Diámetro del Círculo Inscrito 9~22 mm

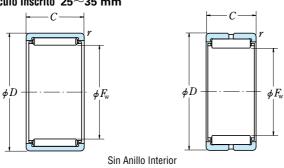
RLM




RNA

Dir	Dimensiones Globales (mm)			(1	Índices Básicos	de Carga	{kgf}		des Límite om)	Números de
$F_{ m W}$	D	С	γ mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Grasa	Aceite	Sin Anillo Interior
9	16	12	0.3	6 150	5 400	625	550	24 000	40 000	RLM 912
	16	16	0.3	7 900	7 450	805	760	24 000	40 000	RLM 916
10	17	10	0.3	5 350	4 650	545	470	22 000	36 000	RLM 101710
	17	15	0.3	8 050	7 800	820	795	22 000	36 000	RLM 101715
12	17	12	0.3	6 150	7 650	625	780	18 000	30 000	RLM 1212
	19	12	0.3	7 300	7 150	745	730	18 000	30 000	RLM 121912
14	22 22 22	13 16 20	0.3 0.3 0.3	9 150 12 100 15 500	9 950 12 700 17 500	930 1 230 1 580	1 010 1 300 1 790	20 000 15 000 15 000	32 000 24 000 24 000	RLM 1416 RLM 1420
15	20	15	0.3	8 100	11 700	825	1 190	14 000	24 000	RLM 1515
	20	20	0.3	11 100	17 400	1 130	1 770	14 000	24 000	RLM 1520
	22	15	0.3	9 900	11 100	1 010	1 140	14 000	24 000	RLM 152215
16	24 24 24 24	13 16 20 22	0.3 0.3 0.3 0.3	10 100 12 900 16 500 17 900	11 700 14 200 19 500 24 500	1 030 1 310 1 680 1 830	1 190 1 450 1 990 2 500	17 000 13 000 13 000 17 000	28 000 22 000 22 000 28 000	RLM 1616 RLM 1620
17	22	10	0.3	5 850	7 950	595	810	13 000	20 000	RLM 1710
	24	25	0.5	18 200	25 300	1 850	2 580	13 000	20 000	RLM 172425
18	25	15	0.5	11 500	14 300	1 170	1 450	12 000	20 000	RLM 1815
	25	20	0.5	15 800	21 500	1 610	2 190	12 000	20 000	RLM 1820
20	27	10	0.5	7 950	9 150	810	930	11 000	18 000	RLM 2010
	27	15	0.5	11 900	15 400	1 220	1 570	11 000	18 000	RLM 2015
	27	20	0.5	16 400	23 200	1 670	2 370	11 000	18 000	RLM 2020
	27	25	0.5	19 800	29 500	2 010	3 000	11 000	18 000	RLM 2025
	28 28 28	13 18 23	0.3 0.3 0.3	10 800 15 700 19 300	13 600 21 900 28 600	1 100 1 600 1 960	1 390 2 240 2 920	13 000 13 000 13 000	22 000 22 000 22 000	
22	29	20	0.5	17 700	26 400	1 810	2 690	10 000	16 000	RLM 2220
	29	25	0.5	21 300	33 500	2 170	3 400	10 000	16 000	RLM 2225
	30 30 30 30	13 18 20 23	0.3 0.3 0.5 0.3	11 600 16 800 20 000 20 700	15 400 24 800 27 200 32 500	1 190 1 720 2 030 2 110	1 570 2 530 2 780 3 300	12 000 12 000 10 000 12 000	20 000 20 000 16 000 20 000	 RLM 223020

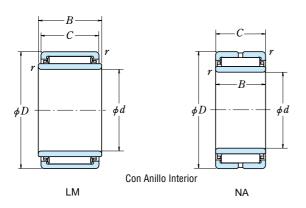
Observaciones Si necesita un rodamiento de rodillos sin jaula, póngase en contacto con NSK.

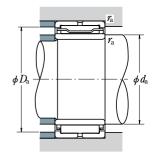


Rodamientos	1		Dimensiones Globales (mm)		nsiones del y Chaflán	Masa (kg) aprox.		
Sin Anillo Interior	Con Anillo Interior	$d^{(n)}$	nm) B	$d_{ m a}$ min.	$D_{ m a} \atop { m máx}.$	火 a máx.	apr Sin Anillo Interior	Con Anillo Interior
	LM 91612-1 —	6	12 —	8 —	14 14	0.3 0.3	0.009 0.011	0.013
_	_	_	_	_	15 15	0.3 0.3	0.008 0.012	_
=	LM 1212 LM 121912	8	12.2 12.2	10 10	15 17	0.3 0.3	0.007 0.011	0.013 0.017
RNA 4900	NA 4900	10	13	12	20	0.3	0.016	0.024
—	LM 1416	10	16.2	12	20	0.3	0.019	0.028
—	LM 1420	10	20.2	12	20	0.3	0.024	0.036
=	LM 1515	10	15.2	12	18	0.3	0.011	0.022
	LM 1520	10	20.2	12	18	0.3	0.015	0.03
	LM 152215	10	15.2	12	20	0.3	0.016	0.027
RNA 4901 — RNA 6901	NA 4901 LM 1616 LM 1620 NA 6901	12 12 12 12	13 16.2 20.2 22	14 14 14 14	22 22 22 22	0.3 0.3 0.3 0.3	0.018 0.021 0.027 0.03	0.027 0.032 0.041 0.045
_	LM 1710	12	10.2	14	20	0.3	0.008	0.017
	LM 172425	12	25.2	16	20	0.5	0.03	0.052
=	LM 1815	15	15.2	19	21	0.5	0.019	0.028
	LM 1820	15	20.2	19	21	0.5	0.025	0.037
= =	LM 2010	15	10.2	19	23	0.5	0.014	0.025
	LM 2015	15	15.2	19	23	0.5	0.021	0.037
	LM 2020	15	20.2	19	23	0.5	0.028	0.049
	LM 2025	15	25.2	19	23	0.5	0.035	0.061
RNA 4902	NA 4902	15	13	17	26	0.3	0.021	0.035
RNA 5902	NA 5902	15	18	17	26	0.3	0.032	0.051
RNA 6902	NA 6902	15	23	17	26	0.3	0.039	0.064
=	LM 2220	17	20.2	21	25	0.5	0.03	0.054
	LM 2225	17	25.2	21	25	0.5	0.038	0.068
RNA 4903 RNA 5903 RNA 6903	NA 4903 NA 5903 LM 223020 NA 6903	17 17 17 17	13 18 20.2 23	19 19 21 19	28 28 26 28	0.3 0.3 0.5 0.3	0.023 0.034 0.035 0.041	0.038 0.055 0.06 0.068

RODAMIENTOS DE AGUJAS MACIZOS

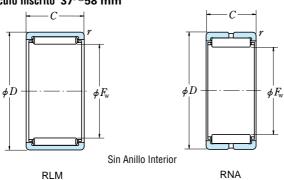
RLM • LM RNA • NA Diámetro del Círculo Inscrito 25~35 mm




RLM RNA

Dimensiones Globales (mm)				(1	Índices Básico N)	s de Carga	{kgf}		des Límite om)	Números de
$F_{ m W}$	D	С	γ mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Grasa	Aceite	Sin Anillo Interior
25	32 32 32	12 20 25	0.5 0.5 0.5	10 300 18 800 22 700	13 700 29 700 37 500	1 050 1 920 2 310	1 400 3 050 3 850	8 500 8 500 8 500	14 000 14 000 14 000	RLM 2512 RLM 2520 RLM 2525
	37 37 37	17 23 30	0.3 0.3 0.3	19 700 27 800 36 500	22 900 35 500 50 500	2 010 2 830 3 700	2 340 3 650 5 150	11 000 11 000 11 000	18 000 18 000 18 000	=
28	35 35 37	20 25 30	0.5 0.5 0.5	19 900 23 900 34 000	33 000 42 000 52 500	2 030 2 440 3 450	3 350 4 250 5 350	7 500 7 500 7 500	12 000 12 000 12 000	RLM 2820 RLM 2825 RLM 283730
	39 39 39	17 23 30	0.3 0.3 0.3	22 400 28 300 37 000	30 500 41 500 58 500	2 290 2 890 3 800	3 150 4 200 6 000	9 500 9 500 9 500	15 000 15 000 15 000	
30	37 40 40	25 20 30	0.5 0.5 0.5	24 500 25 000 35 000	44 000 36 000 56 000	2 490 2 550 3 600	4 500 3 650 5 700	7 100 7 100 7 100	12 000 12 000 12 000	RLM 3025 RLM 304020 RLM 304030
	42 42 42	17 23 30	0.3 0.3 0.3	21 400 30 000 39 500	26 800 41 500 59 000	2 180 3 100 4 050	2 740 4 250 6 050	9 000 9 000 9 000	14 000 14 000 14 000	=
32	42 42	20 30	0.5 0.5	25 800 36 500	38 000 59 000	2 630 3 700	3 900 6 050	6 700 6 700	11 000 11 000	RLM 3220 RLM 3230
	45 45 45	17 23 30	0.3 0.3 0.3	22 200 31 500 41 000	28 700 44 500 63 500	2 270 3 200 4 200	2 930 4 550 6 450	8 500 8 500 8 500	13 000 13 000 13 000	=
35	42 42	20 30	0.5 0.5	22 300 31 000	41 000 63 500	2 270 3 200	4 200 6 450	6 300 6 300	10 000 10 000	RLM 3520 RLM 3530
	45 45 45	20 25 30	0.5 0.5 0.5	27 500 33 000 38 500	42 500 54 500 66 000	2 800 3 400 3 950	4 350 5 550 6 750	6 300 6 300 6 300	10 000 10 000 10 000	RLM 354520 RLM 354525 RLM 354530
	47 47 47	17 23 30	0.3 0.3 0.3	23 900 33 500 44 000	32 500 50 500 71 500	2 430 3 450 4 500	3 300 5 150 7 300	7 500 7 500 7 500	12 000 12 000 12 000	=

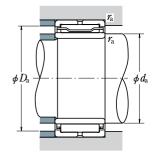
Observaciones Si necesita un rodamiento de rodillos sin jaula, póngase en contacto con NSK.



Rodamientos	Rodamientos Sin Anillo Interior Con Anillo Interior		nsiones bales	Dime	nsiones del y Chaflán (mm)	Торе	Masa (kg) aprox.		
SIN ANIIIO INTERIOR	Con Anilio Interior	d	В	$d_{ m a}$ min.	$D_{ m a}$ máx.	火 a máx.	Sin Anillo Interior	Con Anillo Interior	
=	LM 2512	20	12.2	24	28	0.5	0.02	0.036	
	LM 2520	20	20.2	24	28	0.5	0.034	0.061	
	LM 2525	20	25.2	24	28	0.5	0.042	0.076	
RNA 4904	NA 4904	20	17	22	35	0.3	0.055	0.077	
RNA 5904	NA 5904	20	23	22	35	0.3	0.089	0.12	
RNA 6904	NA 6904	20	30	22	35	0.3	0.098	0.14	
=	LM 2820	22	20.2	26	31	0.5	0.038	0.062	
	LM 2825	22	25.2	26	31	0.5	0.047	0.092	
	LM 283730	22	30.2	26	33	0.5	0.075	0.13	
RNA 49/22	NA 49/22	22	17	24	37	0.3	0.056	0.086	
RNA 59/22	NA 59/22	22	23	24	37	0.3	0.091	0.135	
RNA 69/22	NA 69/22	22	30	24	37	0.3	0.096	0.15	
=	LM 3025	25	25.2	29	33	0.5	0.05	0.092	
	LM 304020	25	20.2	29	36	0.5	0.06	0.093	
	LM 304030	25	30.2	29	36	0.5	0.09	0.14	
RNA 4905	NA 4905	25	17	27	40	0.3	0.063	0.091	
RNA 5905	NA 5905	25	23	27	40	0.3	0.10	0.14	
RNA 6905	NA 6905	25	30	27	40	0.3	0.11	0.16	
=	LM 3220	28	20.2	32	38	0.5	0.064	0.09	
	LM 3230	28	30.2	32	38	0.5	0.096	0.14	
RNA 49/28	NA 49/28	28	17	30	43	0.3	0.076	0.099	
RNA 59/28	NA 59/28	28	23	30	43	0.3	0.11	0.145	
RNA 69/28	NA 69/28	28	30	30	43	0.3	0.13	0.175	
=	LM 3520	30	20.2	34	38	0.5	0.046	0.085	
	LM 3530	30	30.2	34	38	0.5	0.07	0.13	
=	LM 354520	30	20.2	34	41	0.5	0.069	0.11	
	LM 354525	30	25.2	34	41	0.5	0.086	0.135	
	LM 354530	30	30.2	34	41	0.5	0.10	0.16	
RNA 4906	NA 4906	30	17	32	45	0.3	0.072	0.105	
RNA 5906	NA 5906	30	23	32	45	0.3	0.11	0.15	
RNA 6906	NA 6906	30	30	32	45	0.3	0.13	0.19	

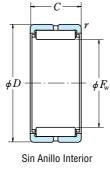
RODAMIENTOS DE AGUJAS MACIZOS

RLM • LM RNA • NA Diámetro del Círculo Inscrito 37~58 mm



Dir	Dimensiones Globales (mm)			(Índices Básico	s de Carga	{kgf}		des Límite om)	Números de
$F_{ m W}$	D	С	γ mín.	C_{r}	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Grasa	Aceite	Sin Anillo Interior
37	47 47	20 30	0.6 0.6	28 200 39 500	45 000 69 500	2 880 4 050	4 550 7 100	6 000 6 000	9 500 9 500	RLM 3720 RLM 3730
38	48 48	20 30	0.6 0.6	29 000 41 000	47 000 73 000	2 960 4 150	4 800 7 450	5 600 5 600	9 000 9 000	RLM 3820 RLM 3830
40	50 50	20 30	0.6 0.6	29 700 42 000	49 000 76 500	3 050 4 250	5 000 7 800	5 300 5 300	9 000 9 000	RLM 4020 RLM 4030
	52 52 52	20 27 36	0.6 0.6 0.6	29 900 40 500 56 000	45 000 66 000 101 000	3 050 4 100 5 700	4 600 6 750 10 300	6 700 6 700 6 700	10 000 10 000 10 000	=
42	55 55 55	20 27 36	0.6 0.6 0.6	30 500 41 500 57 500	47 500 69 500 106 000	3 100 4 200 5 850	4 800 7 100 10 900	6 300 6 300 6 300	10 000 10 000 10 000	=
45	55 55	20 30	0.6 0.6	31 000 43 500	53 500 83 500	3 150 4 450	5 500 8 500	4 800 4 800	8 000 8 000	RLM 4520 RLM 4530
48	62 62 62	22 30 40	0.6 0.6 0.6	39 000 54 500 72 000	61 500 95 000 137 000	3 950 5 550 7 350	6 300 9 700 13 900	5 600 5 600 5 600	9 000 9 000 9 000	=
50	62 62	20 25	0.6 0.6	35 500 43 000	60 500 77 500	3 600 4 400	6 150 7 900	4 300 4 300	7 100 7 100	RLM 506220 RLM 506225
52	68 68 68	22 30 40	0.6 0.6 0.6	41 000 57 000 76 000	67 500 104 000 149 000	4 150 5 800 7 750	6 900 10 600 15 200	5 000 5 000 5 000	8 000 8 000 8 000	Ξ
55	65 67	30 20	0.6 0.6	49 000 38 000	104 000 68 000	5 000 3 850	10 600 6 900	4 000 4 000	6 300 6 300	RLM 5530 RLM 556720
58	72 72 72	22 30 40	0.6 0.6 0.6	42 500 59 500 79 000	73 500 113 000 163 000	4 350 6 050 8 050	7 500 11 500 16 600	4 500 4 500 4 500	7 100 7 100 7 100	Ξ

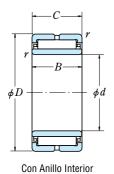
Observaciones Si necesita un rodamiento de rodillos sin jaula, póngase en contacto con NSK.



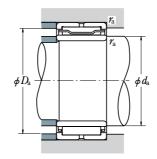
Rodamientos	1		nsiones bales	Dime	nsiones del y Chaflán (mm)	Торе	(k	isa g) ox.
Sin Anillo Interior	Con Anillo Interior	d	В	$d_{ m a}$ min.	$D_{ m a}$ máx.	∦ a máx.	Sin Anillo Interior	Con Anillo Interior
=	LM 3720	32	20.3	36	43	0.6	0.072	0.115
	LM 3730	32	30.3	36	43	0.6	0.11	0.17
Ξ	LM 3820	32	20.3	36	44	0.6	0.074	0.125
	LM 3830	32	30.3	36	44	0.6	0.11	0.195
=	LM 4020	35	20.3	39	46	0.6	0.078	0.125
	LM 4030	35	30.3	39	46	0.6	0.12	0.19
RNA 49/32	NA 49/32	32	20	36	48	0.6	0.092	0.16
RNA 59/32	NA 59/32	32	27	36	48	0.6	0.15	0.24
RNA 69/32	NA 69/32	32	36	36	48	0.6	0.17	0.29
RNA 4907	NA 4907	35	20	39	51	0.6	0.11	0.17
RNA 5907	NA 5907	35	27	39	51	0.6	0.175	0.25
RNA 6907	NA 6907	35	36	39	51	0.6	0.20	0.315
=	LM 4520	40	20.3	44	51	0.6	0.086	0.14
	LM 4530	40	30.3	44	51	0.6	0.13	0.21
RNA 4908	NA 4908	40	22	44	58	0.6	0.15	0.24
RNA 5908	NA 5908	40	30	44	58	0.6	0.23	0.355
RNA 6908	NA 6908	40	40	44	58	0.6	0.265	0.435
=	LM 506220	42	20.3	46	58	0.6	0.12	0.21
	LM 506225	42	25.3	46	58	0.6	0.155	0.265
RNA 4909	NA 4909	45	22	49	64	0.6	0.19	0.28
RNA 5909	NA 5909	45	30	49	64	0.6	0.27	0.39
RNA 6909	NA 6909	45	40	49	64	0.6	0.335	0.495
Ξ	LM 5530	45	30.3	49	61	0.6	0.16	0.34
	LM 556720	45	20.3	49	63	0.6	0.13	0.25
RNA 4910	NA 4910	50	22	54	68	0.6	0.18	0.295
RNA 5910	NA 5910	50	30	54	68	0.6	0.25	0.405
RNA 6910	NA 6910	50	40	54	68	0.6	0.32	0.53

RODAMIENTOS DE AGUJAS MACIZOS

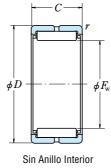
RNA • NA Diámetro del Círculo Inscrito 63 \sim 120 mm



RNA


Di	mensione (mr		les		Índices Básic	os de Carga	{kaf}	Velocidades Límite (rpm)		Números de
$F_{ m W}$	D	С	γ mín.	C_{r}	$C_{0\mathrm{r}}$	$C_{ m r}$	C_{0r}	Grasa	Aceite	Sin Anillo Interior
63	80	25	1	53 500	87 500	5 450	8 950	4 000	6 700	RNA 4911
	80	34	1	73 500	133 000	7 500	13 600	4 000	6 700	RNA 5911
	80	45	1	93 500	181 000	9 550	18 500	4 000	6 700	RNA 6911
68	85	25	1	56 000	95 500	5 700	9 750	3 800	6 300	RNA 4912
	85	34	1	77 500	145 000	7 900	14 800	3 800	6 300	RNA 5912
	85	45	1	98 000	197 000	10 000	20 100	3 800	6 300	RNA 6912
72	90	25	1	58 500	103 000	5 950	10 500	3 600	5 600	RNA 4913
	90	34	1	81 000	157 000	8 250	16 000	3 600	5 600	RNA 5913
	90	45	1	103 000	213 000	10 500	21 800	3 600	5 600	RNA 6913
80	100	30	1	80 500	143 000	8 200	14 600	3 200	5 300	RNA 4914
	100	40	1	107 000	206 000	10 900	21 000	3 200	5 300	RNA 5914
	100	54	1	143 000	298 000	14 500	30 500	3 200	5 300	RNA 6914
85	105	30	1	84 000	155 000	8 600	15 800	3 000	5 000	RNA 4915
	105	40	1	112 000	222 000	11 400	22 700	3 000	5 000	RNA 5915
	105	54	1	149 000	325 000	15 200	33 000	3 000	5 000	RNA 6915
90	110	30	1	87 500	166 000	8 950	17 000	2 800	4 500	RNA 4916
	110	40	1	116 000	239 000	11 900	24 400	2 800	4 500	RNA 5916
	110	54	1	157 000	350 000	16 000	36 000	2 800	4 500	RNA 6916
100	120	35	1.1	104 000	214 000	10 600	21 800	2 600	4 000	RNA 4917
	120	46	1.1	138 000	310 000	14 100	31 500	2 600	4 000	RNA 5917
	120	63	1.1	174 000	415 000	17 800	42 500	2 600	4 000	RNA 6917
105	125	35	1.1	108 000	228 000	11 000	23 300	2 400	4 000	RNA 4918
	125	46	1.1	143 000	330 000	14 600	33 500	2 400	4 000	RNA 5918
	125	63	1.1	181 000	445 000	18 400	45 000	2 400	4 000	RNA 6918
110	130	35	1.1	111 000	242 000	11 400	24 700	2 200	3 800	RNA 4919
	130	46	1.1	148 000	350 000	15 100	35 500	2 200	3 800	RNA 5919
	130	63	1.1	187 000	470 000	19 100	48 000	2 200	3 800	RNA 6919
115 120	140 140 140	40 54 30	1.1 1.1 1	144 000 193 000 99 500	295 000 430 000 214 000	14 700 19 700 10 100	30 000 43 500 21 900	2 200 2 200 2 000	3 600 3 600 3 400	RNA 4920 RNA 5920 RNA 4822

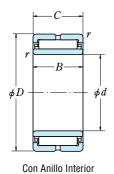
Observaciones Si necesita un rodamiento de rodillos sin jaula, póngase en contacto con NSK.


NA

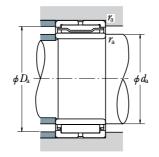
Rodamientos Con Anillo Interior	Glo	nsiones bales nm)	Dime	nsiones del y Chaflán (mm)	(k	asa g) ox.	
COII AIIIIO IIILEIIOI	d	B	$d_{ m a}$ mín.	$D_{ m a}$ máx.	∦ a máx.		Con Anillo Interior
NA 4911	55	25	60	75	1	0.26	0.40
NA 5911	55	34	60	75	1	0.37	0.56
NA 6911	55	45	60	75	1	0.475	0.73
NA 4912	60	25	65	80	1	0.28	0.435
NA 5912	60	34	65	80	1	0.415	0.625
NA 6912	60	45	65	80	1	0.485	0.76
NA 4913	65	25	70	85	1	0.32	0.465
NA 5913	65	34	70	85	1	0.48	0.675
NA 6913	65	45	70	85	1	0.53	0.79
NA 4914	70	30	75	95	1	0.47	0.74
NA 5914	70	40	75	95	1	0.69	1.05
NA 6914	70	54	75	95	1	0.89	1.4
NA 4915	75	30	80	100	1	0.5	0.79
NA 5915	75	40	80	100	1	0.735	1.1
NA 6915	75	54	80	100	1	0.96	1.5
NA 4916	80	30	85	105	1	0.53	0.835
NA 5916	80	40	85	105	1	0.75	1.15
NA 6916	80	54	85	105	1	0.99	1.55
NA 4917	85	35	91.5	113.5	1	0.68	1.25
NA 5917	85	46	91.5	113.5	1	0.99	1.75
NA 6917	85	63	91.5	113.5	1	1.2	2.25
NA 4918	90	35	96.5	118.5	1	0.72	1.35
NA 5918	90	46	96.5	118.5	1	1.05	1.85
NA 6918	90	63	96.5	118.5	1	1.35	2.45
NA 4919	95	35	101.5	123.5	1	0.74	1.4
NA 5919	95	46	101.5	123.5	1	1.15	2.0
NA 6919	95	63	101.5	123.5	1	1.5	2.65
NA 4920	100	40	106.5	133.5	1	1.15	1.95
NA 5920	100	54	106.5	133.5	1	1.8	2.85
NA 4822	110	30	115	135	1	0.67	1.1

RODAMIENTOS DE AGUJAS MACIZOS

RNA • NA Diámetro del Círculo Inscrito 125~390 mm

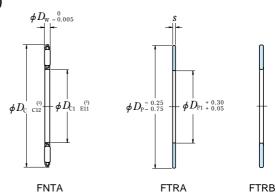


RNA


Di	mensione (mr		les		Índices Básicos	de Carga	{kaf}	Velocidades Límite (rpm)		Números de
$F_{ m W}$	D	С	γ mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	Grasa	Aceite	Sin Anillo Interior
125	150	40	1.1	149 000	315 000	15 200	32 500	2 000	3 200	RNA 4922
	150	54	1.1	200 000	460 000	20 300	47 000	2 000	3 200	RNA 5922
130	150	30	1	105 000	238 000	10 700	24 300	1 900	3 200	RNA 4824
135	165	45	1.1	192 000	395 000	19 600	40 500	1 900	3 000	RNA 4924
	165	60	1.1	253 000	565 000	25 800	58 000	1 900	3 000	RNA 5924
145	165	35	1.1	127 000	315 000	12 900	32 000	1 700	2 800	RNA 4826
150	180	50	1.5	228 000	515 000	23 200	52 500	1 700	2 800	RNA 4926
	180	67	1.5	299 000	725 000	30 500	74 000	1 700	2 800	RNA 5926
155	175	35	1.1	133 000	340 000	13 600	35 000	1 600	2 600	RNA 4828
160	190	50	1.5	235 000	545 000	24 000	55 500	1 600	2 600	RNA 4928
	190	67	1.5	310 000	775 000	31 500	79 000	1 600	2 600	RNA 5928
165	190	40	1.1	180 000	440 000	18 300	45 000	1 500	2 400	RNA 4830
175	200	40	1.1	184 000	465 000	18 700	47 000	1 400	2 200	RNA 4832
185	215	45	1.1	224 000	540 000	22 900	55 000	1 400	2 200	RNA 4834
195	225	45	1.1	230 000	570 000	23 500	58 000	1 300	2 000	RNA 4836
210	240	50	1.5	268 000	705 000	27 300	72 000	1 200	1 900	RNA 4838
220	250	50	1.5	274 000	740 000	27 900	75 500	1 100	1 800	RNA 4840
240	270	50	1.5	286 000	805 000	29 100	82 000	1 000	1 700	RNA 4844
265	300	60	2	375 000	1 070 000	40 000	109 000	950	1 500	RNA 4848
285	320	60	2	395 000	1 160 000		118 000	900	1 400	RNA 4852
305	350	69	2	510 000	1 390 000		142 000	800	1 300	RNA 4856
330 350 370 390	380 400 420 440	80 80 80 80	2.1 2.1 2.1 2.1	660 000 675 000 690 000 705 000	1 810 000 1 900 000 1 990 000 2 080 000	69 000 70 500	185 000 194 000 203 000 212 000	750 710 670 630	1 200 1 100 1 100 1 000	RNA 4860 RNA 4864 RNA 4868 RNA 4872

Observaciones Si necesita un rodamiento de rodillos sin jaula, póngase en contacto con NSK.

NA

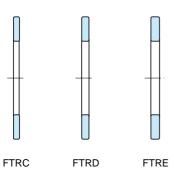


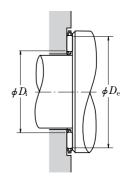
Rodamientos		nsiones bales	Dime	nsiones del v Chaflán	Tope	(k	asa (g)
Con Anillo Interior	$d^{(n)}$	nm) B	$d_{ m a}$ min.	$D_{ m a} \ { m máx}.$	火 a máx.		rox. Con Anillo Interior
NA 4922	110	40	116.5	143.5	1	1.25	2.1
NA 5922	110	54	116.5	143.5	1	1.95	3.05
NA 4824	120	30	125	145	1	0.71	1.15
NA 4924	120	45	126.5	158.5	1	1.9	2.9
NA 5924	120	60	126.5	158.5	1	2.7	4.05
NA 4826	130	35	136.5	158.5	1	0.92	1.8
NA 4926	130	50	138	172	1.5	2.3	4.0
NA 5926	130	67	138	172	1.5	3.3	5.55
NA 4828	140	35	146.5	168.5	1	0.98	1.9
NA 4928	140	50	148	182	1.5	2.45	4.25
NA 5928	140	67	148	182	1.5	3.55	6.0
NA 4830	150	40	156.5	183.5	1	1.6	2.75
NA 4832	160	40	166.5	193.5	1	1.75	2.95
NA 4834	170	45	176.5	208.5	1	2.55	4.0
NA 4836	180	45	186.5	218.5	1	2.65	4.2
NA 4838	190	50	198	232	1.5	3.2	5.6
NA 4840	200	50	208	242	1.5	3.35	5.9
NA 4844	220	50	228	262	1.5	3.65	6.45
NA 4848	240	60	249	291	2	5.45	10
NA 4852	260	60	269	311	2	5.9	11
NA 4856	280	69	289	341	2	9.5	15.5
NA 4860	300	80	311	369	2	13	22
NA 4864	320	80	331	389	2	13.5	23.5
NA 4868	340	80	351	409	2	14	24.5
NA 4872	360	80	371	429	2	15	26

RODAMIENTOS DE AGUJAS DE EMPUJE

FNTA (Coronas de Agujas de Empuje)

Arandelas de apoyo de empuje FTRA (s=1.0) FTRB (s=1.5) FTRC (s=2.0) FTRD (s=2.5) FTRE (s=3.0) Diámetro Interior 10~100 mm




	ones Glob (mm)	ales		Índices Básico N)	s de Carga	{kgf}	Velocidades Límite	Números de	
$D_{\mathrm{c}1}$, $D_{\mathrm{p}1}$	D_{c} , D_{p}	D_{W}	C_{a}	C_{0a}	C_{a}	C_{0a}	(rpm) Aceite	Rodamientos	$s=1.0^{\pm0.05}$
10	24	2	7 750	23 000	790	2 350	17 000	FNTA-1024	*FTRA-1024
12	26	2	8 350	26 300	855	2 680	16 000	FNTA-1226	FTRA-1226
15	28	2	7 950	25 800	810	2 630	15 000	FNTA-1528	FTRA-1528
16	29	2	8 200	27 100	835	2 770	14 000	FNTA-1629	FTRA-1629
17	30	2	8 400	28 400	855	2 900	14 000	FNTA-1730	FTRA-1730
18	31	2	8 600	29 700	875	3 050	13 000	FNTA-1831	FTRA-1831
20	35	2	11 900	47 000	1 220	4 800	12 000	FNTA-2035	FTRA-2035
25	42	2	14 800	66 000	1 510	6 750	9 500	FNTA-2542	FTRA-2542
30	47	2	16 500	79 000	1 680	8 100	8 500	FNTA-3047	FTRA-3047
35	52	2	17 300	88 000	1 770	8 950	8 000	FNTA-3552	FTRA-3552
40	60	3	26 900	122 000	2 740	12 400	6 700	FNTA-4060	FTRA-4060
45	65	3	28 700	137 000	2 930	14 000	6 300	FNTA-4565	FTRA-4565
50	70	3 3 3	30 500	152 000	3 100	15 500	5 600	FNTA-5070	FTRA-5070
55	78		37 000	201 000	3 750	20 500	5 300	FNTA-5578	FTRA-5578
60	85		43 000	252 000	4 400	25 700	4 800	FNTA-6085	FTRA-6085
65	90	3	45 500	274 000	4 600	28 000	4 500	FNTA-6590	FTRA-6590
70	95	4	59 000	320 000	6 000	33 000	4 300	FNTA-7095	FTRA-7095
75	100	4	60 000	335 000	6 150	34 500	4 000	FNTA-75100	FTRA-75100
80 85 90 100	105 110 120 135	4 4 4	63 000 64 500 80 000 98 500	365 000 380 000 515 000 695 000	6 450 6 550 8 150 10 000	37 500 39 000 52 500 71 000	3 800 3 600 3 400 3 000	FNTA-80105 FNTA-85110 FNTA-90120 FNTA-100135	FTRA-80105 FTRA-85110 FTRA-90120 FTRA-100135

Nota (¹) Para las clases de tolerancia C12 y E11, consulte ISO 286-1 y 286-2 (sistema ISO de límites y ajustes), respectivamente.

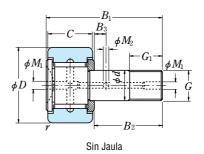
^(*) La tolerancia de este diámetro interior del rodamiento es de $+0.025\sim+0.175 mm$ y la tolerancia del diámetro exterior es de $-0.040\sim-0.370 mm$

Números de Rod	amientos de los Anillos	s de los Rodamientos E	Emparejados	Superficies de los F	de Contacto Rodillos	Ma:	
$s=1.5^{+0.08}$	$s=2.0^{-0.08}$	$s=2.5^{+0.08}$	$s=3.0^{-0.08}$	Diámetro Exterior $D_{ m e}$ mín.		apro FNTA	ox. FTRA
FTRB-1024	FTRC-1024		—	22.0	11.5	2.3	2.9
FTRB-1226	FTRC-1226		—	24.0	13.5	3.4	3.3
FTRB-1528	FTRC-1528	FTRD-1528	FTRE-1528	26.0	16.5	3.5	3.5
FTRB-1629	FTRC-1629	FTRD-1629	FTRE-1629	27.0	17.5	3.7	3.6
FTRB-1730	FTRC-1730	FTRD-1730	FTRE-1730	28.0	18.5	3.8	3.8
FTRB-1831	FTRC-1831	FTRD-1831	FTRE-1831	29.0	19.5	4	3.9
FTRB-2035	FTRC-2035	FTRD-2035	FTRE-2035	33.0	21.5	5.4	5.1
FTRB-2542	FTRC-2542	FTRD-2542	FTRE-2542	40.0	26.5	7.7	7
FTRB-3047	FTRC-3047	FTRD-3047	FTRE-3047	45.0	31.5	8.9	7.9
FTRB-3552	FTRC-3552	FTRD-3552	FTRE-3552	50.5	36.5	9.7	9.1
FTRB-4060	FTRC-4060	FTRD-4060	FTRE-4060	57.0	42.0	18	12
FTRB-4565	FTRC-4565	FTRD-4565	FTRE-4565	62.0	47.0	20	13
FTRB-5070	FTRC-5070	FTRD-5070	FTRE-5070	67.0	51.5	22	15
FTRB-5578	FTRC-5578	FTRD-5578	FTRE-5578	75.0	57.0	29	19
FTRB-6085	FTRC-6085	FTRD-6085	FTRE-6085	82.0	61.5	35	22
FTRB-6590	FTRC-6590	FTRD-6590	FTRE-6590	87.5	66.5	38	24
FTRB-7095	FTRC-7095	FTRD-7095	FTRE-7095	92.5	71.5	52	25
FTRB-75100	FTRC-75100	FTRD-75100	FTRE-75100	97.5	76.5	54	27
FTRB-80105	FTRC-80105	FTRD-80105	FTRE-80105	102.5	81.5	58	28
FTRB-85110	FTRC-85110	FTRD-85110	FTRE-85110	107.5	86.5	63	30
FTRB-90120	FTRC-90120	FTRD-90120	FTRE-90120	117.5	91.5	80	38
FTRB-100135	FTRC-100135	FTRD-100135	FTRE-100135	132.5	101.5	105	50

RODILLOS-GUÍA CON MUÑEQUILLA

FCR (Sin Jaula)

FCRS (Sin Jaula, Sellado


Con Arandela de Apoyo

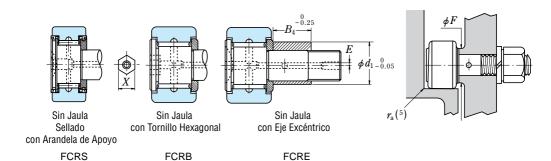
FCJ (Con Jaula)

FCJS (Sellado, con Jaula y)

Arandela de Apoyo

Diámetro Exterior $16\sim$ 90 mm

FCR


Dimen	siones G (mm)	ilobales			Dii	mensiones (mm)					Números de	e Rodamientos
D	C	d	G	G_1	B_1	Tornillo B_2	B_3	M_2	M_1	γ mín.	FCR FCJ	FCRS FCJS
16	11 11	6 6	M 6x1 M 6x1	8 8	28 28	16 16	Ξ	Ξ	4(1) 4(1)	0.3 0.3	FCR-16 FCJ-16	FCRS-16 FCJS-16
19	11 11	8	M 8x1.25 M 8x1.25	10 10	32 32	20 20	=	=	4(1) 4(1)	0.3 0.3	FCR-19 FCJ-19	FCRS-19 FCJS-19
22	12 12	10 10	M10x1.25 M10x1.25	12 12	36 36	23 23	_	_	4(1) 4(1)	0.3 0.3	FCR-22 FCJ-22	FCRS-22 FCJS-22
26	12 12	10 10	M10x1.25 M10x1.25	12 12	36 36	23 23	=	=	4(1) 4(1)	0.3 0.3	FCR-26 FCJ-26	FCRS-26 FCJS-26
30	14 14	12 12	M12x1.5 M12x1.5	13 13	40 40	25 25	6 6	3	6 6	0.6 0.6	FCR-30 FCJ-30	FCRS-30 FCJS-30
32	14 14	12 12	M12x1.5 M12x1.5	13 13	40 40	25 25	6 6	3	6 6	0.6 0.6	FCR-32 FCJ-32	FCRS-32 FCJS-32
35	18 18	16 16	M16x1.5 M16x1.5	17 17	52 52	32.5 32.5	8	3	6 6	0.6 0.6	FCR-35 FCJ-35	FCRS-35 FCJS-35
40	20 20	18 18	M18x1.5 M18x1.5	19 19	58 58	36.5 36.5	8	3 3	6 6	1 1	FCR-40 FCJ-40	FCRS-40 FCJS-40
47	24 24	20 20	M20x1.5 M20x1.5	21 21	66 66	40.5 40.5	9 9	4 4	8	1 1	FCR-47 FCJ-47	FCRS-47 FCJS-47
52	24 24	20 20	M20x1.5 M20x1.5	21 21	66 66	40.5 40.5	9 9	4 4	8	1 1	FCR-52 FCJ-52	FCRS-52 FCJS-52
62	29 29	24 24	M24x1.5 M24x1.5	25 25	80 80	49.5 49.5	11 11	4 4	8	1 1	FCR-62 FCJ-62	FCRS-62 FCJS-62
72	29 29	24 24	M24x1.5 M24x1.5	25 25	80 80	49.5 49.5	11 11	4 4	8	1 1	FCR-72 FCJ-72	FCRS-72 FCJS-72
80	35 35	30 30	M30x1.5 M30x1.5	32 32	100 100	63 63	15 15	4 4	8	1 1	FCR-80 FCJ-80	FCRS-80 FCJS-80
85	35 35	30 30	M30x1.5 M30x1.5	32 32	100 100	63 63	15 15	4 4	8	1 1	FCR-85 FCJ-85	FCRS-85 FCJS-85
90	35 35	30 30	M30x1.5 M30x1.5	32 32	100 100	63 63	15 15	4 4	8 8	1 1	FCR-90 FCJ-90	FCRS-90 FCJS-90

Notas (1) Sólo el cabezal del puntal dispone de un orificio de engrase.

Observaciones Los rodillos-guía con muñequilla sellados ya tienen grasa estándar aplicada, pero no los rodillos-guía con muñequilla sin sellados.

⁽²⁾ Sólo aplicable a FCRB.

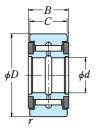
Índices Básicos Dinámi (N)		Cargas Límite (N) {kgf}		Cargas Límito (N)	e de Pista {kgf}	Masa (kg)	Dim. Tornillo Hexagonal (²)(ancho entre planos)	Ex	siones de céntrico ((mm)		Dimensiones del Codo (mm)	(N·cm) {kgf·ci	
$C_{\rm r}$		$P_{ m ma}$	х			aprox.	(mm)	B_4	d_1	E	$F_{(\text{min.})}$	(máx.)	(máx.)
5 800	590	2 360	240	3 350	340	0.020	4	8	9	0.5	11	226	23
2 830	288	2 360	240	3 350	340	0.018	4	8	9	0.5	11	226	23
6 600	670	4 200	425	4 150	425	0.031	4	10	11	0.5	13	550	56
3 450	355	4 200	425	4 150	425	0.030	4	10	11	0.5	13	550	56
8 550	875	6 550	665	5 300	540	0.047	5	11	13	0.5	15	1 060	108
4 350	445	6 550	665	5 300	540	0.045	5	11	13	0.5	15	1 060	108
8 550	875	6 550	665	6 000	610	0.060	5	11	13	0.5	15	1 060	108
4 350	445	6 550	665	6 000	610	0.058	5	11	13	0.5	15	1 060	108
12 500	1 280	9 250	945	7 800	795	0.088	6	12	17	1	20	1 450	148
7 200	735	9 250	945	7 800	795	0.086	6	12	17	1	20	1 450	148
12 500	1 280	9 250	945	8 050	820	0.099	6	12	17	1	20	1 450	148
7 200	735	9 250	945	8 050	820	0.096	6	12	17	1	20	1 450	148
18 600	1 900	17 000	1 740	11 800	1 200	0.17	10	15.5	22	1	24	4 000	410
9 700	990	17 000	1 740	11 800	1 200	0.165	10	15.5	22	1	24	4 000	410
20 500	2 090	21 700	2 220	14 300	1 460	0.25	10	17.5	24	1	26	5 950	605
10 300	1 050	21 700	2 220	14 300	1 460	0.24	10	17.5	24	1	26	5 950	605
28 200	2 880	26 400	2 690	20 800	2 120	0.39	12	19.5	27	1	31	8 450	860
19 200	1 950	26 400	2 690	20 800	2 120	0.38	12	19.5	27	1	31	8 450	860
28 200	2 880	26 400	2 690	22 900	2 340	0.47	12	19.5	27	1	31	8 450	860
19 200	1 950	26 400	2 690	22 900	2 340	0.455	12	19.5	27	1	31	8 450	860
40 000	4 100	38 500	3 950	34 000	3 450	0.80	14	24.5	34	1	45	15 200	1 550
24 900	2 540	38 500	3 950	34 000	3 450	0.79	14	24.5	34	1	45	15 200	1 550
40 000	4 100	38 500	3 950	38 000	3 860	1.05	14	24.5	34	1	45	15 200	1 550
24 900	2 540	38 500	3 950	38 000	3 860	1.05	14	24.5	34	1	45	15 200	1 550
60 500	6 200	61 000	6 200	52 000	5 300	1.55	17	31	40	1.5	52	30 500	3 120
39 000	4 000	61 000	6 200	52 000	5 300	1.55	17	31	40	1.5	52	30 500	3 120
60 500	6 200	61 000	6 200	55 500	5 650	1.75	17	31	40	1.5	52	30 500	3 120
39 000	4 000	61 000	6 200	55 500	5 650	1.75	17	31	40	1.5	52	30 500	3 120
60 500	6 200	61 000	6 200	59 000	6 000	1.95	17	31	40	1.5	52	30 500	3 120
39 000	4 000	61 000	6 200	59 000	6 000	1.95	17	31	40	1.5	52	30 500	3 120

Notas (3) Sólo aplicable a FCRE.

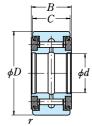
- (4) Estos valores son válidos si el tornillo está engrasado; si está seco, deberían ser aproximadamente el doble.
- (5) No debería ser mayor que r (mín.).

SEGUIDORES DE RODILLO

FYCR (Sin Jaula)


FYCRS (Sin Jaula, Sellado

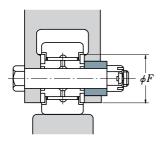
con Arandela de Apoyo J


FYCJ (Con Jaula)

FYCJS (Sellado, con Jaula y) Arandela de Apoyo

Diámetro Interior 5 \sim 50 mm

Sin Jaula



Con Jaula, Sellados y Arandela de Apoyo FYCRS

	Dime	nsiones ((mm)	Globales			Índices Bási	cos de Carga	{kgf}	Cargas Lími	te de Pista {kqf}
d	D	C	$B^{0\atop -0.38}$	γ mín.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	$C_{0\mathrm{r}}$. 37
5	16	11	12	0.3	5 800	8 000	590	815	3 350	340
	16	11	12	0.3	2 830	2 620	288	267	3 350	340
6	19	11	12	0.3	6 550	9 900	665	1 010	4 150	425
	19	11	12	0.3	3 450	3 600	355	365	4 150	425
8	24	14	15	0.3	10 100	15 000	1 030	1 530	6 500	665
	24	14	15	0.3	5 700	6 000	580	610	6 500	665
10	30	14	15	0.6	11 700	18 500	1 190	1 890	7 800	795
	30	14	15	0.6	6 950	8 200	705	835	7 800	795
12	32	14	15	0.6	12 600	21 000	1 280	2 140	8 050	820
	32	14	15	0.6	7 650	9 650	780	985	8 050	820
15	35	18	19	0.6	18 700	29 300	1 910	2 990	11 800	1 200
	35	18	19	0.6	12 200	14 100	1 250	1 440	11 800	1 200
17	40	20	21	0.6	21 100	35 000	2 160	3 600	14 300	1 460
	40	20	21	0.6	13 700	16 700	1 390	1 700	14 300	1 460
20	47	24	25	1	28 900	50 000	2 940	5 100	20 800	2 120
	47	24	25	1	18 200	22 600	1 850	2 310	20 800	2 120
25	52	24	25	1	32 500	60 000	3 300	6 100	22 900	2 340
	52	24	25	1	22 200	31 000	2 270	3 150	22 900	2 340
30	62	28	29	1	47 500	96 000	4 800	9 800	33 000	3 350
	62	28	29	1	31 500	47 000	3 200	4 800	33 000	3 350
35	72	28	29	1	49 500	106 000	5 050	10 800	36 500	3 700
	72	28	29	1	33 000	52 500	3 400	5 350	36 500	3 700
40	80	30	32	1	54 500	126 000	5 600	12 800	43 500	4 450
	80	30	32	1	38 500	67 500	3 950	6 900	43 500	4 450
45	85	30	32	1	57 500	139 000	5 850	14 100	46 500	4 750
	85	30	32	1	40 000	73 000	4 100	7 450	46 500	4 750
50	90	30	32	1	60 500	152 000	6 150	15 500	49 500	5 050
	90	30	32	1	41 500	78 000	4 200	7 950	49 500	5 050

Observaciones Los rodillos-guía con muñequilla sellados ya tienen grasa estándar aplicada, pero no los rodillos-guía con muñequilla sin sellados.

Números de	Rodamientos	Masa (kg)	Dimensiones del Codo
FYCR FYCJ	FYCRS FYCJS	aprox.	(mm) F mín.
FYCR-5	FYCRS-5	0.016	10
FYCJ-5	FYCJS-5	0.014	10
FYCR-6	FYCRS-6	0.022	12
FYCJ-6	FYCJS-6	0.020	12
FYCR-8	FYCRS-8	0.044	14
FYCJ-8	FYCJS-8	0.042	14
FYCR-10	FYCRS-10	0.069	17
FYCJ-10	FYCJS-10	0.067	17
FYCR-12	FYCRS-12	0.076	19
FYCJ-12	FYCJS-12	0.074	19
FYCR-15	FYCRS-15	0.105	23
FYCJ-15	FYCJS-15	0.097	23
FYCR-17	FYCRS-17	0.145	25
FYCJ-17	FYCJS-17	0.14	25
FYCR-20	FYCRS-20	0.255	29
FYCJ-20	FYCJS-20	0.245	29
FYCR-25	FYCRS-25	0.285	34
FYCJ-25	FYCJS-25	0.275	34
FYCR-30	FYCRS-30	0.48	51
FYCJ-30	FYCJS-30	0.47	51
FYCR-35	FYCRS-35	0.64	58
FYCJ-35	FYCJS-35	0.635	58
FYCR-40	FYCRS-40	0.88	66
FYCJ-40	FYCJS-40	0.865	66
FYCR-45	FYCRS-45	0.93	72
FYCJ-45	FYCJS-45	0.91	72
FYCR-50	FYCRS-50	0.995	76
FYCJ-50	FYCJS-50	0.965	76

SOPORTES CON RODAMIENTOS SOPORTES TIPO SILLETA CON TORNILLO PRISIONERO

UCP2 Diámetro del Eje12~90mm Páginas B282~B287

1/2~3 1/2 pulgadas

SOPORTES TIPO BRIDA CON TORNILLO PRISIONERO

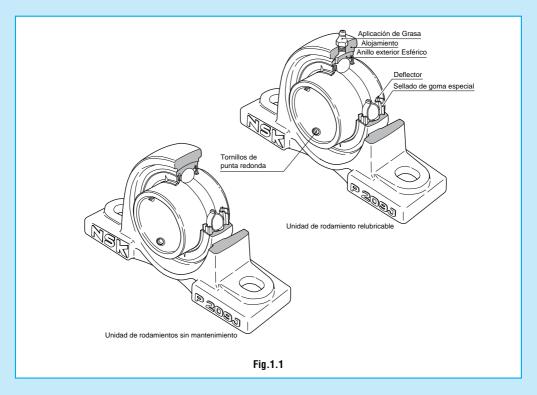
UCF2 Diámetro del Eje12~90mm Páginas B288~B293

1/2~3 1/2 pulgadas

UCFL2 Diámetro del Eje12~90mm Páginas B294~B299

1/2~3 1/2 pulgadas

1. CONSTRUCCIÓN


El soporte con rodamiento NSK es una combinación de rodamientos de bolas radiales, retenes, y un alojamiento de fundición de alta calidad o de acero estampado, que se fabrica en geometrías diversas.

La superficie exterior del rodamiento y la superficie interna del alojamiento son esféricas, de manera que la unidad es autoalineante.

La construcción interior del rodamiento de bolas para la unidad es tal que las bolas de acero y los retenes son del mismo tipo que en las series 62 y 63 de los rodamientos de bolas de ranura profunda. La estanqueidad está formada por una combinación de retenes de goma sintética a prueba de aceite y un deflector en ambos lados.

Dependiendo del tipo, se utilizan los siguiente métodos para ajustar al eje:

- (1) El anillo intérior se ajústa al eje por dos puntos por medio de tornillos.
- (2) El anillo interior tiene un agujero cónico y encaja en el eje por medio de un adaptador.
- (3) En el sistema de collarín de bloqueo excéntrico, el anillo interior se asegura al eje por medio de arandelas excéntricas que se hallan en el lateral del anillo interior y en el collarín.

2. CARACTERÍSTICAS DE DISEÑO Y VENTAJAS

2.1 TIPO SIN MANTENIMIENTO

El soporte NSK de rodamientos sin mantenimiento contiene una grasa con base de litio de alta calidad, adecuada para usar en largos períodos, lo que resulta ideal en rodamientos del tipo sellado. Como ventaja adicional se comportan como un excelente dispositivo hermético, que impide pérdidas de grasa o penetración de polvo y agua desde el exterior.

Está diseñado de forma que la rotación del eje provoque la circulación de la grasa por todo el espacio interior, consiguiendo de forma efectiva una lubricación máxima. El efecto de lubricación se mantiene por largos períodos de tiempo sin necesidad de aplicar más grasa.

Para resumir las ventajas de las unidades NSK de rodamientos sin mantenimiento:

- (1) Puesto que en su fabricación se aplica y sella la cantidad de grasa adecuada de buena calidad, no resulta necesario rellenar con más grasa. Todo ello se traduce en términos de ahorro en tiempo y en costes de mantenimiento.
- (2) Puesto que no es necesario disponer de mecanismos para reengrasar, como por ejemplo engrasadores, es posible realizar diseños más compactos.
- (3) Los diseños sellados eliminan la posibilidad fugas de grasa que pueden conducir a productos oxidados.

2.2 TIPOS RELUBRICABLES

Los soportes de rodamientos del tipo relubricable tienen la ventaja frente a otras similares, que éstas permiten el reengrase incluso en el caso de desalineación del 2º a la derecha o a la izquierda. El agujero a través del cual se aplica la grasa de montaje suele provocar un debilitamiento estructural del alojamiento.

Sin émbargo, como resultado de test exhaustivos, en el soporte NSK de rodamientos el orificio se sitúa de forma que se minimice al máximo este efecto. Además, la ranura de reengrase se ha diseñado para minimizar el debilitamiento del alojamiento.

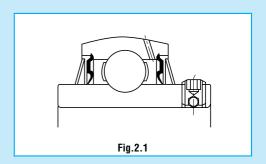
Mientras que los soportes NSK de rodamientos sin mantenimiento son adecuadas para unas condiciones de uso normales en interiores, en las siguientes circunstancias será necesario utilizar unidades de rodamiento del tipo relubricable:

- (1) En los casos en que la temperatura de los rodamientos supere los 100°C, 212°F:
 *-Temperaturas normales de hasta 200°C, 392°F unidades de rodamientos resistentes al calor.
- (2) Casos en los que hay un exceso de polvo pero en los que el espacio disponible no permite usar un soporte de rodamiento con tapas.
- (3) Casos en los que el rodamiento está constantemente expuesto a salpicaduras de agua u otro líquido, pero en los que el espacio

- disponible no permite usar un soporte de rodamiento con tapa.
- (4) Casos en los que la humedad es muy alta y el equipo en que se usa el rodamiento funciona de forma intermitente.
- (5) Casos que implican una carga pesada para los que el valor Cr/Pr es de 10 o menos, y la velocidad de 10 rpm o inferior, o cuando el movimiento es oscilatorio.
- (6) Casos en los que el número de revoluciones es relativamente alto y deben tenerse en cuenta los posibles problemas por ruido; por ejemplo, cuando el rodamiento se debe usar con un ventilador en un equipo de aire acondicionado.

2.3 CARACTERÍSTICA DE SELLADO ESPECIAL

2.3.1 UNIDADES DE RODAMIENTOS ESTÁNDAR

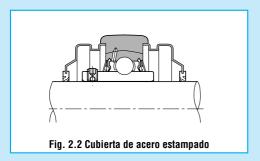

El dispositivo de sellado del soporte NSK para los rodamientos de bolas es una combinación de sellados de goma sintéticos a prueba de aceite y un deflector de diseño exclusivo.

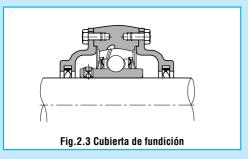
El sellado, fijado en el anillo exterior, es de acero reforzado y sus labios, en contacto con el anillo interior, están diseñados para minimizar el par por fricción.

El deflector se fija en el anillo interior del rodamiento con el que gira. Hay un pequeño juego entre la periferia y el anillo exterior.

En la cara exterior del deflector se encuentran unos salientes triangulares y, al girar el rodamiento, estos salientes del deflector crean un flujo de aire hacia el exterior del rodamiento. De esta forma, el deflector actúa como un ventilador que mantiene el polvo y el agua alejados del rodamiento.

Estos dos tipos de sellados en ambas caras del rodamiento impiden que haya fugas de grasa y que entren cuerpos extraños en el interior del rodamiento.


2.3.2 SOPORTES CON TAPAS


El soporte NSK con tapa está formado por una unidad estándar de rodamiento con una tapa exterior adicional para conseguir una mayor protección contra el polvo. En este diseño se han tenido en cuenta criterios especiales antipolvo.

Tanto el aloiamiento como en el rodamiento se instalan dispositivos de sellado de forma que las unidades de este tipo puedan funcionar de forma satisfactoria en ambientes tan adversos como molinos de harina, molinos de acero, fundiciones, plantas de galvanizado y plantas químicas, lugares donde se produce una gran cantidad de polvo v en donde se utilizan líquidos. Resultan altamente adecuados en entornos al aire libre en los que la lluvia y el polvo son inevitables, así como en maquinaria de la industria pesada como la construcción y en equipos de transporte

El sellado de goma de la tapa contacta con el eje a través de sus dos labios, tal como se indica en las Fig. 2.2 v 2.3. Al llenar con grasa la ranura entre los dos labios, se obtiene un excelente efecto de sellado y, al mismo tiempo, se lubrican las partes de contacto de los labios. Además, la ranura está diseñada de tal forma que cuando el eje se inclina el sellado de goma puede moverse en la dirección radial.

Cuando los soportes están expuestos a salpicaduras de agua, se las dota de un orificio de drenaje (de 5 a 8 mm, 0.2 a 0.3 pulgadas de diámetro) en la parte inferior de la cubierta, y la grasa debe ser aplicada en la cada lateral del propio rodamiento en lugar de la tapa.

2.4 AJUSTE SEGURO

El aiuste del rodamiento al eie se realiza apretando los tornillos de punta redonda, que se encuentran en el anillo interior. Se trata de una característica única que impide que el conjunto se afloje, incluso cuando el rodamiento esté sujeto a golpes y vibraciones.

2.5 AUTOALINEACIÓN

En los soportes NSK, la superficie exterior del rodamiento y la superficie interna del alojamiento son esféricas, de manera que la unidad es autoalineante. Cualquier desalineación del eje que pueda surgir de una fabricación de baia calidad o de errores en el ajuste quedará correctamente solucionada.

2.6 ELEVADA CAPACIDAD DE CARGA

El rodamiento utilizado en la unidad tiene la misma construcción interna que los rodamientos de las series 62 y 63, pueden aceptar cargas axiales así como cargas radiales, e incluso cargas compuestas. Las capacidades de carga nominales de estos rodamientos son considerablemente mayores que las de los correspondientes rodamientos autoalineantes usados en soportes estándar.

2.7 ALOJAMIENTOS LIGEROS Y RESISTENTES

Los alojamientos de los soportes NSK se pueden encontrar en varias formas. Están formadas por elementos de fundición de alta calidad, de una sola pieza, o por elementos de acero estampado con acabado de precisión, siendo éstos últimos más ligeros. En cualquier caso, están diseñados de forma práctica para combinar ligereza con una máxima resistencia.

2.8 FACILIDAD DE ENSAMBLAJE

El soporte NSK es una unidad integrada formada por un rodamiento y un alojamiento.

Puesto que el rodamiento se prelubrica al fabricarlo con la cantidad correcta de grasa de alta calidad de base de litio, puede montarse directamente sobre el eie. Basta con realizar un pequeño test de funcionamiento después del montaje.

2.9 AJUSTE EXACTO DEL ALOJAMIENTO

Para simplificar el aiuste del soporte y los defelctores de rodamientos, los alojamientos están dotados de un pasador, que puede utilizarse en caso necesario.

2.10 SUBSTITUCIÓN DE LOS RODAMIENTOS

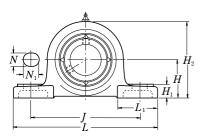
Los rodamientos usados en los soportes NSK son substituibles. En caso de fallo en un rodamiento, puede instalarse un nuevo rodamiento en el alojamiento existente.

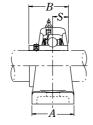
3. PARES DE APRIETE ACONSEJADOS

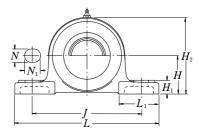
Tabla 3.1 Pares de apriete aconsejados para los tornillos

A) Series métricas, aplicados al tamaño métrico del diámetro interior.

	ón de los ro oles a los so		Designación de los tornillos	Pares de apriete N·m (máx.)
UC201 a UC205	_	_	M 5x0.8 x 7	3.9
UC206	_	UC305 a UC306	M 6x0.75x 8	4.9
UC207	UCX05	_	M 6x0.75x 8	5.8
UC208 a UC210	_	_	M 8x1 x10	7.8
UC211	UCX06 a UCX08	UC307	M 8x1 x10	9.8
UC212	UCX09	_	M10x1.25x12	16.6
UC213 a UC215	_	UC308 a UC309	M10x1.25x12	19.6
UC216	UCX10	_	M10x1.25x12	22.5
_	UCX11 a UCX12	_	M10x1.25x12	24.5
UC217 a UC218	UCX13 a UCX15	UC310 a UC314	M12x1.5 x13	29.4
_	UCX16 a UCX17	-	M12x1.5 x13	34.3
_	UCX18	UC315 a UC316	M14x1.5 x15	34.3
_	UCX20	UC317 a UC319	M16x1.5 x18	53.9
_	_	UC320 a UC324	M18x1.5 x20	58.8
_	_	UC326 a UC328	M20x1.5 x25	78.4

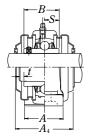

B) Series en pulgadas, aplicados al tamaño en pulgadas del diámetro interior.

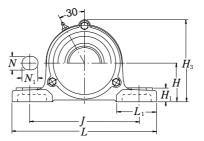

para e	ón de los ro el soporte olican los p	al que	Designación de los tornillos	Pares de apriete ibf-pulg. (max.)
UC201 a UC205	_	_	No.10 -32UNF	34
UC206	_	UC305 a UC306	1/4 -28UNF	43
UC207	UCX05	_	¹ /4 -28UNF	52
UC208 a UC210	_	_	5/16 -24UNF	69
UC211	UCX06 a UCX08	UC307	⁵ /16-24UNF	86
UC212	UCX09	_	3/8 -24UNF	147
UC213 a UC215	_	UC308 a UC309	³ /8 -24UNF	173
UC216	UCX10	_	³ /8 -24UNF	199
_	UCX11 a UCX12	_	³ /8 -24UNF	216
UC217 a UC218	UCX13 a UCX15	UC310 a UC314	1/2 -20UNF	260
_	UCX16 a UCX17	_	¹ /2 -20UNF	303
_	UCX18	UC315 a UC316	9/16 -18UNF	303
_	UCX20	UC317 a UC318	⁵ /8 -18UNF	477
_	_	UC320	⁵ /8 -18UNF	520


Designación de los rodamientos aplicables a los soportes	Designación de los tornillos	Pares de apriete N·m (máx.)
AS201 a 205	M5x0.8 x 7	3.4
AS206	M6x0.75x 8	4.4
AS207	M6x0.75x 8	4.9
AS208	M8x1 x10	6.8

para el soporte al que se aplican los pares	Designacionn de los tornillos	Pares de apriete ibf-pulg. (max.)
AS201 a 205	No 10-32UNF	30
AS206	1/4 -28UNF	39
AS207	1/4 -28UNF	43
AS208	⁵ /16-24UNF	60

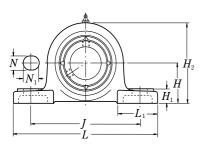
Soportes tipo silleta con tornillos de apriete

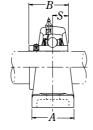


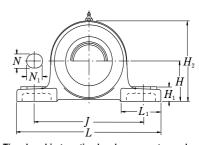

Tipo de cubierta anti polvo de acero estampado Extremo abierto Z-UCP...D1 Extremo cerrado ZM-UCP...D1

Diám. Eje	Designación soporte (¹)				D	imensi	ones no	ominale	S				Tamaño tornillo	Número de rodamiento
mm						mm	n pulga	das						
pulgadas		Н	L	J	Α	N	N_1	H ₁	H_2	L ₁	В	S	mm pulgadas	
12 1/2	UCP201D1 UCP201-008D1	30.2 1 3/16	127 5	95 3 3/4	38 1 1/2	13 1/2	16 5/8	14 9/16	62 2 7/16	42 1 21/32	31 1.2205	12.7 0.500	M10 3/8	UC201D1 UC201-008D1
15 9/16 5/8	UCP202D1 UCP202-009D1 UCP202-010D1	30.2 1 3/16	127 5	95 3 3/4	38 11/2	13 1/2	16 5/8	14 9/16	62 2 7/16	42 121/32	31 1.2205	12.7 0.500	M10 3/8	UC202D1 UC202-009D1 UC202-010D1
17 ¹¹ / ₁₆	UCP203D1 UCP203-011D1	30.2 1 3/16	127 5	95 3 ³ /4	38 1 ¹ /2	13 1/2	16 ⁵ /8	14 ⁹ /16	62 2 ⁷ /16	42 1 ²¹ /32	31 1.2205	12.7 0.500	M10 3/8	UC203D1 UC203-011D1
20 3/4	UCP204D1 UCP204-012D1	33.3 1 ⁵ /16	127 5	95 3 ³ / ₄	38 1 ¹ /2	13 1/2	16 ⁵ /8	14 9/16	65 2 ⁹ /16	42 1 21/32	31 1.2205	12.7 0.500	M10 3/8	UC204D1 UC204-012D1
7/8	UCP205D1 UCP205-013D1 UCP205-014D1 UCP205-015D1 UCP205-100D1	36.5 1 ⁷ /16	140 5 ¹ / ₂	105 4 ¹ /8	38 1 ¹ / ₂	13 1/2	16 ⁵ /8	15 19/ ₃₂	71 2 ²⁵ /32	42 1 ²¹ /32	34.1 1.3425	14.3 0.563	M10 3/8	UC205D1 UC205-013D1 UC205-014D1 UC205-015D1 UC205-100D1
11/8	UCP206D1 UCP206-101D1 UCP206-102D1 UCP206-103D1 UCP206-104D1	42.9 1 11/16	165 6 ¹ / ₂	121 43/4	48 17/8	17 21/32	20 25/32	17 21/32	83 3 9/32	54 2 1/8	38.1 1.5000	15.9 0.626	M14	UC206D1 UC206-101D1 UC206-102D1 UC206-103D1 UC206-104D1
35 1 ¹ / ₄ 1 ⁵ / ₁₆ 1 ³ / ₈ 1 ⁷ / ₁₆	UCP207D1 UCP207-104D1 UCP207-105D1 UCP207-106D1 UCP207-107D1	1 7/o	167 6 ⁹ / ₁₆	127 5	48 1 ⁷ /8	17 21/32	20 ²⁵ / ₃₂	18 ²³ / ₃₂	93 3 ²¹ / ₃₂	54 2 ¹ /8	42.9 1.6890	17.5 0.689	M14	UC207D1 UC207-104D1 UC207-105D1 UC207-106D1 UC207-107D1
40 11/2 1 ⁹ /16	UCP208D1 UCP208-108D1 UCP208-109D1	49.2 1 ¹⁵ /16	184 7 ¹ /4	137 5 ¹³ / ₃₂	54 2 ¹ /8	17 21/32	20 25/32	18 ²³ / ₃₂	98 3 ²⁷ /32	52 2 ¹ / ₁₆	49.2 1.9370	19 0.748	M14	UC208D1 UC208-108D1 UC208-109D1
45 1 ⁵ /8 1 ¹¹ / ₁₆ 1 ³ / ₄	UCP209D1 UCP209-110D1 UCP209-111D1 UCP209-112D1		190 7 ¹⁵ /32	146 5 ³ /4	54 2 ¹ /8	17 21/32	20 ²⁵ / ₃₂	20 25/32	106 4 ³ / ₁₆	60 2 ³ /8	49.2 1.9370	19 0.748	M14	UC209D1 UC209-110D1 UC209-111D1 UC209-112D1

Nota (1)Estas designaciones de soporte indican que son de tipo relubricable. Si se necesita el tipo sin mantenimiento, seleccione los tipos sin el sufijo "D1".

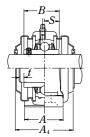


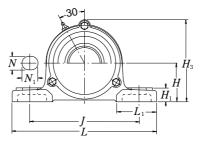



Tipo de cubierta de fundición anti polvo Extremo abierto C-UCP...D1 Extremo cerrado CM-UCP...D1

Número alojamiento	Número soporte con tapa de acero prensado	Número soporte con tapa de fundición	D	imensiones	s nominal	es	Masa del soporte				
			t	mm pu A ₄	H ₃	A_5		kg lb			
				m	nax.		UCP	Z(ZM)	C(CM)		
P203D1 P203D1	Z(ZM)-UCP201D1 Z(ZM)-UCP201-008D1	C(CM)-UCP201D1 C(CM)-UCP201-008D1	2 5/ ₆₄	45 1 ²⁵ /32	67 2 ⁴¹ / ₆₄	62 2 ⁷ / ₁₆	0.7 1.5	0.7 1.5	1.0 2.2		
P203D1	Z(ZM)-UCP202D1	C(CM)-UCP202D1	2	45	67	62	0.7	0.7	1.0		
P203D1 P203D1	Z(ZM)-UCP202-009D1 Z(ZM)-UCP202-010D1	C(CM)-UCP202-009D1 C(CM)-UCP202-010D1	5/64	125/32	241/64	27/16	1.5	1.5	2.2		
P203D1 P203D1	Z(ZM)-UCP203D1 Z(ZM)-UCP203-011D1	C(CM)-UCP203D1 C(CM)-UCP203-011D1	2 5/64	45 1 ²⁵ /32	67 2 ⁴¹ / ₆₄	62 2 ⁷ / ₁₆	0.7 1.5	0.7 1.5	1.0 2.2		
P204D1 P204D1	Z(ZM)-UCP204D1 Z(ZM)-UCP204-012D1	C(CM)-UCP204D1 C(CM)-UCP204-012D1	2 5/64	45 1 ²⁵ /32	70 2 3/4	62 2 7/16	0.7 1.5	0.7 1.5	1.0 2.2		
P205D1	Z(ZM)-UCP205D1	C(CM)-UCP205D1	2	48	76	70	0.8	0.9	1.2		
P205D1 P205D1 P205D1 P205D1	Z(ZM)-UCP205-013D1 Z(ZM)-UCP205-014D1 Z(ZM)-UCP205-015D1 Z(ZM)-UCP205-100D1	C(CM)-UCP205-013D1 C(CM)-UCP205-014D1 C(CM)-UCP205-015D1 C(CM)-UCP205-100D1	5/64	129/32	3	2 ³ /4	1.8	2.0	2.6		
P206D1	Z(ZM)-UCP206D1	C(CM)-UCP206D1	2	53	88	75	1.3	1.4	1.9		
P206D1 P206D1 P206D1 P206D1	Z(ZM)-UCP206-101D1 Z(ZM)-UCP206-102D1 Z(ZM)-UCP206-103D1 —	C(CM)-UCP206-101D1 C(CM)-UCP206-102D1 C(CM)-UCP206-103D1	5/64	2 3/32	315/32	2 ¹⁵ /16	2.9	3.1	4.2		
P207D1	Z(ZM)-UCP207D1	C(CM)-UCP207D1	3	60	99	80	1.6	1.7	2.3		
P207D1 P207D1 P207D1 P207D1	Z(ZM)-UCP207-104D1 Z(ZM)-UCP207-105D1 Z(ZM)-UCP207-106D1 —	C(CM)-UCP207-104D1 C(CM)-UCP207-105D1 C(CM)-UCP207-106D1	1/8	2 3/8	3 29/32	3 5/32	3.5	3.7	5.1		
P208D1	Z(ZM)-UCP208D1	C(CM)-UCP208D1	3	69	105	90	1.9	2.1	3.2		
P208D1 P208D1	Z(ZM)-UCP208-108D1 Z(ZM)-UCP208-109D1	C(CM)-UCP208-108D1 C(CM)-UCP208-109D1	1/8	2 ²³ /32	41/8	3 17/32	4.2	4.6	7.1		
P209D1	Z(ZM)-UCP209D1	C(CM)-UCP209D1	3	69	113	95	2.2	2.4	3.5		
P209D1 P209D1 P209D1	Z(ZM)-UCP209-110D1 Z(ZM)-UCP209-111D1 Z(ZM)-UCP209-112D1	C(CM)-UCP209-110D1 C(CM)-UCP209-111D1 C(CM)-UCP209-112D1	1/8	2 23/32	4 7/16	33/4	4.9	5.3	7.7		

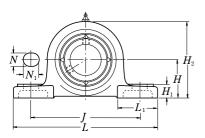
Soportes tipo silleta con tornillos de apriete

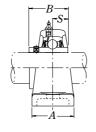


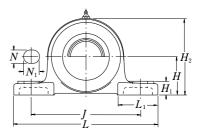

Tipo de cubierta anti polvo de acero estampado Extremo abierto Z-UCP...D1 Extremo cerrado ZM-UCP...D1

Diám. Eje	Designación soporte (1)				Tamaño tornillo	Número de rodamiento								
mm						mn	n pulga	das						
pulgadas		Н	L	J	Α	N	N_1	H ₁	H ₂	L ₁	В	S	mm pulgadas	
50 1 ¹³ / ₁₆ 17/ ₈	UCP210D1 UCP210-113D1 UCP210-114D1	57.2	206	159	60	20	23	21	114	65	51.6	19	M16	UC210D1 UC210-113D1 UC210-114D1
1 ¹⁵ / ₁₆ 2	UCP210-115D1 UCP210-200D1	21/4	81/8	61/4	23/8	25/32	29/32	13/16	41/2	2 9/16	2.0315	0.748	5/8	UC210-115D1 UC210-200D1
55 2	UCP211D1 UCP211-200D1	63.5	219	171	60	20	23	23	126	65	55.6	22.2	M16	UC211D1 UC211-200D1
21/8	UCP211-201D1 UCP211-202D1 UCP211-203D1	2 1/2	8 5/8	623/32	2 3/8	25/32	29/32	29/32	4 31/32	2 9/16	2.1890	0.874	5/8	UC211-201D1 UC211-202D1 UC211-203D1
60 2 ¹ /4	UCP212D1 UCP212-204D1	69.8	241	184	70	20	23	25	138	70	65.1	25.4	M16	UC212D1 UC212-204D1
23/8	UCP212-205D1 UCP212-206D1 UCP212-207D1	2 ³ / ₄	91/2	71/4	23/4	25/32	29/32	31/32	5 ⁷ /16	23/4	2.5630	1.000	5/8	UC212-205D1 UC212-206D1 UC212-207D1
65	UCP213D1	76.2	265	203	70	25	28	27	151	77	65.1	25.4	M20	UC213D1
	UCP213-208D1 UCP213-209D1	3	10 7/16	8	23/4	31/32	13/32	1 ¹ /16	5 ¹⁵ /16	31/32	2.5630	1.000	3/4	UC213-208D1 UC213-209D1
	UCP214D1 UCP214-210D1	79.4	266	210	72	25	28	27	157	77	74.6	30.2	M20	UC214D1 UC214-210D1
211/16	UCP214-211D1 UCP214-212D1		10 ¹⁵ /32	8 9/32	2 ²⁷ /32	31/32	13/32	1 ¹ /16	6 ³ /16	31/32	2.9370	1.189	3/4	UC214-211D1 UC214-212D1
75 2 ¹³ / ₁₆	UCP215D1 UCP215-213D1	82.6	275	217	74	25	28	28	163	80	77.8	33.3	M20	UC215D1 UC215-213D1
27/8	UCP215-214D1 UCP215-215D1 UCP215-300D1	31/4	10 ¹³ / ₁₆	817/32	2 ²⁹ /32	31/32	13/32	13/32	613/32	3 5/32	3.0630	1.311	3/4	UC215-214D1 UC215-215D1 UC215-300D1
	UCP216D1 UCP216-301D1	88.9	292	232	78	25	28	30	175	85	82.6	33.3	M20	UC216D1 UC216-301D1
31/8	UCP216-301D1 UCP216-302D1 UCP216-303D1		11 ¹ /2	91/8	31/16	31/32	13/32	1 3/16	67/8	311/32	3.2520	1.311	3/4	UC216-301D1 UC216-302D1 UC216-303D1

Nota (1)Estas designaciones de soporte indican que son de tipo relubricable. Si se necesita el tipo sin mantenimiento, seleccione los tipos sin el sufijo "D1".

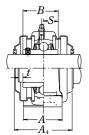


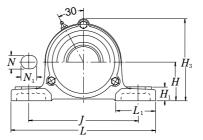


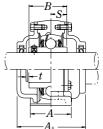

Tipo de cubierta de fundición anti polvo Extremo abierto C-UCP...D1 Extremo cerrado CM-UCP...D1

Número alojamiento	Número soporte con tapa de acero prensado	Número soporte con tapa de fundición	D	imensiones	s nominal	es	Masa de la unidad				
			t	mm pu A ₄	lgadas H ₃	A ₅		kg Ib			
				m	iax.	-	UCP	Z(ZM)	C(CM)		
P210D1	Z(ZM)-UCP210D1	C(CM)-UCP210D1	3	76	119	100	2.6	2.8	4.3		
P210D1 P210D1 P210D1 P210D1	Z(ZM)-UCP210-113D1 Z(ZM)-UCP210-114D1 Z(ZM)-UCP210-115D1 —	C(CM)-UCP210-113D1 C(CM)-UCP210-114D1 C(CM)-UCP210-115D1	1/8	3	4 ¹¹ / ₁₆	3 ¹⁵ / ₁₆	5.7	6.2	9.5		
P211D1 P211D1	Z(ZM)-UCP211D1 Z(ZM)-UCP211-200D1	C(CM)-UCP211D1 C(CM)-UCP211-200D1	4	77	130	100	3.3	3.6	5.2		
P211D1 P211D1 P211D1 P211D1	Z(ZM)-UCP211-200D1 Z(ZM)-UCP211-201D1 Z(ZM)-UCP211-202D1 Z(ZM)-UCP211-203D1	C(CM)-UCP211-200D1 C(CM)-UCP211-201D1 C(CM)-UCP211-202D1 C(CM)-UCP211-203D1	5/32	3 ¹ /32	51/8	3 ¹⁵ /16	7.3	7.9	11		
P212D1 P212D1	Z(ZM)-UCP212D1	C(CM)-UCP212D1	4	89	143	115	4.6	5.0	6.7		
P212D1 P212D1 P212D1 P212D1	Z(ZM)-UCP212-204D1 Z(ZM)-UCP212-205D1 Z(ZM)-UCP212-206D1 —	C(CM)-UCP212-204D1 C(CM)-UCP212-205D1 C(CM)-UCP212-206D1	5/33	31/2	5 5/8	417/32	10	11	15		
P213D1	Z(ZM)-UCP213D1	C(CM)-UCP213D1	4	91	155	120	5.9	6.3	7.8		
P213D1 P213D1	Z(ZM)-UCP213-208D1 Z(ZM)-UCP213-209D1	C(CM)-UCP213-208D1 C(CM)-UCP213-209D1	5/32	3 ¹⁹ /32	63/32	423/32	13	14	17		
P214D1	_	C(CM)-UCP214D1	4	_	162	135	6.6	_	9.3		
P214D1 P214D1 P214D1	-	C(CM)-UCP214-210D1 C(CM)-UCP214-211D1 C(CM)-UCP214-212D1	5/32	-	6 3/8	55/16	15	_	21		
P215D1 P215D1	_	C(CM)-UCP215D1 C(CM)-UCP215-213D1	4	_	168	135	7.4	_	11		
P215D1 P215D1 P215D1 P215D1	_	C(CM)-UCP215-213D1 C(CM)-UCP215-214D1 C(CM)-UCP215-215D1 C(CM)-UCP215-300D1	5/32	_	6 ⁵ /8	5 ⁵ /16	16	_	24		
P216D1	_	C(CM)-UCP216D1	4	_	181	145	9.0	_	13		
P216D1 P216D1 P216D1	_	C(CM)-UCP216-301D1 C(CM)-UCP216-302D1 C(CM)-UCP216-303D1	5/32	_	71/8	523/32	20	_	29		

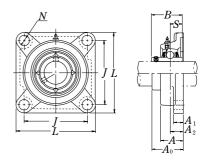
Soportes tipo silleta con tornillos de apriete




Tipo de cubierta anti polvo de acero estampado Extremo abierto Z-UCP...D1 Extremo cerrado ZM-UCP...D1

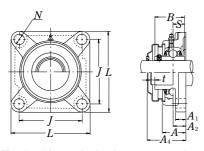

Diám. Eje	Designación soporte (1)				D	imensi	ones no	ominale:	S				Tamaño tornillo	Número de rodamiento
mm						mn	n pulga	das					mm	
pulgadas		Н	L	J	Α	N	N_1	H_1	H_2	L_1	В	S	pulgadas	
85	UCP217D1	95.2	310	247	83	25	28	32	187	85	85.7	34.1	M20	UC217D1
	UCP217-304D1 UCP217-305D1 UCP217-307D1	3 3/4	12 7/32	923/32	3 9/32	31/32	1 3/32	1 1/4	73/8	311/32	3.3740	1.343	3/4	UC217-304D1 UC217-305D1 UC217-307D1
90 3 ¹ /2	UCP218D1 UCP218-308D1	101.6 4	327 12 ⁷ /8	262 10 ⁵ /16	88 3 ¹⁵ /32	27 1 ¹ /16	30 1 ³ / ₁₆	33 1 ⁵ /16	200 7 ⁷ /8	90 3 ¹⁷ / ₃₂	96 3.7795	39.7 1.563	M22 7/8	UC218D1 UC218-308D1

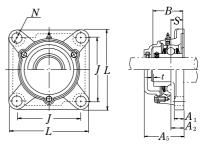
Nota (¹) Estas designaciones de soporte indican el tipo relubricable. Si se necesita el tipo sin mantenimiento, seleccione los tipos sin el sufijo "D1".



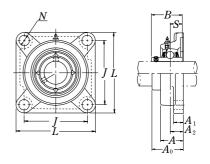
Tipo de cubierta de fundición anti polvo Extremo abierto C-UCP...D1 Extremo cerrado CM-UCP...D1

Número alojamiento	Número soporte con tapa de acero prensado	Número soporte con tapa de fundición	Di	mension	es nominale	Masa de la unidad				
			t	A_4	ulgadas H_3 max.	A_5	UCP	kg lb	C(CM)	
P217D1	_	C(CM)-UCP217D1	5	_	191	155	11	_	15	
P217D1 P217D1 P217D1	_	C(CM)-UCP217-304D1 C(CM)-UCP217-305D1 C(CM)-UCP217-307D1	13/64	_	7 ¹⁷ /32	63/32	24	_	33	
P218D1 P218D1	=	C(CM)-UCP218D1 C(CM)-UCP218-308D1	5 13/64	_	204 8 1/32	165 6 1/2	13 29	_	18 40	


Soportes tipo brida cuadrada con tornillos de apriete

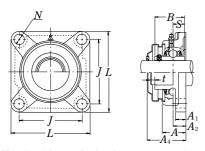

Diám. Eje	Designación soporte(1)				Tamaño tornillo	Número de rodamiento						
mm						mm pulga	ıdas					
pulgadas		L	J	A_2	A_1	Α	N	A_0	В	S	mm pulgadas	
12 1/2	UCF201D1 UCF201-008D1	86 3 ³ /8	64 2 ³³ /64	15 ¹⁹ /32	11 ⁷ /16	25.5 1	12 ¹⁵ /32	33.3 1 ⁵ /16	31 1.2205	12.7 0.500	M10 ³ /8	UC201D1 UC201-008D1
15 ⁹ /16 5/8	UCF202D1 UCF202-009D1 UCF202-010D1	86 3 ³ /8	64 2 ³³ /64	15 19/ ₃₂	11 ⁷ /16	25.5 1	12 ¹⁵ / ₃₂	33.3 1 ⁵ / ₁₆	31 1.2205	12.7 0.500	M10 3/8	UC202D1 UC202-009D1 UC202-010D1
17 ¹¹ / ₁₆	UCF203D1 UCF203-011D1	86 3 ³ /8	64 2 ³³ /64	15 19/32	11 ⁷ /16	25.5 1	12 ¹⁵ /32	33.3 1 ⁵ /16	31 1.2205	12.7 0.500	M10 3/8	UC203D1 UC203-011D1
20 3/4	UCF204D1 UCF204-012D1	86 3 ³ /8	64 2 ³³ /64	15 19/32	11 ⁷ /16	25.5 1	12 ¹⁵ /32	33.3 1 ⁵ /16	31 1.2205	12.7 0.500	M10 3/8	UC204D1 UC204-012D1
7/8	UCF205D1 UCF205-013D1 UCF205-014D1 UCF205-015D1 UCF205-100D1	95 3 ³ / ₄	70 2 ³ /4	16 5/8	13 1/2	27 1 ¹ / ₁₆	12 ¹⁵ / ₃₂	35.8 1 ¹³ / ₃₂	34.1 1.3425	14.3 0.563	M10	UC205D1 UC205-013D1 UC205-014D1 UC205-015D1 UC205-100D1
30 1 ¹ /16 1 ¹ /8 1 ³ /16 1 ¹ /4	UCF206D1 UCF206-101D1 UCF206-102D1 UCF206-103D1 UCF206-104D1	108 4 ¹ / ₄	83 3 ¹⁷ / ₆₄	18 ⁴⁵ / ₆₄	13 1/2	31 1 ⁷ / ₃₂	12 ¹⁵ / ₃₂	40.2 1 ³⁷ / ₆₄	38.1 1.5000	15.9 0.626	M10	UC206D1 UC206-101D1 UC206-102D1 UC206-103D1 UC206-104D1
35 1 ¹ / ₄ 1 ⁵ / ₁₆ 1 ³ / ₈ 1 ⁷ / ₁₆	UCF207D1 UCF207-104D1 UCF207-105D1 UCF207-106D1 UCF207-107D1	117 4 ¹⁹ /32	92 3 ⁵ /8	19 3/4	15 ¹⁹ /32	34 1 ¹¹ / ₃₂	14 35/64	44.4 1 ³ / ₄	42.9 1.6890	17.5 0.689	M12	UC207D1 UC207-104D1 UC207-105D1 UC207-106D1 UC207-107D1
40 1 ¹ /2 1 ⁹ /16	UCF208D1 UCF208-108D1 UCF208-109D1	130 5 ¹ /8	102 4 ¹ / ₆₄	21 ⁵³ / ₆₄	15 ¹⁹ /32	36 1 ¹³ /32	16 ⁵ /8	51.2 2 ¹ /64	49.2 1.9370	19 0 .748	M14	UC208D1 UC208-108D1 UC208-109D1
45 1 ⁵ /8 1 ¹¹ / ₁₆ 1 ³ / ₄	UCF209D1 UCF209-110D1 UCF209-111D1 UCF209-112D1	137 5 ¹³ /32	105 4 ⁹ / ₆₄	22 55/ ₆₄	16 5/8	38 1 ¹ / ₂	16 ⁵ /8	52.2 2 ¹ / ₁₆	49.2 1.9370	19 0.748	M14	UC209D1 UC209-110D1 UC209-111D1 UC209-112D1

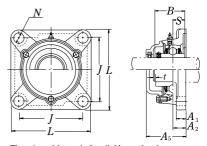
Nota (¹) Estas designaciones de soporte indican el tipo relubricable. Si se necesita el tipo sin mantenimiento, seleccione los tipos sin el sufijo "D1".


Tipo de cubierta anti polvo de acero estampado Extremo abierto Z-UCF...D1 Extremo cerrado ZM-UCF...D1

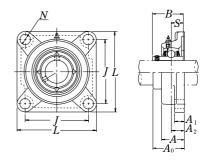
Tipo de cubierta de fundición anti polvo Extremo abierto C-UCF...D1
Extremo cerrado CM-UCF...D1

Número alojamiento	Número soporte con tapa de acero prensado	Número soporte con tapa de fundición	Dimen	siones no	minales	Masa de la unidad				
				nm pulgad			kg lb			
			t	A ₄ max.	A ₅	UCP	Z(ZM)	C(CM)		
F204D1 F204D1	Z(ZM)-UCF201D1 Z(ZM)-UCF201-008D1	C(CM)-UCF201D1 C(CM)-UCF201-008D1	2 5/64	38 1 ¹ /2	46 1 13/16	0.7 1.5	0.7 1.5	0.9 2.0		
F204D1 F204D1 F204D1	Z(ZM)-UCF202D1 Z(ZM)-UCF202-009D1 Z(ZM)-UCF202-010D1	C(CM)-UCF202D1 C(CM)-UCF202-009D1 C(CM)-UCF202-010D1	2 ⁵ /64	38 1 ¹ /2	46 1 ¹³ /16	0.7 1.5	0.7 1.5	0.9 2.0		
F204D1 F204D1	Z(ZM)-UCF203D1 Z(ZM)-UCF203-011D1	C(CM)-UCF203D1 C(CM)-UCF203-011D1	2 5/64	38 1 ¹ /2	46 1 ¹³ / ₁₆	0.6 1.3	0.7 1.5	0.9 2.0		
F204D1 F204D1	Z(ZM)-UCF204D1 Z(ZM)-UCF204-012D1	C(CM)-UCF204D1 C(CM)-UCF204-012D1	2 5/64	38 1 ¹ /2	46 1 13/16	0.6 1.3	0.7 1.5	0.9 2.0		
F205D1 F205D1 F205D1 F205D1 F205D1	Z(ZM)-UCF205D1 Z(ZM)-UCF205-013D1 Z(ZM)-UCF205-014D1 Z(ZM)-UCF205-015D1 Z(ZM)-UCF205-100D1	C(CM)-UCF205D1 C(CM)-UCF205-013D1 C(CM)-UCF205-014D1 C(CM)-UCF205-015D1 C(CM)-UCF205-100D1	2 ⁵ / ₆₄	40 1 ¹⁹ /32	51 2	0.8 1.8	0.8 1.8	1.0		
F206D1 F206D1 F206D1 F206D1 F206D1	Z(ZM)-UCF206D1 Z(ZM)-UCF206-101D1 Z(ZM)-UCF206-102D1 Z(ZM)-UCF206-103D1	C(CM)-UCF206D1 C(CM)-UCF206-101D1 C(CM)-UCF206-102D1 C(CM)-UCF206-103D1	2 ⁵ /64	45 1 ³ / ₄	56 2 ⁷ /32	1.0	1.1 2.4	1.5 3.3		
F207D1 F207D1 F207D1 F207D1 F207D1	Z(ZM)-UCF207D1 Z(ZM)-UCF207-104D1 Z(ZM)-UCF207-105D1 Z(ZM)-UCF207-106D1 —	C(CM)-UCF207D1 C(CM)-UCF207-104D1 C(CM)-UCF207-105D1 C(CM)-UCF207-106D1	3 1/8	49 1 ¹⁵ /16	59 2 ⁵ /16	1.4 3.1	1.5 3.3	2.0		
F208D1 F208D1 F208D1	Z(ZM)-UCF208D1 Z(ZM)-UCF208-108D1 Z(ZM)-UCF208-109D1	C(CM)-UCF208D1 C(CM)-UCF208-108D1 C(CM)-UCF208-109D1	3 1/8	56 2 ³ /16	66 2 ¹⁹ / ₃₂	1.8 4.0	1.9 4.2	2.6 5.7		
F209D1 F209D1 F209D1 F209D1	Z(ZM)-UCF209D1 Z(ZM)-UCF209-110D1 Z(ZM)-UCF209-111D1 Z(ZM)-UCF209-112D1	C(CM)-UCF209D1 C(CM)-UCF209-110D1 C(CM)-UCF209-111D1 C(CM)-UCF209-112D1	3 1/8	57 2 ¹ /4	70 2 ³ /4	2.2 4.9	2.3 5.1	2.8 6.2		


Soportes tipo brida cuadrada con tornillos de apriete

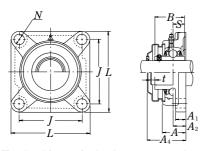

Diám. Eje	Designación soporte(1)				Tamaño tornillo	Número de rodamiento						
mm pulgadas						mm pulga	adas				mm	
pulyauas		L	J	A_2	A ₁	Α	N	A_0	В	S	pulgadas	
17/8	UCF210D1 UCF210-113D1 UCF210-114D1 UCF210-115D1	143 5 ⁵ /8	111 4 ³ / ₈	22 55/ ₆₄	16 ⁵ /8	40 1 ⁹ /16	16 ⁵ /8	54.6 2 5/32	51.6 2.0315	19 0.748	M14	UC210D1 UC210-113D1 UC210-114D1 UC210-115D1
2	UCF210-200D1											UC210-200D1
55 2	UCF211D1 UCF211-200D1	162	130	25	18	43	19	58.4	55.6	22.2	M16	UC211D1 UC211-200D1
21/ ₁₆ 21/ ₈	UCF211-200D1 UCF211-201D1 UCF211-202D1 UCF211-203D1	6 3/8	51/8	63/64	23/32	1 ¹¹ /16	3/4	2 ¹⁹ /64	2.1890	0.874	5/8	UC211-200D1 UC211-201D1 UC211-202D1 UC211-203D1
60	UCF212D1	175	143	29	18	48	19	68.7	65.1	25.4	M16	UC212D1
2 ¹ / ₄ 2 ⁵ / ₁₆ 2 ³ / ₈ 2 ⁷ / ₁₆	UCF212-204D1 UCF212-205D1 UCF212-206D1 UCF212-207D1	67/8	55/8	19/64	23/32	1 7/8	3/4	2 ⁴⁵ /64	2.5630	1.000	5/8	UC212-204D1 UC212-205D1 UC212-206D1 UC212-207D1
65	UCF213D1	187	149	30	22	50	19	69.7	65.1	25.4	M16	UC213D1
2 ¹ / ₂ 2 ⁹ / ₁₆	UCF213-208D1 UCF213-209D1	73/8	5 ⁵⁵ /64	1 3/16	7/8	1 31/32	3/4	23/4	2.5630	1.000	5/8	UC213-208D1 UC213-209D1
70	UCF214D1	193	152	31	22	54	19	75.4	74.6	30.2	M16	UC214D1
2 ⁵ /8 2 ¹¹ / ₁₆ 2 ³ / ₄	UCF214-210D1 UCF214-211D1 UCF214-212D1	719/32	563/64	1 7/32	7/8	21/8	3/4	2 31/32	2.9370	1.189	5/8	UC214-210D1 UC214-211D1 UC214-212D1
75 213/	UCF215D1	200	159	34	22	56	19	78.5	77.8	33.3	M16	UC215D1
27/8	UCF215-213D1 UCF215-214D1 UCF215-215D1 UCF215-300D1	77/8	6 ¹⁷ /64	1 11/32	7/8	2 7/32	3/4	3 3/32	3.0630	1.311	5/8	UC215-213D1 UC215-214D1 UC215-215D1 UC215-300D1
80	UCF216D1	208	165	34	22	58	23	83.3	82.6	33.3	M20	UC216D1
31/ ₁₆ 31/ ₈ 3 ³ / ₁₆	UCF216-301D1 UCF216-302D1 UCF216-303D1	8 3/16	61/2	1 11/32	7/8	2 9/32	29/32	3 9/32	3.2520	1.311	3/4	UC216-301D1 UC216-302D1 UC216-303D1

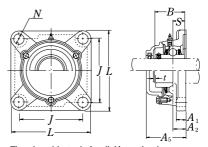
Nota (¹) Estas designaciones de soporte indican el tipo relubricable. Si se necesita el tipo sin mantenimiento, seleccione los tipos sin el sufijo "D1".


Tipo de cubierta anti polvo de acero estampado Extremo abierto Z-UCF...D1 Extremo cerrado ZM-UCF...D1

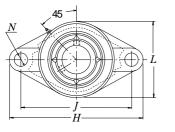
Tipo de cubierta de fundición anti polvo
Extremo abierto C-UCF...D1
Extremo cerrado CM-UCF...D1

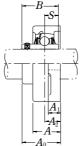
Número alojamiento	Número soporte con tapa de acero prensado	Número soporte con tapa de fundición	Dimen	nsiones noi	minales	Mas	Masa de la unidad			
			n t	nm pulgad A₄	as A ₅		kg lb			
			·	max.	Λ ₅	UCF	Z(ZM)	C(CM)		
F210D1 F210D1	Z(ZM)-UCF210D1 Z(ZM)-UCF210-113D1	C(CM)-UCF210D1 C(CM)-UCF210-113D1	3	60	72	2.4	2.5	3.4		
F210D1 F210D1 F210D1 F210D1	Z(ZM)-UCF210-113D1 Z(ZM)-UCF210-115D1 —	C(CM)-UCF210-113D1 C(CM)-UCF210-114D1 C(CM)-UCF210-115D1	1/8	2 3/8	2 ²⁷ / ₃₂	5.3	5.5	7.5		
F211D1 F211D1	Z(ZM)-UCF211D1 Z(ZM)-UCF211-200D1	C(CM)-UCF211D1 C(CM)-UCF211-200D1	4	64	75	3.6	3.7	4.6		
F211D1 F211D1 F211D1	Z(ZM)-UCF211-201D1 Z(ZM)-UCF211-202D1 Z(ZM)-UCF211-203D1	C(CM)-UCF211-201D1 C(CM)-UCF211-202D1 C(CM)-UCF211-203D1	5/32	21/2	215/16	7.9	8.2	10		
F212D1 F212D1	Z(ZM)-UCF212D1 Z(ZM)-UCF212-204D1	C(CM)-UCF212D1 C(CM)-UCF212-204D1	4	74	86	4.4	4.6	5.9		
F212D1 F212D1 F212D1	Z(ZM)-UCF212-205D1 Z(ZM)-UCF212-206D1	C(CM)-UCF212-205D1 C(CM)-UCF212-206D1	5/32	2 ²⁹ /32	33/8	9.7	10	13		
F213D1	Z(ZM)-UCF213D1	C(CM)-UCF213D1	4	76	90	5.5	5.7	7.2		
F213D1 F213D1	Z(ZM)-UCF213-208D1 Z(ZM)-UCF213-209D1	C(CM)-UCF213-208D1 C(CM)-UCF213-209D1	5/32	3	317/32	12	13	16		
F214D1 F214D1	Ξ	C(CM)-UCF214D1 C(CM)-UCF214-210D1	4	_	98	6.1	_	7.8		
F214D1 F214D1	_	C(CM)-UCF214-211D1 C(CM)-UCF214-212D1	5/32	_	327/32	13	_	17		
F215D1 F215D1	_	C(CM)-UCF215D1 C(CM)-UCF215-213D1	4	_	102	6.9	_	8.6		
F215D1 F215D1 F215D1		C(CM)-UCF215-214D1 C(CM)-UCF215-215D1 C(CM)-UCF215-300D1	5/32	_	41/32	15	_	19		
F216D1 F216D1	_	C(CM)-UCF216D1 C(CM)-UCF216-301D1	4	_	106	8.1	_	10		
F216D1 F216D1 F216D1	_	C(CM)-UCF216-301D1 C(CM)-UCF216-302D1 C(CM)-UCF216-303D1	5/32	_	43/16	18	_	22		

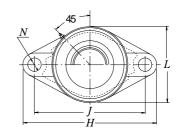

Soportes tipo brida cuadrada con tornillos de apriete


Diám. Eje	Designación soporte(1)				Tamaño tornillo	Número de rodamiento						
mm pulgadas	mm pulgadas								mm pulgadas			
85 3 ¹ / ₄ 3 ⁵ / ₁₆ 3 ⁷ / ₁₆	UCF217D1 UCF217-304D1 UCF217-305D1 UCF217-307D1	220 8 ²¹ / ₃₂	175 6 ⁵⁷ /64	36 1 ²⁷ / ₆₄	24 15/ ₁₆	63 2 ¹⁵ / ₃₂	23 29/32	87.6 3 ²⁹ / ₆₄	85.7 3.3740	34.1 1.343	M20 3/4	UC217D1 UC217-304D1 UC217-305D1 UC217-307D1
90 3 ¹ / ₂	UCF218D1 UCF218-308D1	235 9 ¹ / ₄	187 7 ²³ / ₆₄	40 1 ³⁷ / ₆₄	24 ¹⁵ / ₁₆	68 2 ¹¹ / ₁₆	23 ²⁹ / ₃₂	96.3 3 ⁵¹ / ₆₄	96 3.7795	39.7 1.563	M20 3/4	UC218D1 UC218-308D1

Nota (¹) Estas designaciones de soporte indican el tipo relubricable. Si se necesita el tipo sin mantenimiento, seleccione los tipos sin el sufijo "D1".

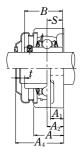

Tipo de cubierta anti polvo de acero estampado Extremo abierto Z-UCF...D1 Extremo cerrado ZM-UCF...D1

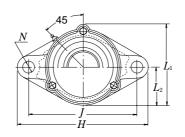


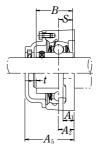

Tipo de cubierta de fundición anti polvo Extremo abierto C-UCF...D1
Extremo cerrado CM-UCF...D1

Número alojamiento	Número soporte con tapa de acero prensado	Número soporte con tapa de fundición	Dimens	iones nor	minales	Masa de la unidad			
			mı t	m pulgada A ₄ max.	as A ₅	UCF	kg lb Z(ZM)	C(CM)	
F217D1 F217D1 F217D1 F217D1	- -	C(CM)-UCF217D1 C(CM)-UCF217-304D1 C(CM)-UCF217-305D1 C(CM)-UCF217-307D1	5 13/ ₆₄	_ _	114 4 ¹ / ₂	9.3 21	_ _	12 26	
F218D1 F218D1	Ξ	C(CM)-UCF218D1 C(CM)-UCF218-308D1	5 13/64	_	122 413/16	11 24	_ _	15 33	

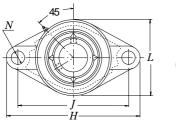
Soportes tipo brida rómbica con tornillos de apriete

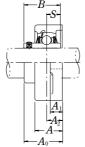


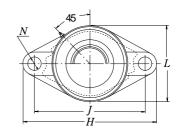

Tipo de cubierta anti polvo de acero estampado Extremo abierto Z-UCFL...D1 Extremo cerrado ZM-UCFL...D1


Diám. Eje	Designación soporte(1)				Dir	nension	es nomi	nales				Tamaño tornillo	Número de rodamiento
mm						mm p	ulgadas						
pulgadas		Н	J	A_2	A_1	Α	N	L	A_0	В	S	mm pulgadas	
12 1/2	UCFL201D1 UCFL201-008D1	113 4 ⁷ / ₁₆	90 3 ³⁵ / ₆₄	15 ¹⁹ /32	11 ⁷ /16	25.5 1	12 ¹⁵ /32	60 2 ³ /8	33.3 1 ⁵ / ₁₆	31 1.2205	12.7 0.500	M10 3/8	UC201D1 UC201-008D1
15	UCFL202D1	113	90	15	11	25.5	12	60	33.3	31	12.7	M10	UC202D1
9/16 5/8	UCFL202-009D1 UCFL202-010D1	4 7/16	335/64	19/32	7/16	1	15/32	2 3/8	1 5/16	1.2205	0.500	3/8	UC202-009D1 UC202-010D1
17 ¹¹ / ₁₆	UCFL203D1 UCFL203-011D1	113 4 ⁷ / ₁₆	90 3 ³⁵ / ₆₄	15 19/32	11 ⁷ /16	25.5 1	12 15/32	60 2 ³ /8	33.3 1 ⁵ / ₁₆	31 1.2205	12.7 0.500	M10 3/8	UC203D1 UC203-011D1
20 3/4	UCFL204D1 UCFL204-012D1	113 4 ⁷ / ₁₆	90 3 ³⁵ / ₆₄	15 19/32	11 ⁷ /16	25.5 1	12 ¹⁵ /32	60 2 ³ /8	33.3 1 ⁵ / ₁₆	31 1.2205	12.7 0.500	M10 3/8	UC204D1 UC204-012D1
25	UCFL205D1	130	99	16	13	27	16	68	35.8	34.1	14.3	M14	UC205D1
7/8	UCFL205-013D1 UCFL205-014D1 UCFL205-015D1 UCFL205-100D1	5 ¹ /8	357/64	5/8	1/2	1 ¹ /16	5/8	211/16	1 13/32	1.3425	0.563	1/2	UC205-013D1 UC205-014D1 UC205-015D1 UC205-100D1
30	UCFL206D1	148	117	18	13	31	16	80	40.2	38.1	15.9	M14	UC206D1
1 ¹ /16 1 ¹ /8 1 ³ /16 1 ¹ /4	UCFL206-101D1 UCFL206-102D1 UCFL206-103D1 UCFL206-104D1	5 ¹³ / ₁₆	4 ³⁹ / ₆₄	45/64	1/2	1 ⁷ /32	5/8	3 5/32	1 ³⁷ /64	1.5000	0.626	1/2	UC206-101D1 UC206-102D1 UC206-103D1 UC206-104D1
35	UCFL207D1	161	130	19	15	34	16	90	44.4	42.9	17.5	M14	UC207D1
1 ¹ /4 1 ⁵ /16 1 ³ /8 1 ⁷ /16	UCFL207-104D1 UCFL207-105D1 UCFL207-106D1 UCFL207-107D1	611/32	51/8	3/4	19/32	1 11/32	5/8	317/32	1 3/4	1.6890	0.689	1/2	UC207-104D1 UC207-105D1 UC207-106D1 UC207-107D1
40	UCFL208D1	175	144	21	15	36	16	100	51.2	49.2	19	M14	UC208D1
1 ¹ /2 1 ⁹ /16	UCFL208-108D1 UCFL208-109D1	67/8	543/64	53/64	19/32	1 13/32	5/8	3 ¹⁵ / ₁₆	21/64	1.9370	0.748	1/2	UC208-108D1 UC208-109D1
45 45 / -	UCFL209D1	188	148	22	16	38	19	108	52.2	49.2	19	M16	UC209D1
1 ⁵ /8 1 ¹¹ /16 1 ³ /4	UCFL209-110D1 UCFL209-111D1 UCFL209-112D1	713/32	5 53/64	55/64	5/8	11/2	3/4	41/4	2 ¹ /16	1.9370	0.748	5/8	UC209-110D1 UC209-111D1 UC209-112D1

Nota (¹) Estas designaciones de soporte indican el tipo relubricable. Si se necesita el tipo sin mantenimiento, seleccione los tipos sin el sufijo "D1".

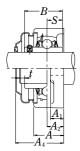


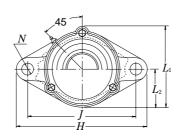


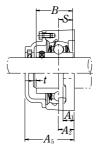

Tipo de cubierta de fundición anti polvo Extremo abierto C-UCFL···D1 Extremo cerrado CM-UCFL···D1

Número alojamiento	Número soporte con tapa de acero prensado	Número soporte con tapa de fundición		Dimensi	iones no	minales		Masa de la unidad			
			t	mr A ₄	n pulgad A ₅ max.	as L ₁	L_2	UCFL	kg lb	C(CM)	
FL204D1 FL204D1	Z(ZM)-UCFL201D1 Z(ZM)-UCFL201-008D1	C(CM)-UCFL201D1 C(CM)-UCFL201-008D1	2 5/64	38 1 ¹ /2	46 1 ¹³ /16	67 2 5/8	30 1 ³ / ₁₆	0.6 1.3	0.6 1.3	0.8 0.8	
FL204D1 FL204D1 FL204D1	Z(ZM)-UCFL202D1 Z(ZM)-UCFL202-009D1 Z(ZM)-UCFL202-010D1	C(CM)-UCFL202D1 C(CM)-UCFL202-009D1 C(CM)-UCFL202-010D1	2 5/64	38 1 ¹ /2	46 1 ¹³ / ₁₆	67 2 5/8	30 1 ³ /16	0.6 1.3	0.6 1.3	0.8 1.8	
FL204D1 FL204D1	Z(ZM)-UCFL203D1 Z(ZM)-UCFL203-011D1	C(CM)-UCFL203D1 C(CM)-UCFL203-011D1	2 5/64	38 1 ¹ /2	46 1 13/32	67 2 5/8	30 1 3/16	0.5 1.1	0.6 1.3	0.8 1.8	
FL204D1 FL204D1	Z(ZM)-UCFL204D1 Z(ZM)-UCFL204-012D1	C(CM)-UCFL204D1 C(CM)-UCFL204-012D1	2 5/64	38 1 ¹ /2	46 1 ¹³ /16	67 2 5/8	30 1 3/16	0.5 1.1	0.6 1.3	0.8 1.8	
FL205D1 FL205D1 FL205D1 FL205D1 FL205D1	Z(ZM)-UCFL205D1 Z(ZM)-UCFL205-013D1 Z(ZM)-UCFL205-014D1 Z(ZM)-UCFL205-015D1 Z(ZM)-UCFL205-100D1	C(CM)-UCFL205D1 C(CM)-UCFL205-013D1 C(CM)-UCFL205-014D1 C(CM)-UCFL205-015D1 C(CM)-UCFL205-100D1	2 5/64	40 1 ¹⁹ /32	51 2	74 2 ²⁹ /32	34 1 ¹¹ / ₃₂	0.6 1.3	0.7 1.5	0.9	
FL206D1 FL206D1 FL206D1 FL206D1 FL206D1	Z(ZM)-UCFL206D1 Z(ZM)-UCFL206-101D1 Z(ZM)-UCFL206-102D1 Z(ZM)-UCFL206-103D1	C(CM)-UCFL206D1 C(CM)-UCFL206-101D1 C(CM)-UCFL206-102D1 C(CM)-UCFL206-103D1	2 ⁵ / ₆₄	45 1 ³ / ₄	56 2 ⁷ /32	85 3 ¹¹ / ₃₂	40 1 ⁹ /16	0.9 2.0	1.0	2.6	
FL207D1 FL207D1 FL207D1 FL207D1 FL207D1	Z(ZM)-UCFL207D1 Z(ZM)-UCFL207-104D1 Z(ZM)-UCFL207-105D1 Z(ZM)-UCFL207-106D1 —	C(CM)-UCFL207D1 C(CM)-UCFL207-104D1 C(CM)-UCFL207-105D1 C(CM)-UCFL207-106D1	3	49 1 ¹⁵ /16	59 2 5/16	97 3 ¹³ / ₁₆	45 1 ²⁵ /32	1.2 2.6	2.6	1.8	
FL208D1 FL208D1 FL208D1	Z(ZM)-UCFL208D1 Z(ZM)-UCFL208-108D1 Z(ZM)-UCFL208-109D1	C(CM)-UCFL208D1 C(CM)-UCFL208-108D1 C(CM)-UCFL208-109D1	3 1/8	56 2 ³ / ₁₆	66 2 ¹⁹ / ₃₂	106 4 ³ / ₁₆	50 1 ³¹ /32	1.6 3.5	1.6 3.5	2.2 4.9	
FL209D1 FL209D1 FL209D1 FL209D1	Z(ZM)-UCFL209D1 Z(ZM)-UCFL209-110D1 Z(ZM)-UCFL209-111D1 Z(ZM)-UCFL209-112D1	C(CM)-UCFL209D1 C(CM)-UCFL209-110D1 C(CM)-UCFL209-111D1 C(CM)-UCFL209-112D1	3 1/8	57 2 ¹ / ₄	70 2 ³ /4	113 4 ⁷ / ₁₆	54 2 ¹ /8	1.9 4.2	2.0 4.4	2.5 5.5	

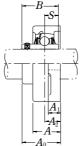
Soportes tipo brida rómbica con tornillos de apriete

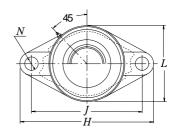



Tipo de cubierta anti polvo de acero estampado Extremo abierto Z-UCFL...D1 Extremo cerrado ZM-UCFL...D1


Diám. Eje	Designación soporte(1)				Dim	ensione	s nomi	nales				Tamaño tornillo	Número de rodamiento
mm						mm pı	ılgadas						
pulgadas		Н	J	A_2	A_1	Α	N	L	A_0	В	S	mm pulgadas	
17/8	UCFL210D1 UCFL210-113D1 UCFL210-114D1 UCFL210-115D1 UCFL210-200D1	197 7 ³ /4	157 6 ³ /16	22 ⁵⁵ / ₆₄	16 ⁵ /8	40 1 9/16	19 ³ / ₄	115 4 ¹⁷ /32	54.6 2 ⁵ /32	51.6 2.0315	19 0.748	M16	UC210D1 UC210-113D1 UC210-114D1 UC210-115D1 UC210-200D1
55 2 2 ¹ / ₁₆	UCFL211D1 UCFL211-200D1 UCFL211-201D1	224 8 ¹³ / ₁₆	184 7 ¹ / ₄	25 63/64	18	43 111/16	19 3/4	130 5 ¹ /8	58.4 219/64	55.6 2.1890	22.2 0.874	M16	UC211D1 UC211-200D1 UC211-201D1
2 ¹ / ₈ 2 ³ / ₁₆	UCFL211-202D1 UCFL211-203D1	, ,	. , .	•	, -	,	,		•	2.1030	0.074	,-	UC211-202D1 UC211-203D1
60 2 ¹ / ₄ 2 ⁵ / ₁₆ 2 ³ / ₈ 2 ⁷ / ₁₆	UCFL212D1 UCFL212-204D1 UCFL212-205D1 UCFL212-206D1 UCFL212-207D1	250 9 ²⁷ / ₃₂	202 7 ⁶¹ / ₆₄	29 1 ⁹ /64	18 23/32	48 1 ⁷ /8	23 ²⁹ / ₃₂	140 5 ¹ / ₂	68.7 2 ⁴⁵ / ₆₄	65.1 2.5630	25.4 1.000	M20 3/4	UC212D1 UC212-204D1 UC212-205D1 UC212-206D1 UC212-207D1
65 2 ¹ / ₂ 2 ⁹ / ₁₆	UCFL213D1 UCFL213-208D1 UCFL213-209D1	258 10 ⁵ /32	210 8 ¹⁷ / ₆₄	30 1 ³ / ₁₆	22 ⁷ /8	50 1 ³¹ /32	23 29/32	155 6 ³ / ₃₂	69.7 2 ³ / ₄	65.1 2.5630	25.4 1.000	M20 3/4	UC213D1 UC213-208D1 UC213-209D1
70 2 ⁵ /8 2 ¹¹ / ₁₆ 2 ³ / ₄	UCFL214D1 UCFL214-210D1 UCFL214-211D1 UCFL214-212D1	265 10 ⁷ /16	216 8 ¹ / ₂	31 1 ⁷ / ₃₂	22 ⁷ /8	54 2 ¹ /8	23 ²⁹ / ₃₂	160 6 ⁵ /16	75.4 2 ³¹ / ₃₂	74.6 2.9370	30.2 1.189	M20 3/4	UC214D1 UC214-210D1 UC214-211D1 UC214-212D1
27/8	UCFL215D1 UCFL215-213D1 UCFL215-214D1 UCFL215-215D1 UCFL215-300D1	275 10 ¹³ / ₁₆	225 8 ⁵⁵ / ₆₄	34 1 ¹¹ /32	22 ⁷ /8	56 2 ⁷ /32	23 29/32	165 6 ¹ /2	78.5 3 ³ /32	77.8 3.0630	33.3 1.311	M20	UC215D1 UC215-213D1 UC215-214D1 UC215-215D1 UC215-300D1
80 3 ¹ / ₁₆ 3 ¹ / ₈ 3 ³ / ₁₆	UCFL216D1 UCFL216-301D1 UCFL216-302D1 UCFL216-303D1	290 11 ¹³ /32	233 9 ¹¹ / ₆₄	34 1 ¹¹ /32	22 ⁷ /8	58 2 9/32	25 ⁶³ / ₆₄	180 7 ³ /32	83.3 3 ⁹ / ₃₂	82.6 3.2520	33.3 1.311	M22	UC216D1 UC216-301D1 UC216-302D1 UC216-303D1

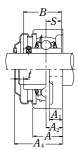
Nota (¹) Estas designaciones de soporte indican el tipo relubricable. Si se necesita el tipo sin mantenimiento, seleccione los tipos sin el sufijo "D1".

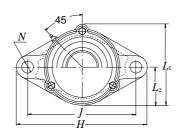


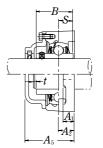

Tipo de cubierta de fundición anti polvo Extremo abierto C-UCFL···D1 Extremo cerrado CM-UCFL···D1

Número alojamiento	Número soporte con tapa de acero prensado	Número soporte con tapa de fundición		Dimensi	ones no	minales		Masa de la unidad			
			t	mn A ₄	n pulgad A ₅	as L ₁	L_2		kg lb		
					max.			UCFL	Z(ZM)	C(CM)	
FL210D1 FL210D1	Z(ZM)-UCFL210D1 Z(ZM)-UCFL210-113D1	C(CM)-UCFL210D1 C(CM)-UCFL210-113D1	3	60	72	120	58	2.2	2.3	3.0	
FL210D1 FL210D1 FL210D1	Z(ZM)-UCFL210-114D1 Z(ZM)-UCFL210-115D1	C(CM)-UCFL210-114D1 C(CM)-UCFL210-115D1	1/8	2 3/8	2 27/32	423/32	2 9/32	4.9	5.1	6.6	
FL211D1 FL211D1	Z(ZM)-UCFL211D1 Z(ZM)-UCFL211-200D1	C(CM)-UCFL211D1 C(CM)-UCFL211-200D1	4	64	75	133	65	3.1	3.2	4.3	
FL211D1 FL211D1 FL211D1	Z(ZM)-UCFL211-201D1 Z(ZM)-UCFL211-202D1 Z(ZM)-UCFL211-203D1	C(CM)-UCFL211-201D1 C(CM)-UCFL211-202D1 C(CM)-UCFL211-203D1	5/32	21/2	215/16	51/4	2 9/16	6.8	7.1	9.5	
FL212D1 FL212D1	Z(ZM)-UCFL212D1 Z(ZM)-UCFL212-204D1	C(CM)-UCFL212D1 C(CM)-UCFL212-204D1	4	74	86	144	70	4.0	4.2	5.1	
FL212D1 FL212D1 FL212D1 FL212D1	Z(ZM)-UCFL212-205D1 Z(ZM)-UCFL212-206D1	C(CM)-UCFL212-205D1 C(CM)-UCFL212-206D1	5/32	2 29/32	33/8	521/32	23/4	8.8	9.3	11	
FL213D1	Z(ZM)-UCFL213D1	C(CM)-UCFL213D1	4	76	90	157	78	5.0	5.2	6.6	
FL213D1 FL213D1	Z(ZM)-UCFL213-208D1 Z(ZM)-UCFL213-209D1	C(CM)-UCFL213-208D1 C(CM)-UCFL213-209D1	5/32	3	3 17/32	6 ³ /16	31/16	11	11	15	
FL214D1 FL214D1	_	C(CM)-UCFL214D1 C(CM)-UCFL214-210D1	4	_	98	164	80	5.6	_	7.3	
FL214D1 FL214D1 FL214D1	_	C(CM)-UCFL214-21D1 C(CM)-UCFL214-212D1	5/32	_	327/32	615/32	3 5/32	12	_	16	
FL215D1 FL215D1	_	C(CM)-UCFL215D1 C(CM)-UCFL215-213D1	4	_	102	169	82	6.2	_	7.8	
FL215D1 FL215D1 FL215D1	_	C(CM)-UCFL215-214D1 C(CM)-UCFL215-215D1 C(CM)-UCFL215-300D1	5/32	_	4 ¹ / ₃₂	621/32	37/32	14	_	17	
FL216D1	_	C(CM)-UCFL216D1	4	_	106	183	90	8.2	_	11	
FL216D1 FL216D1 FL216D1	_	C(CM)-UCFL216-301D1 C(CM)-UCFL216-302D1 C(CM)-UCFL216-303D1	5/32	_	4 3/16	77/32	317/32	18	_	24	

Soportes tipo brida rómbica con tornillos de apriete




Tipo de cubierta anti polvo de acero estampado Extremo abierto Z-UCFL...D1 Extremo cerrado ZM-UCFL...D1


Diám. Eje	Designación soporte(1)				Dim	ensione	s nomi	inales				Tamaño tornillo	Número de rodamiento
mm pulgadas		Н	J	A_2	A ₁	mm pu	ilgadas N	s L	A_0	В	S	mm pulgadas	
85 3 ¹ / ₄ 3 ⁵ / ₁₆ 3 ⁷ / ₁₆	UCFL217D1 UCFL217-304D1 UCFL217-305D1 UCFL217-307D1	305 12	248 9 ⁴⁹ / ₆₄	36 1 ²⁷ / ₆₄	24 15/16	63 2 ¹⁵ / ₃₂	25 ⁶³ / ₆₄	190 7 ¹⁵ /32	87.6 3 ²⁹ / ₆₄	85.7 3.3740	34.1 1.343	M22 ⁷ /8	UC217D1 UC217-304D1 UC217-305D1 UC217-307D1
90 3 ¹ / ₂	UCFL218D1 UCFL218-308D1	320 12 ¹⁹ /32	265 10 ⁷ /16	40 1 ³⁷ / ₆₄	24 15/16	68 2 ¹¹ / ₁₆	25 63/64	205 8 ¹ / ₁₆	96.3 3 ⁵¹ / ₆₄	96 3.7795	39.7 1.563	M22 7/8	UC218D1 UC218-308D1

Nota (¹) Estas designaciones de soporte indican el tipo relubricable. Si se necesita el tipo sin mantenimiento, seleccione los tipos sin el sufijo "D1".

Tipo de cubierta de fundición anti polvo Extremo abierto C-UCFL···D1 Extremo cerrado CM-UCFL···D1

Número alojamiento	the state of the s	Número soporte con tapa de fundición	[Dimens	siones noi	Masa de la unidad				
			t	m A ₄	m pulgad A ₅ max.	as L ₁	L_2	UCFL	kg lb	C(CM)
FL217D1 FL217D1 FL217D1 FL217D1	- -	C(CM)-UCFL217D1 C(CM)-UCFL217-304D1 C(CM)-UCFL217-305D1 C(CM)-UCFL217-307D1	5 ¹³ /64	_ _	114 4 ¹ /2	192 7 ⁹ /16	95 3 ³ /4	9.3 21	_ _	11 24
FL218D1 FL218D1	Ξ	C(CM)-UCFL218D1 C(CM)-UCFL218-308D1	5 ¹³ / ₆₄	_	122 4 ¹³ / ₁₆	205 8 ¹ / ₁₆	102 4 ¹ / ₃₂	11 24	_	14 31

SOPORTES CON RODAMIENTOS SOPORTES TIPO SILLETA CON TORNILLO PRISIONERO

UCP2 Diámetro del Eje12~90mm Páginas B282~B287

1/2~3 1/2 pulgadas

SOPORTES TIPO BRIDA CON TORNILLO PRISIONERO

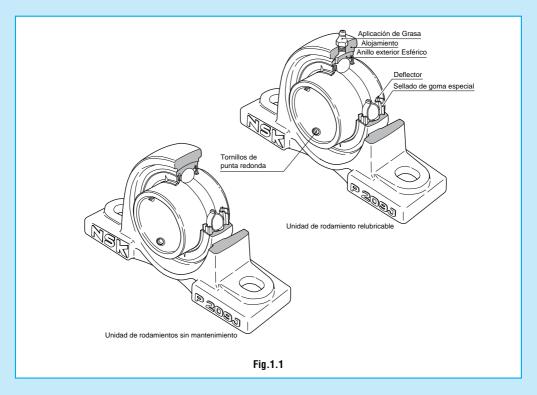
UCF2 Diámetro del Eje12~90mm Páginas B288~B293

1/2~3 1/2 pulgadas

UCFL2 Diámetro del Eje12~90mm Páginas B294~B299

1/2~3 1/2 pulgadas

1. CONSTRUCCIÓN


El soporte con rodamiento NSK es una combinación de rodamientos de bolas radiales, retenes, y un alojamiento de fundición de alta calidad o de acero estampado, que se fabrica en geometrías diversas.

La superficie exterior del rodamiento y la superficie interna del alojamiento son esféricas, de manera que la unidad es autoalineante.

La construcción interior del rodamiento de bolas para la unidad es tal que las bolas de acero y los retenes son del mismo tipo que en las series 62 y 63 de los rodamientos de bolas de ranura profunda. La estanqueidad está formada por una combinación de retenes de goma sintética a prueba de aceite y un deflector en ambos lados.

Dependiendo del tipo, se utilizan los siguiente métodos para ajustar al eje:

- (1) El anillo intérior se ajústa al eje por dos puntos por medio de tornillos.
- (2) El anillo interior tiene un agujero cónico y encaja en el eje por medio de un adaptador.
- (3) En el sistema de collarín de bloqueo excéntrico, el anillo interior se asegura al eje por medio de arandelas excéntricas que se hallan en el lateral del anillo interior y en el collarín.

2. CARACTERÍSTICAS DE DISEÑO Y VENTAJAS

2.1 TIPO SIN MANTENIMIENTO

El soporte NSK de rodamientos sin mantenimiento contiene una grasa con base de litio de alta calidad, adecuada para usar en largos períodos, lo que resulta ideal en rodamientos del tipo sellado. Como ventaja adicional se comportan como un excelente dispositivo hermético, que impide pérdidas de grasa o penetración de polvo y agua desde el exterior.

Está diseñado de forma que la rotación del eje provoque la circulación de la grasa por todo el espacio interior, consiguiendo de forma efectiva una lubricación máxima. El efecto de lubricación se mantiene por largos períodos de tiempo sin necesidad de aplicar más grasa.

Para resumir las ventajas de las unidades NSK de rodamientos sin mantenimiento:

- (1) Puesto que en su fabricación se aplica y sella la cantidad de grasa adecuada de buena calidad, no resulta necesario rellenar con más grasa. Todo ello se traduce en términos de ahorro en tiempo y en costes de mantenimiento.
- (2) Puesto que no es necesario disponer de mecanismos para reengrasar, como por ejemplo engrasadores, es posible realizar diseños más compactos.
- (3) Los diseños sellados eliminan la posibilidad fugas de grasa que pueden conducir a productos oxidados.

2.2 TIPOS RELUBRICABLES

Los soportes de rodamientos del tipo relubricable tienen la ventaja frente a otras similares, que éstas permiten el reengrase incluso en el caso de desalineación del 2º a la derecha o a la izquierda. El agujero a través del cual se aplica la grasa de montaje suele provocar un debilitamiento estructural del alojamiento.

Sin émbargo, como resultado de test exhaustivos, en el soporte NSK de rodamientos el orificio se sitúa de forma que se minimice al máximo este efecto. Además, la ranura de reengrase se ha diseñado para minimizar el debilitamiento del alojamiento.

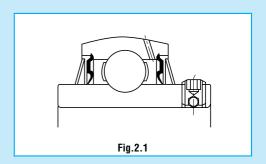
Mientras que los soportes NSK de rodamientos sin mantenimiento son adecuadas para unas condiciones de uso normales en interiores, en las siguientes circunstancias será necesario utilizar unidades de rodamiento del tipo relubricable:

- (1) En los casos en que la temperatura de los rodamientos supere los 100°C, 212°F:
 *-Temperaturas normales de hasta 200°C, 392°F unidades de rodamientos resistentes al calor.
- (2) Casos en los que hay un exceso de polvo pero en los que el espacio disponible no permite usar un soporte de rodamiento con tapas.
- (3) Casos en los que el rodamiento está constantemente expuesto a salpicaduras de agua u otro líquido, pero en los que el espacio

- disponible no permite usar un soporte de rodamiento con tapa.
- (4) Casos en los que la humedad es muy alta y el equipo en que se usa el rodamiento funciona de forma intermitente.
- (5) Casos que implican una carga pesada para los que el valor Cr/Pr es de 10 o menos, y la velocidad de 10 rpm o inferior, o cuando el movimiento es oscilatorio.
- (6) Casos en los que el número de revoluciones es relativamente alto y deben tenerse en cuenta los posibles problemas por ruido; por ejemplo, cuando el rodamiento se debe usar con un ventilador en un equipo de aire acondicionado.

2.3 CARACTERÍSTICA DE SELLADO ESPECIAL

2.3.1 UNIDADES DE RODAMIENTOS ESTÁNDAR

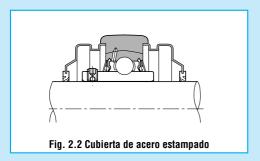

El dispositivo de sellado del soporte NSK para los rodamientos de bolas es una combinación de sellados de goma sintéticos a prueba de aceite y un deflector de diseño exclusivo.

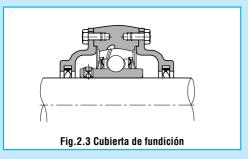
El sellado, fijado en el anillo exterior, es de acero reforzado y sus labios, en contacto con el anillo interior, están diseñados para minimizar el par por fricción.

El deflector se fija en el anillo interior del rodamiento con el que gira. Hay un pequeño juego entre la periferia y el anillo exterior.

En la cara exterior del deflector se encuentran unos salientes triangulares y, al girar el rodamiento, estos salientes del deflector crean un flujo de aire hacia el exterior del rodamiento. De esta forma, el deflector actúa como un ventilador que mantiene el polvo y el agua alejados del rodamiento.

Estos dos tipos de sellados en ambas caras del rodamiento impiden que haya fugas de grasa y que entren cuerpos extraños en el interior del rodamiento.


2.3.2 SOPORTES CON TAPAS


El soporte NSK con tapa está formado por una unidad estándar de rodamiento con una tapa exterior adicional para conseguir una mayor protección contra el polvo. En este diseño se han tenido en cuenta criterios especiales antipolvo.

Tanto el aloiamiento como en el rodamiento se instalan dispositivos de sellado de forma que las unidades de este tipo puedan funcionar de forma satisfactoria en ambientes tan adversos como molinos de harina, molinos de acero, fundiciones, plantas de galvanizado y plantas químicas, lugares donde se produce una gran cantidad de polvo v en donde se utilizan líquidos. Resultan altamente adecuados en entornos al aire libre en los que la lluvia y el polvo son inevitables, así como en maquinaria de la industria pesada como la construcción y en equipos de transporte

El sellado de goma de la tapa contacta con el eje a través de sus dos labios, tal como se indica en las Fig. 2.2 v 2.3. Al llenar con grasa la ranura entre los dos labios, se obtiene un excelente efecto de sellado y, al mismo tiempo, se lubrican las partes de contacto de los labios. Además, la ranura está diseñada de tal forma que cuando el eje se inclina el sellado de goma puede moverse en la dirección radial.

Cuando los soportes están expuestos a salpicaduras de agua, se las dota de un orificio de drenaje (de 5 a 8 mm, 0.2 a 0.3 pulgadas de diámetro) en la parte inferior de la cubierta, y la grasa debe ser aplicada en la cada lateral del propio rodamiento en lugar de la tapa.

2.4 AJUSTE SEGURO

El aiuste del rodamiento al eie se realiza apretando los tornillos de punta redonda, que se encuentran en el anillo interior. Se trata de una característica única que impide que el conjunto se afloje, incluso cuando el rodamiento esté sujeto a golpes y vibraciones.

2.5 AUTOALINEACIÓN

En los soportes NSK, la superficie exterior del rodamiento y la superficie interna del alojamiento son esféricas, de manera que la unidad es autoalineante. Cualquier desalineación del eje que pueda surgir de una fabricación de baia calidad o de errores en el ajuste quedará correctamente solucionada.

2.6 ELEVADA CAPACIDAD DE CARGA

El rodamiento utilizado en la unidad tiene la misma construcción interna que los rodamientos de las series 62 y 63, pueden aceptar cargas axiales así como cargas radiales, e incluso cargas compuestas. Las capacidades de carga nominales de estos rodamientos son considerablemente mayores que las de los correspondientes rodamientos autoalineantes usados en soportes estándar.

2.7 ALOJAMIENTOS LIGEROS Y RESISTENTES

Los alojamientos de los soportes NSK se pueden encontrar en varias formas. Están formadas por elementos de fundición de alta calidad, de una sola pieza, o por elementos de acero estampado con acabado de precisión, siendo éstos últimos más ligeros. En cualquier caso, están diseñados de forma práctica para combinar ligereza con una máxima resistencia.

2.8 FACILIDAD DE ENSAMBLAJE

El soporte NSK es una unidad integrada formada por un rodamiento y un alojamiento.

Puesto que el rodamiento se prelubrica al fabricarlo con la cantidad correcta de grasa de alta calidad de base de litio, puede montarse directamente sobre el eie. Basta con realizar un pequeño test de funcionamiento después del montaje.

2.9 AJUSTE EXACTO DEL ALOJAMIENTO

Para simplificar el aiuste del soporte y los defelctores de rodamientos, los alojamientos están dotados de un pasador, que puede utilizarse en caso necesario.

2.10 SUBSTITUCIÓN DE LOS RODAMIENTOS

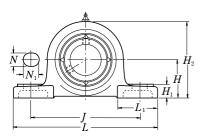
Los rodamientos usados en los soportes NSK son substituibles. En caso de fallo en un rodamiento, puede instalarse un nuevo rodamiento en el alojamiento existente.

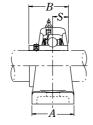
3. PARES DE APRIETE ACONSEJADOS

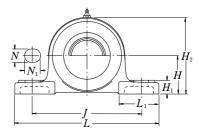
Tabla 3.1 Pares de apriete aconsejados para los tornillos

A) Series métricas, aplicados al tamaño métrico del diámetro interior.

	ón de los ro oles a los so		Designación de los tornillos	Pares de apriete N·m (máx.)
UC201 a UC205	_	_	M 5x0.8 x 7	3.9
UC206	_	UC305 a UC306	M 6x0.75x 8	4.9
UC207	UCX05	_	M 6x0.75x 8	5.8
UC208 a UC210	_	_	M 8x1 x10	7.8
UC211	UCX06 a UCX08	UC307	M 8x1 x10	9.8
UC212	UCX09	_	M10x1.25x12	16.6
UC213 a UC215	_	UC308 a UC309	M10x1.25x12	19.6
UC216	UCX10	_	M10x1.25x12	22.5
_	UCX11 a UCX12	_	M10x1.25x12	24.5
UC217 a UC218	UCX13 a UCX15	UC310 a UC314	M12x1.5 x13	29.4
_	UCX16 a UCX17	-	M12x1.5 x13	34.3
_	UCX18	UC315 a UC316	M14x1.5 x15	34.3
_	UCX20	UC317 a UC319	M16x1.5 x18	53.9
_	_	UC320 a UC324	M18x1.5 x20	58.8
_	_	UC326 a UC328	M20x1.5 x25	78.4

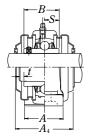

B) Series en pulgadas, aplicados al tamaño en pulgadas del diámetro interior.

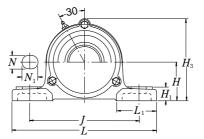

para e	ón de los ro el soporte olican los p	al que	Designación de los tornillos	Pares de apriete ibf-pulg. (max.)
UC201 a UC205	_	_	No.10 -32UNF	34
UC206	_	UC305 a UC306	1/4 -28UNF	43
UC207	UCX05	_	¹ /4 -28UNF	52
UC208 a UC210	_	_	5/16 -24UNF	69
UC211	UCX06 a UCX08	UC307	⁵ /16-24UNF	86
UC212	UCX09	_	3/8 -24UNF	147
UC213 a UC215	_	UC308 a UC309	³ /8 -24UNF	173
UC216	UCX10	_	³ /8 -24UNF	199
_	UCX11 a UCX12	_	³ /8 -24UNF	216
UC217 a UC218	UCX13 a UCX15	UC310 a UC314	1/2 -20UNF	260
_	UCX16 a UCX17	_	¹ /2 -20UNF	303
_	UCX18	UC315 a UC316	9/16 -18UNF	303
_	UCX20	UC317 a UC318	⁵ /8 -18UNF	477
_	_	UC320	⁵ /8 -18UNF	520

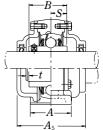

Designación de los rodamientos aplicables a los soportes	Designación de los tornillos	Pares de apriete N·m (máx.)
AS201 a 205	M5x0.8 x 7	3.4
AS206	M6x0.75x 8	4.4
AS207	M6x0.75x 8	4.9
AS208	M8x1 x10	6.8

para el soporte al que se aplican los pares	Designacionn de los tornillos	Pares de apriete ibf-pulg. (max.)
AS201 a 205	No 10-32UNF	30
AS206	1/4 -28UNF	39
AS207	1/4 -28UNF	43
AS208	⁵ /16-24UNF	60

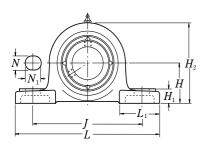
Soportes tipo silleta con tornillos de apriete

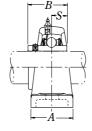


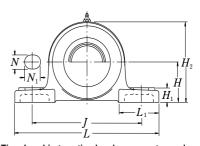

Tipo de cubierta anti polvo de acero estampado Extremo abierto Z-UCP...D1 Extremo cerrado ZM-UCP...D1


Diám. Eje	Designación soporte (¹)		Dimensiones nominales										Tamaño tornillo	Número de rodamiento
mm						mm	n pulga	das						
pulgadas		Н	L	J	Α	N	N_1	H ₁	H_2	L ₁	В	S	mm pulgadas	
12 1/2	UCP201D1 UCP201-008D1	30.2 1 3/16	127 5	95 3 3/4	38 1 1/2	13 1/2	16 5/8	14 9/16	62 2 7/16	42 1 21/32	31 1.2205	12.7 0.500	M10 3/8	UC201D1 UC201-008D1
15 9/16 5/8	UCP202D1 UCP202-009D1 UCP202-010D1	30.2 1 3/16	127 5	95 3 3/4	38 11/2	13 1/2	16 5/8	14 9/16	62 2 7/16	42 121/32	31 1.2205	12.7 0.500	M10 3/8	UC202D1 UC202-009D1 UC202-010D1
17 ¹¹ / ₁₆	UCP203D1 UCP203-011D1	30.2 1 3/16	127 5	95 3 ³ /4	38 1 ¹ /2	13 1/2	16 ⁵ /8	14 ⁹ /16	62 2 ⁷ /16	42 1 ²¹ /32	31 1.2205	12.7 0.500	M10 3/8	UC203D1 UC203-011D1
20 3/4	UCP204D1 UCP204-012D1	33.3 1 ⁵ /16	127 5	95 3 ³ / ₄	38 1 ¹ /2	13 1/2	16 ⁵ /8	14 9/16	65 2 ⁹ /16	42 1 21/32	31 1.2205	12.7 0.500	M10 3/8	UC204D1 UC204-012D1
7/8	UCP205D1 UCP205-013D1 UCP205-014D1 UCP205-015D1 UCP205-100D1	36.5 1 ⁷ /16	140 5 ¹ / ₂	105 4 ¹ /8	38 1 ¹ / ₂	13 1/2	16 ⁵ /8	15 19/ ₃₂	71 2 ²⁵ /32	42 1 ²¹ /32	34.1 1.3425	14.3 0.563	M10 3/8	UC205D1 UC205-013D1 UC205-014D1 UC205-015D1 UC205-100D1
11/8	UCP206D1 UCP206-101D1 UCP206-102D1 UCP206-103D1 UCP206-104D1	42.9 1 11/16	165 6 ¹ / ₂	121 43/4	48 17/8	17 21/32	20 25/32	17 21/32	83 3 9/32	54 2 1/8	38.1 1.5000	15.9 0.626	M14	UC206D1 UC206-101D1 UC206-102D1 UC206-103D1 UC206-104D1
35 1 ¹ / ₄ 1 ⁵ / ₁₆ 1 ³ / ₈ 1 ⁷ / ₁₆	UCP207D1 UCP207-104D1 UCP207-105D1 UCP207-106D1 UCP207-107D1	1 7/o	167 6 ⁹ / ₁₆	127 5	48 1 ⁷ /8	17 21/32	20 ²⁵ / ₃₂	18 ²³ / ₃₂	93 3 ²¹ / ₃₂	54 2 ¹ /8	42.9 1.6890	17.5 0.689	M14	UC207D1 UC207-104D1 UC207-105D1 UC207-106D1 UC207-107D1
40 11/2 1 ⁹ /16	UCP208D1 UCP208-108D1 UCP208-109D1	49.2 1 ¹⁵ /16	184 7 ¹ /4	137 5 ¹³ / ₃₂	54 2 ¹ /8	17 21/32	20 25/32	18 ²³ / ₃₂	98 3 ²⁷ /32	52 2 ¹ / ₁₆	49.2 1.9370	19 0.748	M14	UC208D1 UC208-108D1 UC208-109D1
45 1 ⁵ /8 1 ¹¹ / ₁₆ 1 ³ / ₄	UCP209D1 UCP209-110D1 UCP209-111D1 UCP209-112D1		190 7 ¹⁵ /32	146 5 ³ /4	54 2 ¹ /8	17 21/32	20 ²⁵ / ₃₂	20 25/32	106 4 ³ / ₁₆	60 2 ³ /8	49.2 1.9370	19 0.748	M14	UC209D1 UC209-110D1 UC209-111D1 UC209-112D1

Nota (1)Estas designaciones de soporte indican que son de tipo relubricable. Si se necesita el tipo sin mantenimiento, seleccione los tipos sin el sufijo "D1".

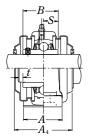


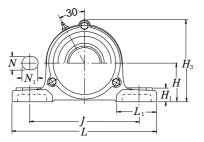


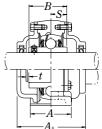

Tipo de cubierta de fundición anti polvo Extremo abierto C-UCP...D1 Extremo cerrado CM-UCP...D1

Número alojamiento	Número soporte con tapa de acero prensado	Número soporte con tapa de fundición	D	imensiones	s nominal	es	Masa del soporte			
			t	mm pu A₄	lgadas H ₃	A ₅		kg lb		
			ι		nax.	A ₅	UCP	Z(ZM)	C(CM)	
P203D1 P203D1	Z(ZM)-UCP201D1 Z(ZM)-UCP201-008D1	C(CM)-UCP201D1 C(CM)-UCP201-008D1	2 5/64	45 1 ²⁵ /32	67 2 ⁴¹ / ₆₄	62 2 ⁷ /16	0.7 1.5	0.7 1.5	1.0 2.2	
P203D1 P203D1 P203D1	Z(ZM)-UCP202D1 Z(ZM)-UCP202-009D1 Z(ZM)-UCP202-010D1	C(CM)-UCP202D1 C(CM)-UCP202-009D1 C(CM)-UCP202-010D1	2 5/64	45 1 ²⁵ /32	67 2 ⁴¹ / ₆₄	62 2 7/16	0.7 1.5	0.7 1.5	1.0 2.2	
P203D1 P203D1	Z(ZM)-UCP203D1 Z(ZM)-UCP203-011D1	C(CM)-UCP203D1 C(CM)-UCP203-011D1	2 5/64	45 1 ²⁵ /32	67 2 ⁴¹ / ₆₄	62 2 ⁷ /16	0.7 1.5	0.7 1.5	1.0 2.2	
P204D1 P204D1	Z(ZM)-UCP204D1 Z(ZM)-UCP204-012D1	C(CM)-UCP204D1 C(CM)-UCP204-012D1	2 5/64	45 1 ²⁵ /32	70 2 3/4	62 2 7/16	0.7 1.5	0.7 1.5	1.0 2.2	
P205D1 P205D1 P205D1 P205D1 P205D1	Z(ZM)-UCP205D1 Z(ZM)-UCP205-013D1 Z(ZM)-UCP205-014D1 Z(ZM)-UCP205-015D1 Z(ZM)-UCP205-100D1	C(CM)-UCP205D1 C(CM)-UCP205-013D1 C(CM)-UCP205-014D1 C(CM)-UCP205-015D1 C(CM)-UCP205-100D1	2 5/64	48 1 ²⁹ /32	76 3	70 2 ³ /4	1.8	0.9 2.0	2.6	
P206D1 P206D1 P206D1 P206D1 P206D1	Z(ZM)-UCP206D1 Z(ZM)-UCP206-101D1 Z(ZM)-UCP206-102D1 Z(ZM)-UCP206-103D1	C(CM)-UCP206D1 C(CM)-UCP206-101D1 C(CM)-UCP206-102D1 C(CM)-UCP206-103D1	2 5/64	53 2 ³ /32	88 3 ¹⁵ /32	75 2 ¹⁵ / ₁₆	1.3 2.9	1.4 3.1	1.9 4.2	
P207D1 P207D1 P207D1 P207D1 P207D1	Z(ZM)-UCP207D1 Z(ZM)-UCP207-104D1 Z(ZM)-UCP207-105D1 Z(ZM)-UCP207-106D1 —	C(CM)-UCP207D1 C(CM)-UCP207-104D1 C(CM)-UCP207-105D1 C(CM)-UCP207-106D1	3 1/8	60 2 ³ /8	99 3 ²⁹ /32	80 3 ⁵ /32	1.6 3.5	1.7 3.7	2.3 5.1	
P208D1 P208D1 P208D1	Z(ZM)-UCP208D1 Z(ZM)-UCP208-108D1 Z(ZM)-UCP208-109D1	C(CM)-UCP208D1 C(CM)-UCP208-108D1 C(CM)-UCP208-109D1	3 1/8	69 2 ²³ / ₃₂	105 4 ¹ / ₈	90 3 ¹⁷ / ₃₂	1.9 4.2	2.1 4.6	3.2 7.1	
P209D1 P209D1 P209D1 P209D1	Z(ZM)-UCP209D1 Z(ZM)-UCP209-110D1 Z(ZM)-UCP209-111D1 Z(ZM)-UCP209-112D1	C(CM)-UCP209D1 C(CM)-UCP209-110D1 C(CM)-UCP209-111D1 C(CM)-UCP209-112D1	3 1/8	69 2 ²³ / ₃₂	113 4 7/16	95 3 3/4	2.2 4.9	2.4 5.3	3.5 7.7	

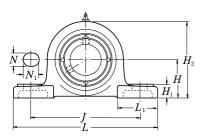
Soportes tipo silleta con tornillos de apriete

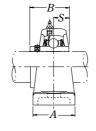


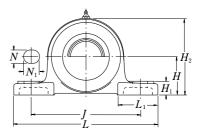

Tipo de cubierta anti polvo de acero estampado Extremo abierto Z-UCP...D1 Extremo cerrado ZM-UCP...D1


Diám. Eje	Designación soporte (1)		Dimensiones nominales											Número de rodamiento
mm						mn	n pulga	das						
pulgadas		Н	L	J	Α	N	N_1	H ₁	H_2	L ₁	В	S	mm pulgadas	
1 ¹³ /16 1 ⁷ /8	UCP210D1 UCP210-113D1 UCP210-114D1 UCP210-115D1 UCP210-200D1	57.2 2 ¹ /4	206 8 ¹ /8	159 6 ¹ /4	60 2 ³ /8	20 25/32	23 ²⁹ / ₃₂	21 ¹³ / ₁₆	114 4 ¹ / ₂	65 2 ⁹ / ₁₆	51.6 2.0315	19 0.748	M16	UC210D1 UC210-113D1 UC210-114D1 UC210-115D1 UC210-200D1
55 2	UCP211D1 UCP211-200D1	63.5	219	171	60	20	23	23	126	65	55.6	22.2	M16	UC211D1 UC211-200D1
2 ¹ / ₁₆ 2 ¹ / ₈	UCP211-201D1 UCP211-202D1 UCP211-203D1	2 ¹ /2	8 5/8	623/32	23/8	25/32	29/32	29/32	431/32	2 9/16	2.1890	0.874	5/8	UC211-200D1 UC211-201D1 UC211-202D1 UC211-203D1
60 2 ¹ / ₄	UCP212D1 UCP212-204D1	69.8	241	184	70	20	23	25	138	70	65.1	25.4	M16	UC212D1 UC212-204D1
2 ⁵ /16 2 ³ /8	UCP212-204D1 UCP212-205D1 UCP212-206D1 UCP212-207D1	2 3/4	91/2	71/4	2 ³ / ₄	25/32	29/32	31/32	5 ⁷ /16	2 3/4	2.5630	1.000	5/8	UC212-205D1 UC212-206D1 UC212-207D1
65	UCP213D1	76.2	265	203	70	25	28	27	151	77	65.1	25.4	M20	UC213D1
2 ¹ / ₂ 2 ⁹ / ₁₆	UCP213-208D1 UCP213-209D1	3	10 7/16	8	23/4	31/32	13/32	1 ¹ /16	5 ¹⁵ /16	31/32	2.5630	1.000	3/4	UC213-208D1 UC213-209D1
70	UCP214D1	79.4	266	210	72	25	28	27	157	77	74.6	30.2	M20	UC214D1
	UCP214-210D1 UCP214-211D1 UCP214-212D1	31/8	10 ¹⁵ /32	8 9/32	2 ²⁷ /32	31/32	13/32	1 ¹ /16	63/16	31/32	2.9370	1.189	3/4	UC214-210D1 UC214-211D1 UC214-212D1
75 213/16	UCP215D1 UCP215-213D1	82.6	275	217	74	25	28	28	163	80	77.8	33.3	M20	UC215D1 UC215-213D1
2 7/8	UCP215-214D1 UCP215-215D1 UCP215-300D1	31/4	10 ¹³ / ₁₆	817/32	2 29/32	31/32	1 3/32	1 ³ /32	613/32	3 5/32	3.0630	1.311	3/4	UC215-215D1 UC215-214D1 UC215-215D1 UC215-300D1
80 3 ¹ / ₁₆	UCP216D1 UCP216-301D1	88.9	292	232	78	25	28	30	175	85	82.6	33.3	M20	UC216D1 UC216-301D1
31/8	UCP216-301D1 UCP216-302D1 UCP216-303D1	31/2	11 ¹ /2	91/8	3 ¹ /16	31/32	1 3/32	1 3/16	67/8	311/32	3.2520	1.311	3/4	UC216-301D1 UC216-302D1 UC216-303D1

Nota (1)Estas designaciones de soporte indican que son de tipo relubricable. Si se necesita el tipo sin mantenimiento, seleccione los tipos sin el sufijo "D1".

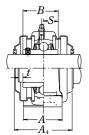


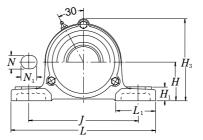


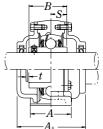

Tipo de cubierta de fundición anti polvo Extremo abierto C-UCP...D1 Extremo cerrado CM-UCP...D1

Número alojamiento	Número soporte con tapa de acero prensado	Número soporte con tapa de fundición	D	imensiones	s nominal	es	Mas	a de la uni	idad
			mm pulgadas t A_4 H_3 A_5			kg lb			
				m	ıax.		UCP	Z(ZM)	C(CM)
P210D1	Z(ZM)-UCP210D1	C(CM)-UCP210D1	3	76	119	100	2.6	2.8	4.3
P210D1 P210D1 P210D1 P210D1	Z(ZM)-UCP210-113D1 Z(ZM)-UCP210-114D1 Z(ZM)-UCP210-115D1 —	C(CM)-UCP210-113D1 C(CM)-UCP210-114D1 C(CM)-UCP210-115D1	1/8	3	4 ¹¹ /16	3 ¹⁵ /16	5.7	6.2	9.5
P211D1	Z(ZM)-UCP211D1	C(CM)-UCP211D1	4	77	130	100	3.3	3.6	5.2
P211D1 P211D1 P211D1 P211D1	Z(ZM)-UCP211-200D1 Z(ZM)-UCP211-201D1 Z(ZM)-UCP211-202D1 Z(ZM)-UCP211-203D1	C(CM)-UCP211-200D1 C(CM)-UCP211-201D1 C(CM)-UCP211-202D1 C(CM)-UCP211-203D1	5/32	31/32	5 ¹ /8	3 ¹⁵ / ₁₆	7.3	7.9	11
P212D1	Z(ZM)-UCP212D1	C(CM)-UCP212D1	4	89	143	115	4.6	5.0	6.7
P212D1 P212D1 P212D1 P212D1	Z(ZM)-UCP212-204D1 Z(ZM)-UCP212-205D1 Z(ZM)-UCP212-206D1 —	C(CM)-UCP212-204D1 C(CM)-UCP212-205D1 C(CM)-UCP212-206D1	5/33	3 ¹ /2	5 ⁵ /8	417/32	10	11	15
P213D1	Z(ZM)-UCP213D1	C(CM)-UCP213D1	4	91	155	120	5.9	6.3	7.8
P213D1 P213D1	Z(ZM)-UCP213-208D1 Z(ZM)-UCP213-209D1	C(CM)-UCP213-208D1 C(CM)-UCP213-209D1	5/32	319/32	6 ³ /32	4 23/32	13	14	17
P214D1	_	C(CM)-UCP214D1	4	_	162	135	6.6	—	9.3
P214D1 P214D1 P214D1	_	C(CM)-UCP214-210D1 C(CM)-UCP214-211D1 C(CM)-UCP214-212D1	5/32	_	63/8	5 ⁵ /16	15	_	21
P215D1	_	C(CM)-UCP215D1	4	_	168	135	7.4	_	11
P215D1 P215D1 P215D1 P215D1	-	C(CM)-UCP215-213D1 C(CM)-UCP215-214D1 C(CM)-UCP215-215D1 C(CM)-UCP215-300D1	5/32	_	6 ⁵ /8	5 ⁵ /16	16	_	24
P216D1	_	C(CM)-UCP216D1	4	_	181	145	9.0	_	13
P216D1 P216D1 P216D1	_	C(CM)-UCP216-301D1 C(CM)-UCP216-302D1 C(CM)-UCP216-303D1	5/32	_	71/8	523/32	20	_	29

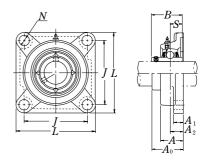
Soportes tipo silleta con tornillos de apriete




Tipo de cubierta anti polvo de acero estampado Extremo abierto Z-UCP...D1 Extremo cerrado ZM-UCP...D1

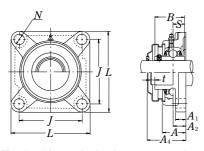

Diám. Eje	Designación soporte (1)		Dimensiones nominales										Tamaño tornillo	Número de rodamiento
mm		mm pulgadas										mm		
pulgadas		Н	L	J	Α	N	N_1	H ₁	H_2	L_1	В	S	pulgadas	
85	UCP217D1 UCP217-304D1	95.2	310	247	83	25	28	32	187	85	85.7	34.1	M20	UC217D1
	UCP217-305D1 UCP217-307D1	33/4	12 7/32	923/32	3 9/32	31/32	13/32	1 ¹ /4	73/8	311/32	3.3740	1.343	3/4	UC217-304D1 UC217-305D1 UC217-307D1
90 3 ¹ / ₂	UCP218D1 UCP218-308D1	101.6 4	327 12 ⁷ /8	262 10 ⁵ /16	88 3 ¹⁵ /32	27 1 ¹ / ₁₆	30 1 ³ /16	33 1 ⁵ / ₁₆	200 7 ⁷ /8	90 3 ¹⁷ / ₃₂	96 3.7795	39.7 1.563	M22 7/8	UC218D1 UC218-308D1

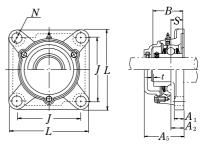
Nota (¹) Estas designaciones de soporte indican el tipo relubricable. Si se necesita el tipo sin mantenimiento, seleccione los tipos sin el sufijo "D1".



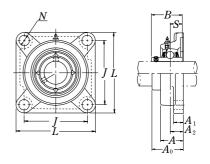
Tipo de cubierta de fundición anti polvo Extremo abierto C-UCP...D1 Extremo cerrado CM-UCP...D1

Número alojamiento	Número soporte con tapa de acero prensado	Número soporte con tapa de fundición	Di	mension	es nominale	Masa de la unidad			
			t	A_4	llgadas H_3 A_5 nax.		UCP	kg lb	
P217D1	_	C(CM)-UCP217D1	5	_	191	155	11	_	15
P217D1 P217D1 P217D1	_	C(CM)-UCP217-304D1 C(CM)-UCP217-305D1 C(CM)-UCP217-307D1	13/64	_	7 ¹⁷ /32	63/32	24	_	33
P218D1 P218D1	=	C(CM)-UCP218D1 C(CM)-UCP218-308D1	5 13/64	_	204 8 1/32	165 6 1/2	13 29	_	18 40


Soportes tipo brida cuadrada con tornillos de apriete

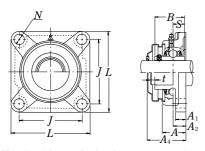

Diám. Eje	Designación soporte(1)				Dime	nsiones n	ominale	5			Tamaño tornillo	Número de rodamiento
mm						mm pulga	ıdas					
pulgadas		L	J	A_2	A_1	Α	N	A_0	В	S	mm pulgadas	
12 1/2	UCF201D1 UCF201-008D1	86 3 ³ /8	64 2 ³³ /64	15 ¹⁹ /32	11 ⁷ /16	25.5 1	12 ¹⁵ /32	33.3 1 ⁵ /16	31 1.2205	12.7 0.500	M10 ³ /8	UC201D1 UC201-008D1
15 ⁹ /16 5/8	UCF202D1 UCF202-009D1 UCF202-010D1	86 3 ³ /8	64 2 ³³ /64	15 19/ ₃₂	11 ⁷ /16	25.5 1	12 ¹⁵ / ₃₂	33.3 1 ⁵ / ₁₆	31 1.2205	12.7 0.500	M10 3/8	UC202D1 UC202-009D1 UC202-010D1
17 ¹¹ / ₁₆	UCF203D1 UCF203-011D1	86 3 ³ /8	64 2 ³³ /64	15 19/32	11 ⁷ /16	25.5 1	12 ¹⁵ /32	33.3 1 ⁵ /16	31 1.2205	12.7 0.500	M10 3/8	UC203D1 UC203-011D1
20 3/4	UCF204D1 UCF204-012D1	86 3 ³ /8	64 2 ³³ /64	15 19/32	11 ⁷ /16	25.5 1	12 ¹⁵ /32	33.3 1 ⁵ /16	31 1.2205	12.7 0.500	M10 3/8	UC204D1 UC204-012D1
7/8	UCF205D1 UCF205-013D1 UCF205-014D1 UCF205-015D1 UCF205-100D1	95 3 ³ / ₄	70 2 ³ /4	16 5/8	13 1/2	27 1 ¹ / ₁₆	12 ¹⁵ / ₃₂	35.8 1 ¹³ / ₃₂	34.1 1.3425	14.3 0.563	M10	UC205D1 UC205-013D1 UC205-014D1 UC205-015D1 UC205-100D1
30 1 ¹ /16 1 ¹ /8 1 ³ /16 1 ¹ /4	UCF206D1 UCF206-101D1 UCF206-102D1 UCF206-103D1 UCF206-104D1	108 4 ¹ / ₄	83 3 ¹⁷ / ₆₄	18 ⁴⁵ / ₆₄	13 1/2	31 1 ⁷ / ₃₂	12 ¹⁵ / ₃₂	40.2 1 ³⁷ / ₆₄	38.1 1.5000	15.9 0.626	M10	UC206D1 UC206-101D1 UC206-102D1 UC206-103D1 UC206-104D1
35 1 ¹ / ₄ 1 ⁵ / ₁₆ 1 ³ / ₈ 1 ⁷ / ₁₆	UCF207D1 UCF207-104D1 UCF207-105D1 UCF207-106D1 UCF207-107D1	117 4 ¹⁹ /32	92 3 ⁵ /8	19 3/4	15 ¹⁹ /32	34 1 ¹¹ /32	14 ³⁵ / ₆₄	44.4 1 ³ / ₄	42.9 1.6890	17.5 0.689	M12	UC207D1 UC207-104D1 UC207-105D1 UC207-106D1 UC207-107D1
40 1 ¹ /2 1 ⁹ /16	UCF208D1 UCF208-108D1 UCF208-109D1	130 5 ¹ /8	102 4 ¹ / ₆₄	21 ⁵³ / ₆₄	15 ¹⁹ /32	36 1 ¹³ /32	16 ⁵ /8	51.2 2 ¹ /64	49.2 1.9370	19 0 .748	M14	UC208D1 UC208-108D1 UC208-109D1
45 1 ⁵ /8 1 ¹¹ / ₁₆ 1 ³ / ₄	UCF209D1 UCF209-110D1 UCF209-111D1 UCF209-112D1	137 5 ¹³ /32	105 4 ⁹ / ₆₄	22 55/ ₆₄	16 5/8	38 1 ¹ / ₂	16 ⁵ /8	52.2 2 ¹ / ₁₆	49.2 1.9370	19 0.748	M14	UC209D1 UC209-110D1 UC209-111D1 UC209-112D1

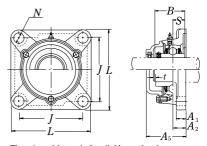
Nota (¹) Estas designaciones de soporte indican el tipo relubricable. Si se necesita el tipo sin mantenimiento, seleccione los tipos sin el sufijo "D1".


Tipo de cubierta anti polvo de acero estampado Extremo abierto Z-UCF...D1 Extremo cerrado ZM-UCF...D1

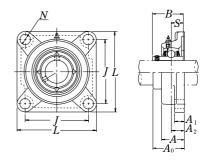
Tipo de cubierta de fundición anti polvo Extremo abierto C-UCF...D1
Extremo cerrado CM-UCF...D1

Número alojamiento	Número soporte con tapa de acero prensado	Número soporte con tapa de fundición	Dimen	siones no	minales	Mas	a de la uni	dad
				nm pulgad			kg lb	
			t	A ₄ max.	A ₅	UCP	Z(ZM)	C(CM)
F204D1 F204D1	Z(ZM)-UCF201D1 Z(ZM)-UCF201-008D1	C(CM)-UCF201D1 C(CM)-UCF201-008D1	2 5/64	38 1 ¹ /2	46 1 13/16	0.7 1.5	0.7 1.5	0.9 2.0
F204D1 F204D1 F204D1	Z(ZM)-UCF202D1 Z(ZM)-UCF202-009D1 Z(ZM)-UCF202-010D1	C(CM)-UCF202D1 C(CM)-UCF202-009D1 C(CM)-UCF202-010D1	2 ⁵ /64	38 1 ¹ /2	46 1 ¹³ /16	0.7 1.5	0.7 1.5	0.9 2.0
F204D1 F204D1	Z(ZM)-UCF203D1 Z(ZM)-UCF203-011D1	C(CM)-UCF203D1 C(CM)-UCF203-011D1	2 5/64	38 1 ¹ /2	46 1 ¹³ / ₁₆	0.6 1.3	0.7 1.5	0.9 2.0
F204D1 F204D1	Z(ZM)-UCF204D1 Z(ZM)-UCF204-012D1	C(CM)-UCF204D1 C(CM)-UCF204-012D1	2 5/64	38 1 ¹ /2	46 1 13/16	0.6 1.3	0.7 1.5	0.9 2.0
F205D1 F205D1 F205D1 F205D1 F205D1	Z(ZM)-UCF205D1 Z(ZM)-UCF205-013D1 Z(ZM)-UCF205-014D1 Z(ZM)-UCF205-015D1 Z(ZM)-UCF205-100D1	C(CM)-UCF205D1 C(CM)-UCF205-013D1 C(CM)-UCF205-014D1 C(CM)-UCF205-015D1 C(CM)-UCF205-100D1	2 ⁵ / ₆₄	40 1 ¹⁹ /32	51 2	0.8 1.8	0.8 1.8	1.0
F206D1 F206D1 F206D1 F206D1 F206D1	Z(ZM)-UCF206D1 Z(ZM)-UCF206-101D1 Z(ZM)-UCF206-102D1 Z(ZM)-UCF206-103D1	C(CM)-UCF206D1 C(CM)-UCF206-101D1 C(CM)-UCF206-102D1 C(CM)-UCF206-103D1	2 ⁵ /64	45 1 ³ / ₄	56 2 ⁷ /32	1.0	1.1 2.4	1.5 3.3
F207D1 F207D1 F207D1 F207D1 F207D1	Z(ZM)-UCF207D1 Z(ZM)-UCF207-104D1 Z(ZM)-UCF207-105D1 Z(ZM)-UCF207-106D1 —	C(CM)-UCF207D1 C(CM)-UCF207-104D1 C(CM)-UCF207-105D1 C(CM)-UCF207-106D1	3 1/8	49 1 ¹⁵ /16	59 2 ⁵ /16	1.4 3.1	1.5 3.3	2.0
F208D1 F208D1 F208D1	Z(ZM)-UCF208D1 Z(ZM)-UCF208-108D1 Z(ZM)-UCF208-109D1	C(CM)-UCF208D1 C(CM)-UCF208-108D1 C(CM)-UCF208-109D1	3 1/8	56 2 ³ /16	66 2 ¹⁹ / ₃₂	1.8 4.0	1.9 4.2	2.6 5.7
F209D1 F209D1 F209D1 F209D1	Z(ZM)-UCF209D1 Z(ZM)-UCF209-110D1 Z(ZM)-UCF209-111D1 Z(ZM)-UCF209-112D1	C(CM)-UCF209D1 C(CM)-UCF209-110D1 C(CM)-UCF209-111D1 C(CM)-UCF209-112D1	3 1/8	57 2 ¹ /4	70 2 ³ /4	2.2 4.9	2.3 5.1	2.8 6.2


Soportes tipo brida cuadrada con tornillos de apriete

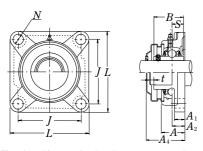

Diám. Eje	Designación soporte(1)				Dime	ensiones n	ominale	S			Tamaño tornillo	Número de rodamiento
mm pulgadas						mm pulga	adas				mm	
pulyauas		L	J	A_2	A ₁	Α	N	A_0	В	S	pulgadas	
17/8	UCF210D1 UCF210-113D1 UCF210-114D1 UCF210-115D1	143 5 ⁵ /8	111 4 ³ / ₈	22 55/ ₆₄	16 ⁵ /8	40 1 ⁹ /16	16 ⁵ /8	54.6 2 5/32	51.6 2.0315	19 0.748	M14	UC210D1 UC210-113D1 UC210-114D1 UC210-115D1
2	UCF210-200D1											UC210-200D1
55 2	UCF211D1 UCF211-200D1	162	130	25	18	43	19	58.4	55.6	22.2	M16	UC211D1 UC211-200D1
21/ ₁₆ 21/ ₈	UCF211-200D1 UCF211-201D1 UCF211-202D1 UCF211-203D1	6 3/8	51/8	63/64	23/32	1 ¹¹ /16	3/4	2 ¹⁹ /64	2.1890	0.874	5/8	UC211-200D1 UC211-201D1 UC211-202D1 UC211-203D1
60	UCF212D1	175	143	29	18	48	19	68.7	65.1	25.4	M16	UC212D1
2 ¹ / ₄ 2 ⁵ / ₁₆ 2 ³ / ₈ 2 ⁷ / ₁₆	UCF212-204D1 UCF212-205D1 UCF212-206D1 UCF212-207D1	67/8	55/8	19/64	23/32	1 ⁷ /8	3/4	2 ⁴⁵ /64	2.5630	1.000	5/8	UC212-204D1 UC212-205D1 UC212-206D1 UC212-207D1
65	UCF213D1	187	149	30	22	50	19	69.7	65.1	25.4	M16	UC213D1
2 ¹ / ₂ 2 ⁹ / ₁₆	UCF213-208D1 UCF213-209D1	73/8	5 ⁵⁵ /64	1 3/16	7/8	1 31/32	3/4	23/4	2.5630	1.000	5/8	UC213-208D1 UC213-209D1
70	UCF214D1	193	152	31	22	54	19	75.4	74.6	30.2	M16	UC214D1
2 ⁵ /8 2 ¹¹ / ₁₆ 2 ³ / ₄	UCF214-210D1 UCF214-211D1 UCF214-212D1	719/32	563/64	1 7/32	7/8	21/8	3/4	2 31/32	2.9370	1.189	5/8	UC214-210D1 UC214-211D1 UC214-212D1
75 213/	UCF215D1	200	159	34	22	56	19	78.5	77.8	33.3	M16	UC215D1
27/8	UCF215-213D1 UCF215-214D1 UCF215-215D1 UCF215-300D1	77/8	6 ¹⁷ /64	1 11/32	7/8	2 7/32	3/4	3 3/32	3.0630	1.311	5/8	UC215-213D1 UC215-214D1 UC215-215D1 UC215-300D1
80	UCF216D1	208	165	34	22	58	23	83.3	82.6	33.3	M20	UC216D1
31/ ₁₆ 31/ ₈ 3 ³ / ₁₆	UCF216-301D1 UCF216-302D1 UCF216-303D1	8 3/16	61/2	1 11/32	7/8	2 9/32	29/32	3 9/32	3.2520	1.311	3/4	UC216-301D1 UC216-302D1 UC216-303D1

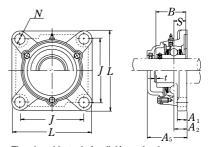
Nota (¹) Estas designaciones de soporte indican el tipo relubricable. Si se necesita el tipo sin mantenimiento, seleccione los tipos sin el sufijo "D1".


Tipo de cubierta anti polvo de acero estampado Extremo abierto Z-UCF...D1 Extremo cerrado ZM-UCF...D1

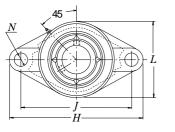
Tipo de cubierta de fundición anti polvo
Extremo abierto C-UCF...D1
Extremo cerrado CM-UCF...D1

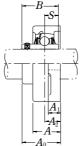
Número alojamiento	Número soporte con tapa de acero prensado	Número soporte con tapa de fundición	Dimen	isiones noi	minales	Mas	a de la uni	dad
			n t	nm pulgad A₄	as A ₅		kg lb	
			·	max.	Λ ₅	UCF	Z(ZM)	C(CM)
F210D1 F210D1	Z(ZM)-UCF210D1 Z(ZM)-UCF210-113D1	C(CM)-UCF210D1 C(CM)-UCF210-113D1	3	60	72	2.4	2.5	3.4
F210D1 F210D1 F210D1 F210D1	Z(ZM)-UCF210-113D1 Z(ZM)-UCF210-115D1 —	C(CM)-UCF210-113D1 C(CM)-UCF210-114D1 C(CM)-UCF210-115D1	1/8	2 3/8	2 ²⁷ / ₃₂	5.3	5.5	7.5
F211D1 F211D1	Z(ZM)-UCF211D1 Z(ZM)-UCF211-200D1	C(CM)-UCF211D1 C(CM)-UCF211-200D1	4	64	75	3.6	3.7	4.6
F211D1 F211D1 F211D1	Z(ZM)-UCF211-201D1 Z(ZM)-UCF211-202D1 Z(ZM)-UCF211-203D1	C(CM)-UCF211-201D1 C(CM)-UCF211-202D1 C(CM)-UCF211-203D1	5/32	2 ¹ / ₂	215/16	7.9	8.2	10
F212D1 F212D1	Z(ZM)-UCF212D1 Z(ZM)-UCF212-204D1	C(CM)-UCF212D1 C(CM)-UCF212-204D1	4	74	86	4.4	4.6	5.9
F212D1 F212D1 F212D1	Z(ZM)-UCF212-205D1 Z(ZM)-UCF212-206D1	C(CM)-UCF212-205D1 C(CM)-UCF212-206D1	5/32	2 ²⁹ /32	33/8	9.7	10	13
F213D1	Z(ZM)-UCF213D1	C(CM)-UCF213D1	4	76	90	5.5	5.7	7.2
F213D1 F213D1	Z(ZM)-UCF213-208D1 Z(ZM)-UCF213-209D1	C(CM)-UCF213-208D1 C(CM)-UCF213-209D1	5/32	3	317/32	12	13	16
F214D1 F214D1	Ξ	C(CM)-UCF214D1 C(CM)-UCF214-210D1	4	_	98	6.1	_	7.8
F214D1 F214D1	_	C(CM)-UCF214-211D1 C(CM)-UCF214-212D1	5/32	_	327/32	13	_	17
F215D1 F215D1	_	C(CM)-UCF215D1 C(CM)-UCF215-213D1	4	_	102	6.9	_	8.6
F215D1 F215D1 F215D1		C(CM)-UCF215-214D1 C(CM)-UCF215-215D1 C(CM)-UCF215-300D1	5/32	_	41/32	15	_	19
F216D1 F216D1	_	C(CM)-UCF216D1 C(CM)-UCF216-301D1	4	_	106	8.1	_	10
F216D1 F216D1 F216D1	_	C(CM)-UCF216-301D1 C(CM)-UCF216-302D1 C(CM)-UCF216-303D1	5/32	_	43/16	18	_	22

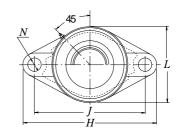

Soportes tipo brida cuadrada con tornillos de apriete


Diám. Eje	Designación soporte(1)				Dime	nsiones n	ominales	s			Tamaño tornillo	Número de rodamiento
mm pulgadas		L	J	A_2	A_1	mm pulga A	ndas N	A_0	В	S	mm pulgadas	
85 3 ¹ / ₄ 3 ⁵ / ₁₆ 3 ⁷ / ₁₆	UCF217D1 UCF217-304D1 UCF217-305D1 UCF217-307D1	220 8 ²¹ / ₃₂	175 6 ⁵⁷ /64	36 1 ²⁷ / ₆₄	24 15/ ₁₆	63 2 ¹⁵ / ₃₂	23	87.6 3 ²⁹ / ₆₄	85.7 3.3740	34.1	M20 3/4	UC217D1 UC217-304D1 UC217-305D1 UC217-307D1
90 3 ¹ / ₂	UCF218D1 UCF218-308D1	235 9 ¹ / ₄	187 7 ²³ / ₆₄	40 1 ³⁷ / ₆₄	24 ¹⁵ / ₁₆	68 2 ¹¹ / ₁₆	23 ²⁹ / ₃₂	96.3 3 ⁵¹ / ₆₄	96 3.7795	39.7 1.563	M20 3/4	UC218D1 UC218-308D1

Nota (¹) Estas designaciones de soporte indican el tipo relubricable. Si se necesita el tipo sin mantenimiento, seleccione los tipos sin el sufijo "D1".

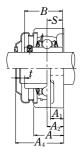

Tipo de cubierta anti polvo de acero estampado Extremo abierto Z-UCF...D1 Extremo cerrado ZM-UCF...D1

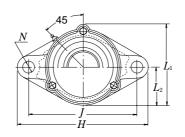


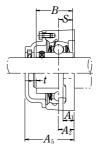

Tipo de cubierta de fundición anti polvo Extremo abierto C-UCF...D1
Extremo cerrado CM-UCF...D1

Número alojamiento	Número soporte con tapa de acero prensado	Número soporte con tapa de fundición	Dimens	iones no	minales	Mas	a de la uni	dad
			mı t	m pulgad A ₄ max.	as A ₅	UCF	kg lb	C(CM)
F217D1 F217D1 F217D1 F217D1	- -	C(CM)-UCF217D1 C(CM)-UCF217-304D1 C(CM)-UCF217-305D1 C(CM)-UCF217-307D1	5 13/ ₆₄	_ _	114 4 ¹ / ₂	9.3 21	_ _	12 26
F218D1 F218D1	Ξ	C(CM)-UCF218D1 C(CM)-UCF218-308D1	5 13/ ₆₄	_	122 4 ¹³ / ₁₆	11 24	_	15 33

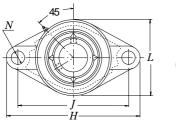
Soportes tipo brida rómbica con tornillos de apriete

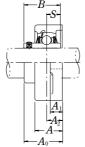


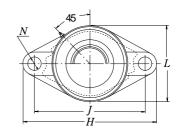

Tipo de cubierta anti polvo de acero estampado Extremo abierto Z-UCFL...D1 Extremo cerrado ZM-UCFL...D1


Diám. Eje	Designación soporte(1)				Dir	nension	es nomi	nales				Tamaño tornillo	Número de rodamiento
mm						mm p	ulgadas						
pulgadas		Н	J	A_2	A_1	Α	N	L	A_0	В	S	mm pulgadas	
12 1/2	UCFL201D1 UCFL201-008D1	113 4 ⁷ / ₁₆	90 3 ³⁵ / ₆₄	15 19/32	11 ⁷ /16	25.5 1	12 ¹⁵ /32	60 2 ³ /8	33.3 1 ⁵ / ₁₆	31 1.2205	12.7 0.500	M10 3/8	UC201D1 UC201-008D1
15	UCFL202D1	113	90	15	11	25.5	12	60	33.3	31	12.7	M10	UC202D1
9/16 5/8	UCFL202-009D1 UCFL202-010D1	4 7/16	335/64	19/32	7/16	1	15/32	2 3/8	1 5/16	1.2205	0.500	3/8	UC202-009D1 UC202-010D1
17 ¹¹ / ₁₆	UCFL203D1 UCFL203-011D1	113 4 ⁷ / ₁₆	90 3 ³⁵ / ₆₄	15 19/32	11 ⁷ /16	25.5 1	12 15/32	60 2 ³ /8	33.3 1 ⁵ / ₁₆	31 1.2205	12.7 0.500	M10 3/8	UC203D1 UC203-011D1
20 3/4	UCFL204D1 UCFL204-012D1	113 4 ⁷ / ₁₆	90 3 ³⁵ / ₆₄	15 19/32	11 ⁷ /16	25.5 1	12 ¹⁵ /32	60 2 ³ /8	33.3 1 ⁵ / ₁₆	31 1.2205	12.7 0.500	M10 3/8	UC204D1 UC204-012D1
25	UCFL205D1	130	99	16	13	27	16	68	35.8	34.1	14.3	M14	UC205D1
7/8	UCFL205-013D1 UCFL205-014D1 UCFL205-015D1 UCFL205-100D1	5 ¹ /8	357/64	5/8	1/2	1 ¹ /16	5/8	211/16	1 13/32	1.3425	0.563	1/2	UC205-013D1 UC205-014D1 UC205-015D1 UC205-100D1
30	UCFL206D1	148	117	18	13	31	16	80	40.2	38.1	15.9	M14	UC206D1
1 ¹ /16 1 ¹ /8 1 ³ /16 1 ¹ /4	UCFL206-101D1 UCFL206-102D1 UCFL206-103D1 UCFL206-104D1	5 ¹³ / ₁₆	4 ³⁹ / ₆₄	45/64	1/2	1 ⁷ /32	5/8	3 5/32	1 37/64	1.5000	0.626	1/2	UC206-101D1 UC206-102D1 UC206-103D1 UC206-104D1
35	UCFL207D1	161	130	19	15	34	16	90	44.4	42.9	17.5	M14	UC207D1
1 ¹ /4 1 ⁵ /16 1 ³ /8 1 ⁷ /16	UCFL207-104D1 UCFL207-105D1 UCFL207-106D1 UCFL207-107D1	611/32	51/8	3/4	19/32	1 11/32	5/8	317/32	13/4	1.6890	0.689	1/2	UC207-104D1 UC207-105D1 UC207-106D1 UC207-107D1
40	UCFL208D1	175	144	21	15	36	16	100	51.2	49.2	19	M14	UC208D1
1 ¹ /2 1 ⁹ /16	UCFL208-108D1 UCFL208-109D1	67/8	543/64	53/64	19/32	1 13/32	5/8	3 ¹⁵ / ₁₆	21/64	1.9370	0.748	1/2	UC208-108D1 UC208-109D1
45 45 / -	UCFL209D1	188	148	22	16	38	19	108	52.2	49.2	19	M16	UC209D1
1 ⁵ /8 1 ¹¹ / ₁₆ 1 ³ / ₄	UCFL209-110D1 UCFL209-111D1 UCFL209-112D1	713/32	5 53/64	55/64	5/8	11/2	3/4	41/4	2 ¹ /16	1.9370	0.748	5/8	UC209-110D1 UC209-111D1 UC209-112D1

Nota (¹) Estas designaciones de soporte indican el tipo relubricable. Si se necesita el tipo sin mantenimiento, seleccione los tipos sin el sufijo "D1".

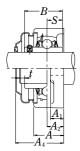


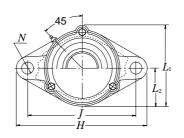


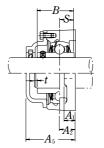

Tipo de cubierta de fundición anti polvo Extremo abierto C-UCFL···D1 Extremo cerrado CM-UCFL···D1

Número alojamiento	Número soporte con tapa de acero prensado	Número soporte con tapa de fundición		Dimensi	iones no	minales		Mas	a de la uni	dad
			t	mr A ₄	n pulgad A ₅ max.	as L ₁	L_2	UCFL	kg lb	C(CM)
FL204D1 FL204D1	Z(ZM)-UCFL201D1 Z(ZM)-UCFL201-008D1	C(CM)-UCFL201D1 C(CM)-UCFL201-008D1	2 5/64	38 1 ¹ /2	46 1 ¹³ /16	67 2 5/8	30 1 ³ / ₁₆	0.6 1.3	0.6 1.3	0.8 0.8
FL204D1 FL204D1 FL204D1	Z(ZM)-UCFL202D1 Z(ZM)-UCFL202-009D1 Z(ZM)-UCFL202-010D1	C(CM)-UCFL202D1 C(CM)-UCFL202-009D1 C(CM)-UCFL202-010D1	2 5/64	38 1 ¹ /2	46 1 ¹³ / ₁₆	67 2 ⁵ /8	30 1 ³ /16	0.6 1.3	0.6 1.3	0.8 1.8
FL204D1 FL204D1	Z(ZM)-UCFL203D1 Z(ZM)-UCFL203-011D1	C(CM)-UCFL203D1 C(CM)-UCFL203-011D1	2 5/64	38 1 ¹ /2	46 1 ¹³ /32	67 2 5/8	30 1 ³ /16	0.5 1.1	0.6 1.3	0.8 1.8
FL204D1 FL204D1	Z(ZM)-UCFL204D1 Z(ZM)-UCFL204-012D1	C(CM)-UCFL204D1 C(CM)-UCFL204-012D1	2 5/64	38 1 ¹ /2	46 1 ¹³ / ₁₆	67 2 5/8	30 1 ³ / ₁₆	0.5 1.1	0.6 1.3	0.8 1.8
FL205D1 FL205D1 FL205D1 FL205D1 FL205D1	Z(ZM)-UCFL205D1 Z(ZM)-UCFL205-013D1 Z(ZM)-UCFL205-014D1 Z(ZM)-UCFL205-015D1 Z(ZM)-UCFL205-100D1	C(CM)-UCFL205D1 C(CM)-UCFL205-013D1 C(CM)-UCFL205-014D1 C(CM)-UCFL205-015D1 C(CM)-UCFL205-100D1	2 5/64	40 1 ¹⁹ /32	51 2	74 2 ²⁹ /32	34 1 ¹¹ / ₃₂	0.6 1.3	0.7 1.5	2.0
FL206D1 FL206D1 FL206D1 FL206D1 FL206D1	Z(ZM)-UCFL206D1 Z(ZM)-UCFL206-101D1 Z(ZM)-UCFL206-102D1 Z(ZM)-UCFL206-103D1	C(CM)-UCFL206D1 C(CM)-UCFL206-101D1 C(CM)-UCFL206-102D1 C(CM)-UCFL206-103D1	2 ⁵ /64	45 1 ³ / ₄	56 2 ⁷ /32	85 3 ¹¹ / ₃₂	40 1 9/16	0.9 2.0	1.0	2.6
FL207D1 FL207D1 FL207D1 FL207D1 FL207D1	Z(ZM)-UCFL207D1 Z(ZM)-UCFL207-104D1 Z(ZM)-UCFL207-105D1 Z(ZM)-UCFL207-106D1 —	C(CM)-UCFL207D1 C(CM)-UCFL207-104D1 C(CM)-UCFL207-105D1 C(CM)-UCFL207-106D1	3 1/8	49 1 ¹⁵ /16	59 2 5/16	97 3 ¹³ / ₁₆	45 1 ²⁵ /32	1.2 2.6	2.6	1.8
FL208D1 FL208D1 FL208D1	Z(ZM)-UCFL208D1 Z(ZM)-UCFL208-108D1 Z(ZM)-UCFL208-109D1	C(CM)-UCFL208D1 C(CM)-UCFL208-108D1 C(CM)-UCFL208-109D1	3 1/8	56 2 ³ / ₁₆	66 2 ¹⁹ /32	106 4 ³ / ₁₆	50 1 ³¹ /32	1.6 3.5	1.6 3.5	2.2 4.9
FL209D1 FL209D1 FL209D1 FL209D1	Z(ZM)-UCFL209D1 Z(ZM)-UCFL209-110D1 Z(ZM)-UCFL209-111D1 Z(ZM)-UCFL209-112D1	C(CM)-UCFL209D1 C(CM)-UCFL209-110D1 C(CM)-UCFL209-111D1 C(CM)-UCFL209-112D1	3 1/8	57 2 ¹ / ₄	70 2 ³ /4	113 4 ⁷ / ₁₆	54 2 ¹ /8	1.9 4.2	2.0 4.4	2.5 5.5

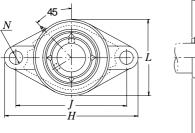
Soportes tipo brida rómbica con tornillos de apriete

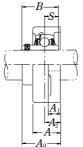


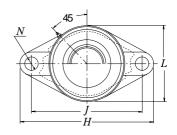

Tipo de cubierta anti polvo de acero estampado Extremo abierto Z-UCFL...D1 Extremo cerrado ZM-UCFL...D1


Diám. Eje	Designación soporte(1)				Dim	ensione	s nomi	nales				Tamaño tornillo	Número de rodamiento
mm						mm pı	ılgadas						
pulgadas		Н	J	A_2	A_1	Α	N	L	A_0	В	S	mm pulgadas	
17/8	UCFL210D1 UCFL210-113D1 UCFL210-114D1 UCFL210-115D1 UCFL210-200D1	197 7 ³ /4	157 6 ³ /16	22 ⁵⁵ / ₆₄	16 ⁵ /8	40 1 9/16	19 ³ / ₄	115 4 ¹⁷ /32	54.6 2 ⁵ /32	51.6 2.0315	19 0.748	M16	UC210D1 UC210-113D1 UC210-114D1 UC210-115D1 UC210-200D1
55 2 2 ¹ / ₁₆	UCFL211D1 UCFL211-200D1 UCFL211-201D1	224 8 ¹³ / ₁₆	184 7 ¹ / ₄	25 63/64	18	43 111/16	19 3/4	130 5 ¹ /8	58.4 219/64	55.6 2.1890	22.2 0.874	M16	UC211D1 UC211-200D1 UC211-201D1
2 ¹ / ₈ 2 ³ / ₁₆	UCFL211-202D1 UCFL211-203D1	, ,	. , .	•	,	,	,		•	2.1000	0.074	,-	UC211-202D1 UC211-203D1
60 2 ¹ / ₄ 2 ⁵ / ₁₆ 2 ³ / ₈ 2 ⁷ / ₁₆	UCFL212D1 UCFL212-204D1 UCFL212-205D1 UCFL212-206D1 UCFL212-207D1	250 9 ²⁷ / ₃₂	202 7 ⁶¹ / ₆₄	29 1 ⁹ / ₆₄	18 23/32	48 1 ⁷ /8	23 ²⁹ / ₃₂	140 5 ¹ / ₂	68.7 2 ⁴⁵ / ₆₄	65.1 2.5630	25.4 1.000	M20 3/4	UC212D1 UC212-204D1 UC212-205D1 UC212-206D1 UC212-207D1
65 2 ¹ / ₂ 2 ⁹ / ₁₆	UCFL213D1 UCFL213-208D1 UCFL213-209D1	258 10 ⁵ /32	210 8 ¹⁷ / ₆₄	30 1 ³ / ₁₆	22 ⁷ /8	50 1 ³¹ /32	23 29/32	155 6 ³ / ₃₂	69.7 2 ³ / ₄	65.1 2.5630	25.4 1.000	M20 3/4	UC213D1 UC213-208D1 UC213-209D1
70 2 ⁵ /8 2 ¹¹ / ₁₆ 2 ³ / ₄	UCFL214D1 UCFL214-210D1 UCFL214-211D1 UCFL214-212D1	265 10 ⁷ /16	216 8 ¹ / ₂	31 1 ⁷ / ₃₂	22 ⁷ /8	54 2 ¹ /8	23 29/32	160 6 ⁵ /16	75.4 2 ³¹ / ₃₂	74.6 2.9370	30.2 1.189	M20 3/4	UC214D1 UC214-210D1 UC214-211D1 UC214-212D1
27/8	UCFL215D1 UCFL215-213D1 UCFL215-214D1 UCFL215-215D1 UCFL215-300D1	275 10 ¹³ / ₁₆	225 8 ⁵⁵ / ₆₄	34 1 ¹¹ /32	22 ⁷ /8	56 2 ⁷ /32	23 29/32	165 6 ¹ /2	78.5 3 ³ /32	77.8 3.0630	33.3 1.311	M20	UC215D1 UC215-213D1 UC215-214D1 UC215-215D1 UC215-300D1
80 3 ¹ / ₁₆ 3 ¹ / ₈ 3 ³ / ₁₆	UCFL216D1 UCFL216-301D1 UCFL216-302D1 UCFL216-303D1	290 11 ¹³ /32	233 9 ¹¹ / ₆₄	34 1 ¹¹ / ₃₂	22 ⁷ /8	58 2 9/32	25 ⁶³ / ₆₄	180 7 ³ /32	83.3 3 ⁹ / ₃₂	82.6 3.2520	33.3 1.311	M22	UC216D1 UC216-301D1 UC216-302D1 UC216-303D1

Nota (¹) Estas designaciones de soporte indican el tipo relubricable. Si se necesita el tipo sin mantenimiento, seleccione los tipos sin el sufijo "D1".

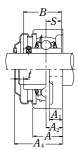


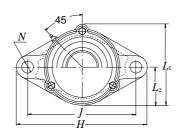


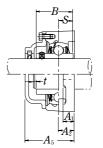

Tipo de cubierta de fundición anti polvo Extremo abierto C-UCFL···D1 Extremo cerrado CM-UCFL···D1

Número alojamiento	Número soporte con tapa de acero prensado	Número soporte con tapa de fundición		Dimensi	ones no	minales		Mas	a de la uni	dad
			t	mn A ₄	n pulgad A ₅	as L ₁	L_2		kg lb	
					max.			UCFL	Z(ZM)	C(CM)
FL210D1 FL210D1	Z(ZM)-UCFL210D1 Z(ZM)-UCFL210-113D1	C(CM)-UCFL210D1 C(CM)-UCFL210-113D1	3	60	72	120	58	2.2	2.3	3.0
FL210D1 FL210D1 FL210D1	Z(ZM)-UCFL210-114D1 Z(ZM)-UCFL210-115D1	C(CM)-UCFL210-114D1 C(CM)-UCFL210-115D1	1/8	2 3/8	2 27/32	423/32	2 9/32	4.9	5.1	6.6
FL211D1 FL211D1	Z(ZM)-UCFL211D1 Z(ZM)-UCFL211-200D1	C(CM)-UCFL211D1 C(CM)-UCFL211-200D1	4	64	75	133	65	3.1	3.2	4.3
FL211D1 FL211D1 FL211D1	Z(ZM)-UCFL211-201D1 Z(ZM)-UCFL211-202D1 Z(ZM)-UCFL211-203D1	C(CM)-UCFL211-201D1 C(CM)-UCFL211-202D1 C(CM)-UCFL211-203D1	5/32	21/2	215/16	51/4	2 9/16	6.8	7.1	9.5
FL212D1 FL212D1	Z(ZM)-UCFL212D1 Z(ZM)-UCFL212-204D1	C(CM)-UCFL212D1 C(CM)-UCFL212-204D1	4	74	86	144	70	4.0	4.2	5.1
FL212D1 FL212D1 FL212D1 FL212D1	Z(ZM)-UCFL212-205D1 Z(ZM)-UCFL212-206D1	C(CM)-UCFL212-205D1 C(CM)-UCFL212-206D1	5/32	2 29/32	33/8	521/32	23/4	8.8	9.3	11
FL213D1	Z(ZM)-UCFL213D1	C(CM)-UCFL213D1	4	76	90	157	78	5.0	5.2	6.6
FL213D1 FL213D1	Z(ZM)-UCFL213-208D1 Z(ZM)-UCFL213-209D1	C(CM)-UCFL213-208D1 C(CM)-UCFL213-209D1	5/32	3	3 17/32	6 3/16	31/16	11	11	15
FL214D1 FL214D1	_	C(CM)-UCFL214D1 C(CM)-UCFL214-210D1	4	_	98	164	80	5.6	_	7.3
FL214D1 FL214D1 FL214D1	_	C(CM)-UCFL214-210D1 C(CM)-UCFL214-211D1 C(CM)-UCFL214-212D1	5/32	_	327/32	615/32	3 5/32	12	_	16
FL215D1 FL215D1	_	C(CM)-UCFL215D1 C(CM)-UCFL215-213D1	4	_	102	169	82	6.2	_	7.8
FL215D1 FL215D1 FL215D1	_	C(CM)-UCFL215-214D1 C(CM)-UCFL215-215D1 C(CM)-UCFL215-300D1	5/32	_	4 ¹ / ₃₂	621/32	37/32	14	_	17
FL216D1	_	C(CM)-UCFL216D1	4	_	106	183	90	8.2	_	11
FL216D1 FL216D1 FL216D1	_	C(CM)-UCFL216-301D1 C(CM)-UCFL216-302D1 C(CM)-UCFL216-303D1	5/32	_	4 3/16	77/32	3 17/32	18	_	24

Soportes tipo brida rómbica con tornillos de apriete




Tipo de cubierta anti polvo de acero estampado Extremo abierto Z-UCFL...D1 Extremo cerrado ZM-UCFL...D1


Diám. Eje	Designación soporte(1)				Dim	ensione	s nomi	inales				Tamaño tornillo	Número de rodamiento
mm pulgadas		Н	J	A_2	A_1	mm pu	ilgadas N	: L	A_0	В	S	mm pulgadas	
85 3 ¹ / ₄ 3 ⁵ / ₁₆ 3 ⁷ / ₁₆	UCFL217D1 UCFL217-304D1 UCFL217-305D1 UCFL217-307D1	305 12	248 9 ⁴⁹ / ₆₄	36 1 ²⁷ /64	24 ¹⁵ / ₁₆	63 2 ¹⁵ / ₃₂	25 ⁶³ / ₆₄	190 7 ¹⁵ /32	87.6 3 ²⁹ /64	85.7 3.3740	34.1 1.343	M22 ⁷ /8	UC217D1 UC217-304D1 UC217-305D1 UC217-307D1
90 3 ¹ / ₂	UCFL218D1 UCFL218-308D1	320 12 ¹⁹ /32	265 10 ⁷ /16	40 1 ³⁷ /64	24 15/16	68 2 ¹¹ / ₁₆	25 ⁶³ / ₆₄	205 8 ¹ / ₁₆	96.3 3 ⁵¹ / ₆₄	96 3.7795	39.7 1.563	M22 ⁷ /8	UC218D1 UC218-308D1

Nota (¹) Estas designaciones de soporte indican el tipo relubricable. Si se necesita el tipo sin mantenimiento, seleccione los tipos sin el sufijo "D1".

Tipo de cubierta de fundición anti polvo Extremo abierto C-UCFL···D1 Extremo cerrado CM-UCFL···D1

Número alojamiento	the state of the s	Número soporte con tapa de fundición	[Dimens	siones noi	ninales		Mas	a de la uni	dad
			t	m A ₄	m pulgad A ₅ max.	as L ₁	L_2	UCFL	kg lb	C(CM)
FL217D1 FL217D1 FL217D1 FL217D1	- -	C(CM)-UCFL217D1 C(CM)-UCFL217-304D1 C(CM)-UCFL217-305D1 C(CM)-UCFL217-307D1	5 ¹³ /64	_ _	114 4 ¹ /2	192 7 ⁹ /16	95 3 ³ /4	9.3 21	_ _	11 24
FL218D1 FL218D1	Ξ	C(CM)-UCFL218D1 C(CM)-UCFL218-308D1	5 ¹³ / ₆₄	_	122 4 ¹³ / ₁₆	205 8 ¹ / ₁₆	102 4 ¹ / ₃₂	11 24	_	14 31

SOPORTES DE FUNDICION PARA RODAMIENTOS

SOPORTES DE FUNDICION PARA RODAMIENTOS DE TIPO ESTÁNDAR Páginas B302~B307 **SOPORTES DE FUNDICION PARA RODAMIENTOS** DE GRAN TAMAÑO Páginas B308~B311 SOPORTES DE FUNDICION PARA RODAMIENTOS A PRUEBA DE POLVO Páginas B312~B313

SOPORTES DE FUNDICION PARA RODAMIENTOS

DEL TIPO DE EJE ESCALONADO Páginas B314~B321

DISEÑO, TIPOS Y CARACTERÍSTICAS

Existen cojinetes soporte de numerosos tipos y tamaños. En este catálogo sólo se muestran los tipos marcados con

SN₆ SN 30 SN 31

SN 5

SN 2 SN₃ SN₂C SN₃C

Este tipo es el más común.

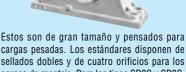
Los modelos SN30 y SN31 son para cargas medias.

Para los tipos SN2C y SN3C, los diámetros internos de las dos caras son diferentes.

SN 2B SN 3B

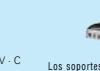
SN 2BC SN 3BC

Estos tienen las mismas dimensiones que las de los tipos SN5 y SN6. Para aumentar la resistencia del soporte de rodamientos, no se mecaniza material de la parte superior o inferior de la base, de forma que los orificios de ensamblaie pueden taladrarse en cualquier posición.


SG 5

Los soportes para rodamiento a prueba de polvo tienen una combinación de retenes de aceite, sellados de laberinto y sellados de ranura de engrase, por lo que resultan adecuados para ambientes polvorientos v con presencia de otros cuerpos extraños

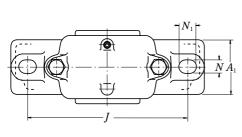
SD3 SD₂C SD₃C

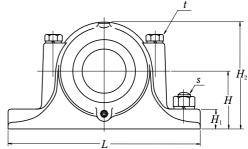

cargas pesadas. Los estándares disponen de sellados dobles y de cuatro orificios para los pernos de montaje. Para los tipos SD2C y SD3C, los diámetros internos de las dos caras son diferentes

SD32TS

SD31TS

Disponen de sellados de laberinto, por lo que resultan adecuados para aplicaciones de alta velocidad.

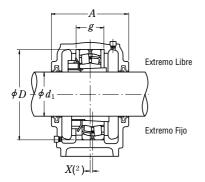



V · C

Los soportes para rodamientos de una sola pieza (unidad de rodamiento de rodillos de tipo integrado) tienen una rigidez v precisión superiores a los soportes para rodamientos partidos.

SOPORTES DE FUNDICION DE TIPO ESTÁNDARD

Tipos SN 5 y SN 6 Diámetro del Eje $20\sim55$ mm

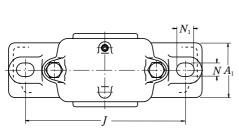


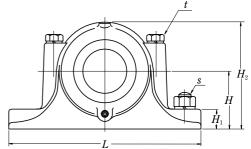
Diám. del Eje (mm)	Números de Soportes							Dimens (mr							Masa (kg)
d_1	para Rod.	$D_{ m H8}$	H h13	J	N	N_1	A	L	A_1	H_1	H_2	g H13	tnominal	S nominal	aprox.
20	SN 505	52	40	130	15	20	67	165	46	22	75	25	M 8	M 12	1.1
	SN 605	62	50	150	15	20	80	185	52	22	90	34	M 8	M 12	1.6
25	SN 506	62	50	150	15	20	77	185	52	22	90	30	M 8	M 12	1.7
	SN 606	72	50	150	15	20	82	185	52	22	95	37	M 10	M 12	1.8
30	SN 507	72	50	150	15	20	82	185	52	22	95	33	M 10	M 12	1.9
	SN 607	80	60	170	15	20	90	205	60	25	110	41	M 10	M 12	2.6
35	SN 508	80	60	170	15	20	85	205	60	25	110	33	M 10	M 12	2.6
	SN 608	90	60	170	15	20	95	205	60	25	115	43	M 10	M 12	2.9
40	SN 509	85	60	170	15	20	85	205	60	25	112	31	M 10	M 12	2.8
	SN 609	100	70	210	18	23	105	255	70	28	130	46	M 12	M 16	4.1
45	SN 510	90	60	170	15	20	90	205	60	25	115	33	M 10	M 12	3.0
	SN 610	110	70	210	18	23	115	255	70	30	135	50	M 12	M 16	4.7
50	SN 511	100	70	210	18	23	95	255	70	28	130	33	M 12	M 16	4.5
	SN 611	120	80	230	18	23	120	275	80	30	150	53	M 12	M 16	5.8
55	SN 512	110	70	210	18	23	105	255	70	30	135	38	M 12	M 16	5.0
	SN 612	130	80	230	18	23	125	280	80	30	155	56	M 12	M 16	6.5

Nota (1) Incluye el retén de aceite.

Para realizar un pedido de una unidad completa, especifique "Soporte partido + rodamiento + adaptador+anillo de fijación". **Observaciones**Las roscas para los tapones son R 1/8.

Anillo de Fijación


		Pa	rtes Aplicables				Retenes
	las Autoalineantes	Rod. de Rodillo	s Esféricos	Adaptador	Anillos de Fijaci	ón	de Aceite (3)
Números	Índices Básicos de Carg Dinámica $C_{ m r}$ (N)	a Números ^{Índi}	ces Básicos de Carga Dinámica Cr (N)	Números	Nominal (^{Diám.} xAncho) Ext.	Cant.	
1205 K 2205 K 1305 K 2305 K	12 400 18 200	22205 CKE4 21305 CDKE4 —	37 500 43 000 —	H 205X H 305X H 305X H 2305X	SR 52x 5 SR 52x 7 SR 62x 8.5 SR 62x 10	2 1 2 1	GS 5 GS 5
1206 K 2206 K 1306 K 2306 K	15 300 21 400	22206 CKE4 21306 CDKE4 —	 50 000 55 000 	H 206X H 306X H 306X H 2306X	SR 62x 7 SR 62x 10 SR 72x 9 SR 72x 10	2 1 2 1	GS 6 GS 6
1207 K 2207 K 1307 K 2307 K	21 700 25 300	— 22207 CKE4 21307 CDKE4 —	— 69 000 71 500 —	H 207X H 307X H 307X H 2307X	SR 72x 8 SR 72x 10 SR 80x 10 SR 80x 10	2 1 2 1	GS 7 GS 7
1208 K 2208 K 1308 K 2308 K	22 400 29 800	 22208 EAKE4 21308 EAKE4 22308 EAKE4	90 500 94 500 136 000	H 208X H 308X H 308X H 2308X	SR 80x 7.5 SR 80x 10 SR 90x 10 SR 90x 10	2 1 2 1	GS 8 GS 8
1209 K 2209 K 1309 K 2309 K	23 300 38 500	 22209 EAKE4 21309 EAKE4 22309 EAKE4	94 500 119 000 166 000	H 209X H 309X H 309X H 2309X	SR 85x 6 SR 85x 8 SR 100x 10.5 SR 100x 10	2 1 2 1	GS 9 GS 9
1210 K 2210 K 1310 K 2310 K	23 400 43 500	22210 EAKE4 21310 EAKE4 22310 EAKE4	99 000 142 000 197 000	H 210X H 310X H 310X H 2310X	SR 90x 6.5 SR 90x 10 SR 110x 11.5 SR 110x 10	2 1 2 1	GS10 GS10
1211 K 2211 K 1311 K 2311 K	26 700 51 500	 22211 EAKE4 21311 EAKE4 22311 EAKE4	 119 000 142 000 234 000	H 211X H 311X H 311X H 2311X	SR 100x 6 SR 100x 8 SR 120x 12 SR 120x 10	2 1 2 1	GS11 GS11
1212 K 2212 K 1312 K 2312 K	34 000 57 500	— 22212 EAKE4 21312 EAKE4 22312 EAKE4	— 142 000 190 000 271 000	H 212X H 312X H 312X H 2312X	SR 110x 8 SR 110x 10 SR 130x 12.5 SR 130x 10	2 1 2 1	GS12 GS12

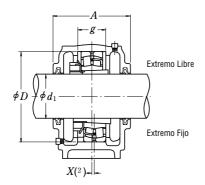

Notas (²) La dimensión X indica el desplazamiento del centro del rodamiento respecto al centro del soporte partido. Si se utiliza un anillo de fijación pasa a ser 1/2 del ancho de dicho anillo, y si se utilizan dos anillos pasa a ser 0.

⁽³⁾ Aplicable al Tipo ZF con el mismo número.

SOPORTES DE FUNDICION DE TIPO ESTÁNDARD

Tipos SN 31, SN 5 y SN 6 Diámetro del Eje $60\sim100~\mathrm{mm}$

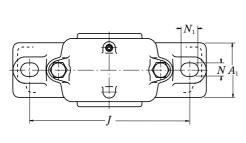
Diám. del Eje (mm)	Números de Soportes							Dimens (mr							Masa (kg)
d_1	para Rod.	$D_{ m H8}$	H h13	J	N	N_1	A	L	A_1	H_1	H_2	g H13	t nominal	S nominal	aprox.
60	SN 513	120	80	230	18	23	110	275	80	30	150	43	M 12	M 16	5.6
	SN 613	140	95	260	22	27	130	315	90	32	175	58	M 16	M 20	8.7
65	SN 515	130	80	230	18	23	115	280	80	30	155	41	M 12	M 16	7.0
	SN 615	160	100	290	22	27	140	345	100	35	195	65	M 16	M 20	11.3
70	SN 516	140	95	260	22	27	120	315	90	32	175	43	M 16	M 20	9.0
	SN 616	170	112	290	22	27	145	345	100	35	212	68	M 16	M 20	12.6
75	SN 517	150	95	260	22	27	125	320	90	32	185	46	M 16	M 20	10
	SN 617	180	112	320	26	32	155	380	110	40	218	70	M 20	M 24	15
80	SN 518	160	100	290	22	27	145	345	100	35	195	62.4	M 16	M 20	13
	SN 618	190	112	320	26	32	160	380	110	40	225	74	M 20	M 24	19
85	SN 519	170	112	290	22	27	140	345	100	35	210	53	M 16	M 20	15
	SN 619	200	125	350	26	32	170	410	120	45	245	77	M 20	M 24	22
90	SN 520	180	112	320	26	32	160	380	110	40	218	70.3	M 20	M 24	18.5
	SN 620	215	140	350	26	32	175	410	120	45	270	83	M 20	M 24	25
100	SN 3122 SN 522	180 200	112 125	320 350	26 26	32 32	155 175	380 410	110 120	40 45	218 240	66 80	M 20 M 20	M 24 M 24	18 20
	SN 622	240	150	390	28	36	190	450	130	50	300	90	M 24	M 24	32

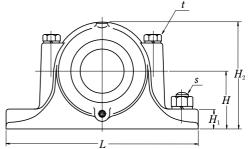

Nota (1) Incluye el retén de aceite.

Para realizar un pedido de una unidad completa, especifique "Soporte partido + rodamiento + adaptador+anillo de fijación".

Observaciones 1. Las roscas para los tapones son R 1/8 para SN 616 y SN 519 o inferiores, y R 1/4 para SN 617, SN 520, SN 3122 y superiores.

2. Los SN 620 y SN 622 se suministran con tornillos


	s Autoalineantes	Rod. Rodillos	artes Aplicables Esféricos	Adaptador	Anillos de Fijad	ión	Retenes de Aceite (³)
Números ^{Ín}	ndices Básicos de Carga	a Números Índ	lices Básicos de Carga	Números	Nominal (<mark>Ext. xAncho)</mark>	Cant.	()
	Dinámica $C_{\rm r}$ (N)		Dinámica Cr (N)				
1213 K 2213 K 1313 K 2313 K	31 000 43 500 62 500 97 000	22213 EAKE4 21313 EAKE4 22313 EAKE4	212 000	H 213X H 313X H 313X H 2313X	SR 120x 10 SR 120x 12 SR 140x 12.5 SR 140x 10	2 1 2 1	GS13 GS13
1215 K 2215 K 1315 K 2315 K	39 000 44 500 80 000 125 000	 22215 EAKE4 21315 EAKE4 22315 EAKE4	250 000	H 215X H 315X H 315X H 2315X	SR 130x 8 SR 130x 10 SR 160x 14 SR 160x 10	2 1 2 1	GS15 GS15
1216 K 2216 K 1316 K 2316 K	40 000 49 000 89 000 130 000	 22216 EAKE4 21316 EAKE4 22316 EAKE4	284 000	H 216X H 316X H 316X H 2316X	SR 140x 8.5 SR 140x 10 SR 170x 14.5 SR 170x 10	2 1 2 1	GS16 GS16
1217 K 2217 K 1317 K 2317 K	49 500 58 500 98 500 142 000		289 000	H 217X H 317X H 317X H 2317X	SR 150x 9 SR 150x 10 SR 180x 14.5 SR 180x 10	2 1 2 1	GS17 GS17
1218 K 2218 K — 1318 K 2318 K	57 500 70 500 — 117 000 154 000	22218 EAKE4 23218 CKE4 21318 EAKE4 22318 EAKE4	340 000 330 000	H 218X H 318X H 2318X H 318X H 2318X	SR 160x 16.2 SR 160x 11.2 SR 160x 10 SR 190x 15.5 SR 190x 10	2 2 1 2 1	GS18 GS18
1219 K 2219 K 1319 K 2319 K	64 000 84 000 129 000 161 000		345 000	H 219X H 319X H 319X H 2319X	SR 170x 10.5 SR 170x 10 SR 200x 16 SR 200x 10	2 1 2 1	GS19 GS19
1220 K 2220 K — 1320 K 2320 K	69 500 94 500 — 140 000 187 000	22220 EAKE4 23220 CKE4 21320 CKE4 22320 EAKE4	420 000 395 000	H 220X H 320X H 2320X H 320X H 2320X	SR 180x 18.1 SR 180x 12.1 SR 180x 10 SR 215x 18 SR 215x 10	2 2 1 2	GS20 GS20
1222 K 2222 K	87 000 122 000	23122 CKE4 23122 CKE4 22222 EAKE4 23222 CKE4	385 000	H 3122X H 222X H 322X H 2322X	SR 180x 10 SR 200x 21 SR 200x 13.5 SR 200x 10	1 2 2 1	GS22 GS22
1322 K 2322 K	161 000 211 000	21322 CAKE4 21322 CAKE4 22322 EAKE4	450 000	H 322X H 2322X	SR 240x 20 SR 240x 10	2	GS22


Notas (²) La dimensión X indica el desplazamiento del centro del rodamiento respecto al centro del soporte partido. Si se utiliza un anillo de fijación pasa a ser 1/2 del ancho de dicho anillo, y si se utilizan dos anillos pasa a ser 0.

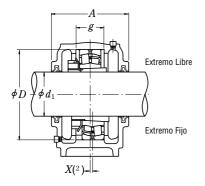
(3) Aplicable al Tipo ZF con el mismo número.

SOPORTES DE FUNDICION DE TIPO ESTÁNDARD

Tipos SN 30, SN 31, SN 5 y SN 6 Diámetro del Eje $110\sim140~\mathrm{mm}$

Diám. del Eje (mm)	Números de Soportes							Dimens (mr							Masa (kg)
d_1	para Rod.	$D_{ m H8}$	H h13	J	N	N_1	A	L	A_1	H_1	H_2	g H13	tnominal	S nominal	aprox.
110	SN 3024	180	112	320	26	32	150	380	110	40	218	56	M 20	M 24	16
	SN 3124	200	125	350	26	32	165	410	120	45	245	72	M 20	M 24	20
	SN 524	215	140	350	26	32	185	410	120	45	270	86	M 20	M 24	24.5
	SN 624	260	160	450	33	42	200	530	160	60	320	96	M 24	M 30	48
115	SN 3026	200	125	350	26	32	160	410	120	45	240	62	M 20	M 24	19
	SN 3126	210	140	350	26	32	170	410	120	45	270	74	M 20	M 24	26
	SN 526	230	150	380	28	36	190	445	130	50	290	90	M 24	M 24	30
	SN 626	280	170	470	33	42	210	550	160	60	340	103	M 24	M 30	56
125	SN 3028	210	140	350	26	32	170	410	120	45	270	63	M 20	M 24	25
	SN 3128	225	150	380	28	36	180	445	130	50	290	78	M 24	M 24	32
	SN 528	250	150	420	33	42	205	500	150	50	305	98	M 24	M 30	38
	SN 628	300	180	520	35	45	235	610	170	65	365	112	M 30	M 30	72
135	SN 3030	225	150	380	28	36	175	445	130	50	290	66	M 24	M 24	29
	SN 3130	250	150	420	33	42	200	500	150	50	305	90	M 24	M 30	38
	SN 530	270	160	450	33	42	220	530	160	60	325	106	M 24	M 30	46
	SN 630	320	190	560	35	45	245	650	180	65	385	118	M 30	M 30	98
140	SN 3032	240	150	390	28	36	190	450	130	50	300	70	M 24	M 24	32
	SN 3132	270	160	450	33	42	215	530	160	60	325	96	M 24	M 30	48
	SN 532	290	170	470	33	42	235	550	160	60	345	114	M 24	M 30	50
	SN 632	340	200	580	42	50	255	680	190	70	405	124	M 30	M 36	115

Nota

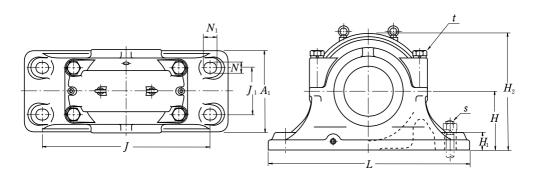

(1) Incluye el retén de aceite.


Para realizar un pedido de una unidad completa, especifique "Soporte partido + rodamiento + adaptador+anillo de fijación".

Observaciones

Las roscas para los tapones son R 1/4.
 Los soportés de fundición con rodamientos SN 524, SN 624, SN 3126, SN 3028 y superiores se suministran con tornillos.

Anillo de Fijación


Roda. de Bol	as Autoalineantes	Rod. de Ro		s Aplicables sféricos	Adaptador	Anillos de Fija	ción	Retenes de Aceite
Números Ín	dices Básicos de Carga	Números	Índices	Básicos de Carga	Números	Nominal (Diám. xAncho)	Cant.	(3)
	Dinámica C_{r} (N)		Din	ámica Cr (N)		EXI. /		
_	_	23024 CDI	<e4< td=""><td>315 000</td><td>H 3024</td><td>SR 180x 10</td><td>1</td><td>GS24</td></e4<>	315 000	H 3024	SR 180x 10	1	GS24
_	_	23124 CKE	4	465 000	H 3124	SR 200x 10	1	GS24
_	_	22224 EAK	(E4	550 000	H 3124	SR 215x 14	2	GS24
_	_	23224 CKE 22324 EAK		630 000 955 000	H 2324 H 2324	SR 215x 10 SR 260x 10	1	GS24
_	_	23026 CDI	KE4	400 000	H 3026	SR 200x 10	1	GS26
_	_	23126 CKE	4	505 000	H 3126	SR 210x 10	1	GS26
_	_	22226 EAk	(E4	655 000	H 3126	SR 230x 13	2	GS26
_	=	23226 CKE 22326 CKE		700 000 995 000	H 2326 H 2326	SR 230x 10 SR 280x 10	1	GS26
_	_	23028 CDI		420 000	H 3028	SR 210x 10	1	GS 28
_	_	23128 CKE		580 000	H 3128	SR 225x 10	1	GS28
_	_	22228 CDI		645 000	H 3128	SR 250x 15	2	GS28
_	=	23228 CKE 22328 CKE		835 000 160 000	H 2328 H 2328	SR 250x 10 SR 300x 10	1	GS 28
_	_	23030 CDI	KE4	470 000	H 3030	SR 225x 10	1	GS30
_	_	23130 CKE	4	725 000	H 3130	SR 250x 10	1	GS30
_	_	22230 CD	KE4	765 000	H 3130	SR 270x 16.5	2	GS30
_	_	23230 CKE		975 000	H 2330	SR 270x 10	1	0000
_	_	22330 CA	KE4 1	220 000	H 2330	SR 320x 10	1	GS30
_	_	23032 CDI	KE4	540 000	H 3032	SR 240x 10	1	GS32
_	_	23132 CKE	4	855 000	H 3132	SR 270x 10	1	GS32
_	_	22232 CDI	<e4< td=""><td>910 000</td><td>H 3132</td><td>SR 290x 17</td><td>2</td><td>GS32</td></e4<>	910 000	H 3132	SR 290x 17	2	GS32
_	Ξ	23232 CKE 22332 CAR		100 000 360 000	H 2332 H 2332	SR 290x 10 SR 340x 10	1 1	GS32

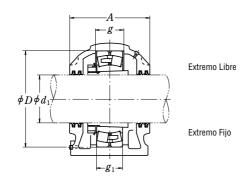
Notas (2) La dimensión X indica el desplazamiento del centro del rodamiento respecto al centro del soporte partido. Si se utiliza un anillo de emplazamiento pasa a ser 1/2 del ancho de dicho anillo, y si se utilizan dos anillos pasa a ser 0.

⁽³⁾ Aplicable al Tipo ZF con el mismo número.

SOPORTES DE FUNDICION PARA RODAMIENTOS DE GRAN TAMAÑO

Tipos SD 30 S, SD 31 S, SD 5 y SD 6 Diámetro del Eje $150\sim260 \text{ mm}$

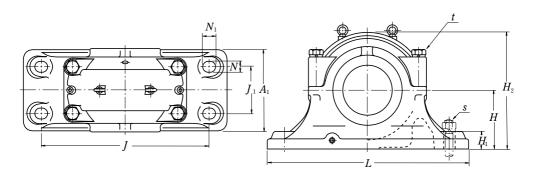
Diám. del Eje (mm)		Números de Soportes para Rodamientos (¹)						Dimens (mn					
d_1	Extremo Libre	Extremo Fijo	$D_{ m H8}$	H h13	J	N	N_1	A	L	A_1	H_1	H_2	J_1
150	SD 3034 S	SD 3034 SG	260	160	450	36	46	230	540	200	50	315	110
	SD 3134 S	SD 3134 SG	280	170	470	36	46	250	560	220	50	335	120
	SD 534	SD 534 G	310	180	510	36	46	270	620	250	60	360	140
	SD 634	SD 634 G	360	210	610	36	46	300	740	290	65	420	170
160	SD 3036 S	SD 3036 SG	280	170	470	36	46	250	560	220	50	335	120
	SD 3136 S	SD 3136 SG	300	180	520	36	46	270	630	250	55	355	140
	SD 536	SD 536 G	320	190	540	36	46	280	650	260	60	380	150
	SD 636	SD 636 G	380	225	640	43	59	320	780	310	70	450	180
170	SD 3038 S	SD 3038 SG	290	170	470	36	46	250	560	220	50	340	120
	SD 3138 S	SD 3138 SG	320	190	560	36	46	290	680	270	55	385	140
	SD 538	SD 538 G	340	200	570	36	46	290	700	280	65	400	160
	SD 638	SD 638 G	400	240	680	43	59	330	820	320	70	475	190
180	SD 3040 S	SD 3040 SG	310	180	510	36	46	270	620	250	60	360	140
	SD 3140 S	SD 3140 SG	340	200	570	36	46	310	700	280	65	400	160
	SD 540	SD 540 G	360	210	610	36	46	300	740	290	65	420	170
	SD 640	SD 640 G	420	250	710	43	59	350	860	340	85	500	200
200	SD 3044 S	SD 3044 SG	340	200	570	36	46	290	700	280	65	400	160
	SD 3144 S	SD 3144 SG	370	225	640	43	59	320	780	310	70	445	180
	SD 544	SD 544 G	400	240	680	43	59	330	820	320	70	475	190
	SD 644	SD 644 G	460	280	770	43	59	360	920	350	85	550	210
220	SD 3048 S	SD 3048 SG	360	210	610	36	46	300	740	290	65	420	170
	SD 3148 S	SD 3148 SG	400	240	680	43	59	330	820	320	70	475	190
	SD 548	SD 548 G	440	260	740	43	59	340	880	330	85	515	200
	SD 648	SD 648 G	500	300	830	50	67	390	990	380	100	590	230
240	SD 3052 S	SD 3052 SG	400	240	680	43	59	340	820	320	70	475	190
	SD 3152 S	SD 3152 SG	440	260	740	43	59	360	880	350	85	515	200
	SD 552	SD 552 G	480	280	790	43	59	370	940	360	85	560	210
	SD 652	SD 652 G	540	325	890	50	67	410	1 060	400	100	640	250
260	SD 3056 S	SD 3056 SG	420	250	710	43	59	350	860	340	85	500	200
	SD 3156 S	SD 3156 SG	460	280	770	43	59	360	920	350	85	550	210
	SD 556	SD 556 G	500	300	830	50	67	390	990	380	100	590	230
	SD 656	SD 656 G	580	355	930	57	77	440	1 110	430	110	690	270


Nota (1) Incluye el retén de aceite.

Para realizar un pedido de una unidad completa, especifique "Soporte partido + rodamiento + adaptador+anillo de fijación".

Observaciones 1. Las roscas para los tapones del orificio de rellenado de aceite son R 1/4, y las de los tapones de vaciado son R 3/8.

^{2.} Los soportes de fundición con rodamientos se suministran con tornillos.



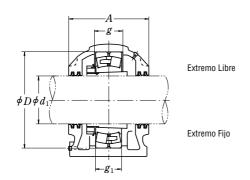
				Masa	Partes Aplicables Retenes de Aceit
				(kg)	Rodamientos de Rodillos Esféricos Números de (2)
g H13	g ₁ H13	t nominal	S nominal	aprox.	Números Índ. Básicos de Carga Adaptador Dinámica $C_{ m r}$ (N)
77	67	M 24	M 30	70	23034 CDKE4 640 000 H 3034 GS 34
98	88	M 24	M 30	75	23134 CKE4 940 000 H 3134 GS 34
96	86	M 24	M 30	100	22234 CDKE4 990 000 H 3134 GS 34
130	120	M 30	M 30	160	22334 CAKE4 1 580 000 H 2334 GS 34
84	74	M 24	M 30	79	23036 CDKE4 750 000 H 3036 GS 36
106	96	M 24	M 30	94	23136 CKE4 1 050 000 H 3136 GS 36
96	86	M 24	M 30	110	22236 CDKE4 1 020 000 H 3136 GS 36
136	126	M 30	M 36	195	22336 CAKE4 1 740 000 H 2336 GS 36
85	75	M 24	M 30	87	23038 CAKE4 775 000 H 3038 GS 38
114	104	M 24	M 30	110	23138 CKE4 1 190 000 H 3138 GS 38
102	92	M 30	M 30	130	22238 CAKE4 1 140 000 H 3138 GS 38
142	132	M 30	M 36	210	22338 CAKE4 1 890 000 H 2338 GS 38
92	82	M 24	M 30	100	23040 CAKE4 940 000 H 3040 GS 40
122	112	M 30	M 30	130	23140 CKE4 1 360 000 H 3140 GS 40
108	98	M 30	M 30	155	22240 CAKE4 1 300 000 H 3140 GS 40
148	138	M 36	M 36	240	22340 CAKE4 2 000 000 H 2340 GS 40
100	90	M 30	M 30	130	23044 CAKE4 1 090 000 H 3044 GS 44 23144 CKE4 1 570 000 H 3144 GS 44 22244 CAKE4 1 570 000 H 3144 GS 44 22344 CAKE4 2 350 000 H 2344 GS 44
130	120	M 30	M 36	180	
118	108	M 30	M 36	205	
155	145	M 36	M 36	315	
102	92	M 30	M 30	160	23048 CAKE4 1 160 000 H 3048 GS 48 23148 CKE4 1 790 000 H 3148 GS 48 22248 CAKE4 1 870 000 H 3148 GS 48 22348 CAKE4 2 600 000 H 2348 GS 48
138	128	M 30	M 36	210	
130	120	M 36	M 36	240	
165	155	M 36	M 42	405	
114	104	M 30	M 36	210	23052 CAKE4 1 430 000 H 3052 GS 52 23152 CAKE4 2 160 000 H 3152 GS 52 22252 CAKE4 2 180 000 H 3152 GS 52 22352 CAKE4 3 100 000 H 2352 GS 52
154	144	M 36	M 36	240	
140	130	M 36	M 36	315	
175	165	M 36	M 42	480	
116	106	M 36	M 36	240	23056 CAKE4 1 540 000 H 3056 GS 56
156	146	M 36	M 36	315	23156 CAKE4 2 230 000 H 3156 GS 56
140	130	M 36	M 42	390	22256 CAKE4 2 280 000 H 3156 GS 56
185	175	M 42	M 48	610	22356 CAKE4 3 500 000 H 2356 GS 56

Nota (2) Aplicable al Tipo ZF con el mismo número.

SOPORTES DE FUNDICION PARA RODAMIENTOS DE GRAN TAMAÑO

Tipos SD 30 S, SD 31 S y SD 5 Diámetro del Eje $280\sim450$ mm

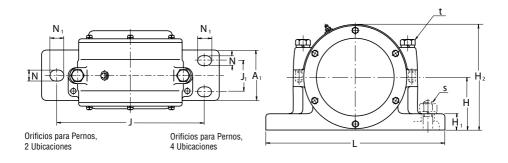
Diám. del Eje (mm)		Soportes para						Dimensi (mn					
d_1	Extremo Libre	Extremo Fijo	$_{ m H8}^{D}$	H h13	J	N	N_1	A	L	A_1	H_1	H_2	J_1
280	SD 3060 S	SD 3060 SG	460	280	770	43	59	360	920	350	85	550	210
	SD 3160 S	SD 3160 SG	500	300	830	50	67	390	990	380	100	590	230
	SD 560	SD 560 G	540	325	890	50	67	410	1 060	400	100	640	250
300	SD 3064 S	SD 3064 SG	480	280	790	43	59	380	940	360	85	560	210
	SD 3164 S	SD 3164 SG	540	325	890	50	67	430	1 060	400	100	640	250
	SD 564	SD 564 G	580	355	930	57	77	440	1 110	430	110	690	270
320	SD 3068 S	SD 3068 SG	520	310	860	50	67	400	1 020	370	100	615	230
	SD 3168 S	SD 3168 SG	580	355	930	57	77	470	1 110	450	110	690	270
340	SD 3072 S	SD 3072 SG	540	325	890	50	67	410	1 060	390	100	640	250
	SD 3172 S	SD 3172 SG	600	365	960	57	77	470	1 140	460	120	710	310
360	SD 3076 S	SD 3076 SG	560	340	900	50	67	410	1 080	390	100	665	260
	SD 3176 S	SD 3176 SG	620	375	980	57	77	500	1 160	490	120	735	320
380	SD 3080 S	SD 3080 SG	600	365	960	57	77	430	1 140	420	120	710	270
	SD 3180 S	SD 3180 SG	650	390	1 040	57	77	520	1 220	510	125	765	340
400	SD 3084 S	SD 3084 SG	620	375	980	57	77	430	1 160	420	120	735	270
	SD 3184 S	SD 3184 SG	700	420	1 070	57	77	560	1 250	550	135	830	380
410	SD 3088 S	SD 3088 SG	650		1 040	57	77	460	1 220	450	125	765	280
430	SD 3092 S	SD 3092 SG	680		1 040	57	77	470	1 220	460	130	790	310
450	SD 3096 S	SD 3096 SG	700		1 100	57	77	485	1 280	470	130	820	320


Nota (1) Incluye el retén de aceite.

Para realizar un pedido de una unidad completa, especifique "Soporte partido + rodamiento + adaptador+anillo de fijación.

Observaciones 1. Las roscas para los tapones del orificio de rellenado de aceite son R 1/4, y las de los tapones de vaciado son R 3/8.

^{2.} Los soportes de fundición con rodamientos se suministran con tornillos.

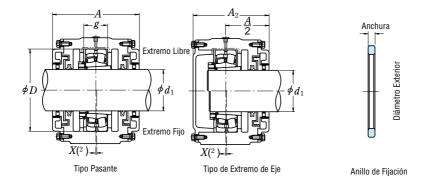


					Masa	Parte	Retenes		
					(kg)	Rodamientos de Rodi	illos Esféricos	Números de	de Aceite (2)
	g H13	g ₁ H13	tnominal	S nominal	aprox.	Números Índ.	Básicos de Carga Dinámica <i>C</i>	Auabtauui i	
	128 170 150	118 160 140	M 36 M 36 M 36	M 36 M 42 M 42	300 405 465	23060 CAKE4 23160 CAKE4 22260 CAKE4	2 670 000	H 3060 H 3160 H 3160	GS 60 GS 60 GS 60
	131 186 160	121 176 150	M 36 M 36 M 42	M 36 M 42 M 48	320 480 595	23064 CAKE4 23164 CAKE4 22264 CAKE4	3 050 000	H 3064 H 3164 H 3164	GS 64 GS 64 GS 64
	143 200	133 190	M 36 M 42	M 42 M 48	410 650	23068 CAKE4 : 23168 CAKE4 :		H 3068 H 3168	GS 68 GS 68
	144 202	134 192	M 36 M 42	M 42 M 48	465 700	23072 CAKE4 23172 CAKE4		H 3072 H 3172	GS 72 GS 72
	145 204	135 194	M 36 M 42	M 42 M 48	480 940	23076 CAKE4 23176 CAKE4		H 3076 H 3176	GS 76 GS 76
	158 210	148 200	M 42 M 42	M 48 M 48	690 1 040	23080 CAKE4 23180 CAKE4		H 3080 H 3180	GS 80 GS 80
	160 234	150 224	M 42 M 48	M 48 M 48	770 1 150	23084 CAKE4 23184 CAKE4		H 3084 H 3184	GS 84 GS 84
_	167 173 175	157 163 165	M 42 M 48 M 48	M 48 M 48 M 48	870 940 1 040	23088 CAKE4 23092 CAKE4 23096 CAKE4	3 450 000	H 3088 H 3092 H 3096	GS 88 GS 92 GS 96

Nota (2) Aplicable al Tipo ZF con el mismo número.

Tipos SG 5 y SG 5-0 Diámetro del Eje $50\sim$ 180 mm

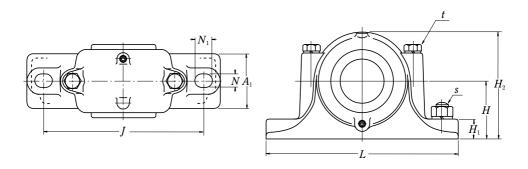
Diám. del Eje		eros de rtes para						Din	nensione (mm)	es					
d_1		nientos (¹) Tipo Extremo del Eje	$_{ m H8}^{D}$	<i>Н</i> h13	J	N	N_1	A	L	A_1	H_1	H_2	J_1	A_2	g H13
50	SG 511	SG 511-0	100	70	210	18	23	125	255	70	23	137	_	112.5	29
55	SG 512	SG 512-0	110	80	230	18	23	145	290	80	25	160	_	135	32
60	SG 513	SG 513-0	120	83	230	18	23	130	290	70	25	155	_	115	36
65	SG 515	SG 515-0	130	90	230	18	23	135	290	80	25	168	_	120	36
70	SG 516	SG 516-0	140	95	270	22	27	165	340	120	30	180	70	155	38
75	SG 517	SG 517-0	150	100	280	22	27	170	350	120	30	190	70	160	41
80	SG 518	SG 518-0	160	100	290	22	27	180	360	120	35	200	70	170	45
90	SG 520	SG 520-0	180	125	340	22	27	200	410	130	35	240	70	185	51
100	SG 522	SG 522-0	200	140	380	22	27	210	460	130	40	265	70	190	58
110	SG 524	SG 524-0	215	140	380	22	27	230	460	130	45	275	80	200	63
115	SG 526	SG 526-0	230	150	410	26	32	240	490	160	45	295	80	220	69
125	SG 528	SG 528-0	250	160	435	26	32	245	520	160	50	310	80	220	73
135	SG 530	SG 530-0	270	160	465	26	32	265	550	170	50	330	100	240	78
140	SG 532	SG 532-0	290	170	490	26	32	285	580	170	50	350	100	250	85
150	SG 534	SG 534-0	310	180	550	33	42	300	640	180	55	380	100	265	91
160	SG 536	SG 536-0	320	190	600	33	42	325	690	190	55	400	110	285	91
170	SG 538	SG 538-0	340	200	620	42	52	340	730	200	60	420	120	295	97
180	SG 540	SG 540-0	360	210	635	42	52	350	750	210	60	445	130	310	103
Not	a (1)	ncluve el retén d	o aggita												


Nota (1) Incluye el retén de aceite.

Para realizar un pedido de una unidad completa, especifique "Soporte partido + rodamiento + adaptador+anillo de fijación"

Observaciones 1. Las roscas para las boquillas de grasa son R 1/8 para SG518 e inferiores, y R 1/4 para SG520 y superiores.

^{2.} Los soportes de fundición con rodamientos mayores que SG520 se suministran con tornillos.

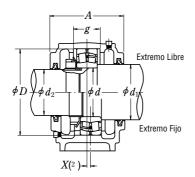


			asa			Partes	Apli	cables				Retenes
		(k apr	g) ox.	Rodamient	os de Rod	lillos Esféricos	Núr	meros de		Anillos de Fija		de Aceite (3)
$t \atop ext{nominal}$	S nominal	Tipo Pasante	Tipo Cerrado	Número		l. Básicos de Carga Dinámica $C_{ m r}$ (N)	Ad	aptador Nomir	ial (Diám. xAncho Ext.)Cant.	
M 12	M 16	8.5	7.5	22211 E	AKE4	119 000	Н	311 X	SR	100x4	1	GS 11
M 16	M 16	15	14	22212 E	AKE4	142 000	Н	312 X	SR	110x4	1	GS 12
M 16	M 16	9.5	8.5	22213 E	AKE4	177 000	Н	313 X	SR	120x5	1	GS 13
M 16	M 16	12.5	11	22215 E	ΔΚΕΛ	190 000	Н	315 X	SR	130x5	1	GS 15
M 20	M 20	18.5	17	22216 E		212 000	Н			140x5	1	GS 16
M 20	M 20	21	20	22210 E		250 000	Н	317 X		150x5	1	GS 17
IVI 20	IVI ZU	21	20	22217 6	ANE4	250 000	П	31/ /	SΠ	15025	'	U3 17
M 20	M 20	25	23	22218 E	AKE4	289 000	Н	318 X	SR	160x5	1	GS 18
M 20	M 20	37	34	22220 E	AKE4	365 000	Н	320 X	SR	180x5	1	GS 20
M 20	M 20	50	45	22222 E	AKE4	485 000	Н	322 X	SR	200x5	1	GS 22
M 20	M 20	59	53	22224 E	AKF4	550 000	Н:	3124	SR	215x5	1	GS 24
M 24	M 24	67	62	22226 E		655 000		3126		230x5	1	GS 26
M 24	M 24	73	68	22228 0		645 000		3128		250x5	1	GS 28
IVI 24	IVI 2-7	75	00	22220 0	DKLT	040 000		0120	011	20000	.	GO 20
M 24	M 24	90	80	22230 C	DKE4	765 000	Н:	3130	SR	270x5	1	GS 30
M 24	M 24	105	92	22232 C	DKE4	910 000	Н:	3132	SR	290x5	1	GS 32
M 30	M 30	130	115	22234 C	DKE4	990 000	Н:	3134	SR	310x5	1	GS 34
M 30	M 30	155	135	22236 C	DKE4	1 020 000	Η:	3136	SR	320x5	1	GS 36
M 36	M 36	175	155	22238 0	CAKE4	1 140 000	Η:	3138	SR	340x5	1	GS 38
M 36	M 36	210	180	22240 C	CAKE4	1 300 000	Н:	3140	SR	360x5	1	GS 40

Notas (²) La dimensión X indica el desplazamiento del centro del rodamiento respecto al centro del soporte con rodamiento y es 1/2 del ancho del anillo de fijación.

⁽³⁾ Aplicable al Tipo ZF con el mismo número.

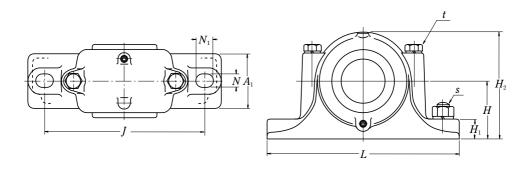
Tipos SN 2 C y SN 3 C Diámetro del Eje $25\sim55$ mm



Diám. del Eje (mm)	Números de Soportes								Dimensi (mm							
d	para Rod. (1)	d_1	d_2	$D_{ m H8}$	H h13	J	N	N_1	A	L	A_1	H_1	H_2	g H13	t nominal	S nominal
25	SN 205 C	30	20	52	40	130	15	20	67	165	46	22	75	25	M 8	M 12
	SN 305 C	30	20	62	50	150	15	20	80	185	52	22	90	34	M 8	M 12
30	SN 206 C	35	25	62	50	150	15	20	77	185	52	22	90	30	M 8	M 12
	SN 306 C	35	25	72	50	150	15	20	82	185	52	22	95	37	M 10	M 12
35	SN 207 C	45	30	72	50	150	15	20	82	185	52	22	95	33	M 10	M 12
	SN 307 C	45	30	80	60	170	15	20	90	205	60	25	110	41	M 10	M 12
40	SN 208 C	50	35	80	60	170	15	20	85	205	60	25	110	33	M 10	M 12
	SN 308 C	50	35	90	60	170	15	20	95	205	60	25	115	43	M 10	M 12
45	SN 209 C	55	40	85	60	170	15	20	85	205	60	25	112	31	M 10	M 12
	SN 309 C	55	40	100	70	210	18	23	105	255	70	28	130	46	M 12	M 16
50	SN 210 C	60	45	90	60	170	15	20	90	205	60	25	115	33	M 10	M 12
	SN 310 C	60	45	110	70	210	18	23	115	255	70	30	135	50	M 12	M 16
55	SN 211 C	65	50	100	70	210	18	23	95	255	70	28	130	33	M 12	M 16
	SN 311 C	65	50	120	80	230	18	23	120	275	80	30	150	53	M 12	M 16

Nota (1) Incluye el retén de aceite.

Para realizar un pedido de una unidad completa, especifique "Soporte partido + rodamiento + adaptador+anillo de fijación". **Observaciones** Las roscas para los tapones son R 1/8.

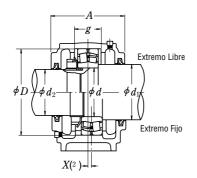

Anillo de Fijación

Masa				Partes Apli	cables						de Aceite
(kg)	Rod. de Bo		ites Rod. de Rodillos		Tuerca	Arandela		Anillos de Fijac	ión	(3)
aprox.	Números	B. D. L. R. (4) $C_{\rm r}$ (N)	Números	B. D. L. R. (4) $C_{\rm r}$ (N)	Números	Números	Nominal	(Diám. _x Ancho)	Cant.	Cara d_1	Cara d
1.1	1205 2205	12 200 12 400	 22205 CE4	— 37 500	AN 05 AN 05	AW 05X AW 05X		52 x 5 52 x 7	2 1	GS 7	GS 5
1.6	1305 2305	18 200 24 900	21305 CDE4 —	43 000 —	AN 05 AN 05	AW 05X AW 05X		62 x 8.5 62 x 10	2	GS 7	GS 5
1.7	1206 2206	15 800 15 300	 22206 CE4	 50 000	AN 06 AN 06	AW 06X AW 06X		62 x 7 62 x 10	2	GS 8	GS 6
1.8	1306 2306	21 400 32 000	21306 CDE4 —	55 000 —	AN 06 AN 06	AW 06X AW 06X		72 x 9 72 x 10	2 1	GS 8	GS 6
1.9	1207 2207	15 900 21 700	 22207 CE4	 69 000	AN 07 AN 07	AW 07X AW 07X		72 x 8 72 x 10	2 1	GS 10	GS 7
2.6	1307 2307	25 300 40 000	21307 CDE4 —	71 500 —	AN 07 AN 07	AW 07X AW 07X		80 x 10 80 x 10	2 1	GS 10	GS 7
2.6	1208 2208	19 300 22 400	 22208 EAE4	 90 500	AN 08 AN 08	AW 08X AW 08X	SR SR	80 x 7.5 80 x 10	2 1	GS 11	GS 8
2.9	1308 2308	29 800 45 500	21308 EAE4 22308 EAE4	94 500 136 000		AW 08X AW 08X		90 x 10 90 x 10	2 1	GS 11	GS 8
2.8	1209 2209	22 000 23 300	 22209 EAE4	— 94 500	AN 09 AN 09	AW 09X AW 09X		85 x 6 85 x 8	2 1	GS 12	GS 9
4.1	1309 2309	38 500 55 000	21309 EAE4 22309 EAE4	119 000 166 000		AW 09X AW 09X		100 x 10.5 100 x 10	2 1	GS 12	GS 9
3.0	1210 2210	22 800 23 400	 22210 EAE4	 99 000	AN 10 AN 10	AW 10X AW 10X	SR SR	90 x 6.5 90 x 10	2 1	GS 13	GS 10
4.7	1310 2310	43 500 65 000		142 000 197 000		AW 10X AW 10X		110 x 11.5 110 x 10	2 1	GS 13	GS 10
4.5	1211 2211	26 900 26 700	 22211 EAE4	 119 000	AN 11 AN 11	AW 11X AW 11X		100 x 6 100 x 8	2	GS 15	GS 11
5.8	1311 2311	51 500 76 500	21311 EAE4 22311 EAE4		AN 11 AN 11	AW 11X AW 11X		120 x 12 120 x 10	2 1	GS 15	GS 11

Notas (²) La dimensión X indica el desplazamiento del centro del rodamiento respecto al centro del soporte partido. Si se utiliza un anillo de fijación pasa a ser 1/2 del ancho de dicho anillo, y si se utilizan dos anillos pasa a ser 0

⁽³⁾ Aplicable al Tipo ZF con el mismo número. (4) B. D. L. R.: Índices Básicos de Carga Dinámica

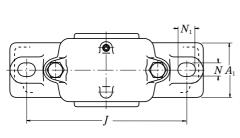
Tipos SN 2 C y SN 3 C Diámetro del Eje $60\sim$ 90 mm

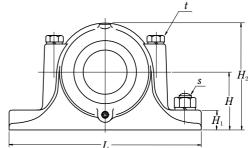


Diám. del Eje (mm)	Números de Soportes para								Dimensi (mm							
d	Rodamientos	d_1	d_2	$D_{ m H8}$	$H_{ m h13}$	J	N	N_1	A	L	A_1	H_1	H_2	g H13	t nominal	S nominal
60	SN 212 C	70	55	110	70	210	18	23	105	255	70	30	135	38	M 12	M 16
	SN 312 C	70	55	130	80	230	18	23	125	280	80	30	155	56	M 12	M 16
65	SN 213 C	75	60	120	80	230	18	23	110	275	80	30	150	43	M 12	M 16
	SN 313 C	75	60	140	95	260	22	27	130	315	90	32	175	58	M 16	M 20
70	SN 214 C	80	65	125	80	230	18	23	115	275	80	30	155	44	M 12	M 16
	SN 314 C	80	65	150	95	260	22	27	130	320	90	32	185	61	M 16	M 20
75	SN 215 C	85	70	130	80	230	18	23	115	280	80	30	155	41	M 12	M 16
	SN 315 C	85	70	160	100	290	22	27	140	345	100	35	195	65	M 16	M 20
80	SN 216 C	90	75	140	95	260	22	27	120	315	90	32	175	43	M 16	M 20
	SN 316 C	90	75	170	112	290	22	27	145	345	100	35	212	68	M 16	M 20
85	SN 217 C	95	80	150	95	260	22	27	125	320	90	32	185	46	M 16	M 20
	SN 317 C	95	80	180	112	320	26	32	155	380	110	40	218	70	M 20	M 24
90	SN 218 C	100	85	160	100	290	22	27	145	345	100	35	195	62.4	M 16	M 20
	SN 318 C	105	85	190	112	320	26	32	160	380	110	40	225	74	M 20	M 24

Nota (1) Incluye el retén de aceite.

Para realizar un pedido de una unidad completa, especifique "Soporte partido + rodamiento + adaptador+anillo de fijación". **Observaciones** Las roscas para los tapones son R 1/8 para SN316C, SN218C e inferiores, y R 1/4 para SN317C y superiores.

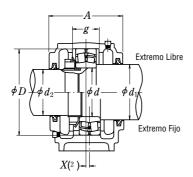

Anillo de Fijación


Masa				Partes Apli	cables				Retenes (
(kg)	Rod. Bola	as Autoalineant			Tuerca	Arandela	Anillos de Fijació	n	,	,
aprox.	Números	B. D. L. R. (⁴) <i>C</i> _r (N)	Números	B. D. L. R. (⁴) <i>C</i> _r (N)	Números	Números	Nominal (Ext. XAncho) (ant.	Cara d_1	Cara d_2
5.0	1212 2212	30 500 34 000	 22212 EAE4	 142 000	AN 12 AN 12	AW 12X AW 12X	SR 110 x 8 SR 110 x 10	2	GS 16	GS 12
6.5	1312 2312	57 500 88 500	21312 EAE4 22312 EAE4	190 000 271 000	AN 12 AN 12	AW 12X AW 12X	SR 130 x 12.5 SR 130 x 10	2	GS 16	GS 12
5.6	1213 2213	31 000 43 500	 22213 EAE4	— 177 000	AN 13 AN 13	AW 13X AW 13X	SR 120 x 10 SR 120 x 12	2	GS 17	GS 13
8.7	1313 2313	62 500 97 000	21313 EAE4 22313 EAE4	212 000 300 000	AN 13 AN 13	AW 13X AW 13X	SR 140 x 12.5 SR 140 x 10	2	GS 17	GS 13
6.2	1214 2214	35 000 44 000	 22214 EAE4	 180 000	AN 14 AN 14	AW 14X AW 14X	SR 125 x 10 SR 125 x 13	2	GS 18	GS 15
10	1314 2314	65 000 111 000	21314 EAE4 22314 EAE4	250 000 340 000	AN 14 AN 14	AW 14X AW 14X	SR 150 x 13 SR 150 x 10	2	GS 18	GS 15
7.0	1215 2215	39 000 44 500	 22215 EAE4	 190 000	AN 15 AN 15	AW 15X AW 15X	SR 130 x 8 SR 130 x 10	2	GS 19	GS 16
11.3	1315 2315	80 000 125 000	21315 EAE4 22315 EAE4		AN 15 AN 15	AW 15X AW 15X	SR 160 x 14 SR 160 x 10	2	GS 19	GS 16
9.0	1216 2216	40 000 49 000	 22216 EAE4	 212 000	AN 16 AN 16	AW 16X AW 16X	SR 140 x 8.5 SR 140 x 10	2	GS 20	GS 17
12.6	1316 2316	89 000 130 000	21316 EAE4 22316 EAE4	284 000 435 000	AN 16 AN 16	AW 16X AW 16X		2	GS 20	GS 17
10	1217 2217	49 500 58 500	 22217 EAE4	 250 000	AN 17 AN 17	AW 17X AW 17X	SR 150 x 9 SR 150 x 10	2	GS 21	GS 18
15	1317 2317	98 500 142 000	21317 EAE4 22317 EAE4	289 000 480 000	AN 17 AN 17	AW 17X AW 17X	SR 180 x 14.5 SR 180 x 10	2	GS 21	GS 18
13	1218 2218 —	57 500 70 500 —	 22218 EAE4 23218 CE4	 289 000 340 000	AN 18 AN 18 AN 18	AW 18X AW 18X AW 18X	SR 160 x 16.2 SR 160 x 11.2 SR 160 x 10	2 2 1	GS 22	GS 19
19	1318 2318	117 000 154 000	21318 EAE4 22318 EAE4	330 000 535 000	AN 18 AN 18	AW 18X AW 18X	SR 190 x 15.5 SR 190 x 10	2	GS 23	GS 19

Notas (²) La dimensión X indica el desplazamiento del centro del rodamiento respecto al centro del soporte partido. Si se utiliza un anillo de fijación pasa a ser 1/2 del ancho de dicho anillo, y si se utilizan dos anillos pasa a ser 0.

⁽³⁾ Aplicable al Tipo ZF con el mismo número. (4) B. D. L. R.: Índices Básicos de Carga Dinámica

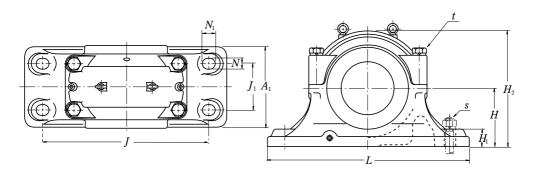
Tipos SN 2 C y SN 3 C Diámetro del Eje 95 \sim 160 mm


Diám. del Eje (mm)	Números								Dimensi (mm							
d	de Soportes para Rod. (1)	d_1	d_2	$D_{ m H8}$	<i>H</i> h13	J	N	N_1	A	L	A_1	H_1	H_2	g H13	tnominal	\$ nominal
95	SN 219 C	110	90	170	112	290	22	27	140	345	100	35	210	53	M 16	M 20
	SN 319 C	110	90	200	125	350	26	32	170	410	120	45	245	77	M 20	M 24
100	SN 220 C	115	95	180	112	320	26	32	160	380	110	40	218	70.3	M 20	M 24
	SN 320 C	115	95	215	140	350	26	32	175	410	120	45	270	83	M 20	M 24
110	SN 222 C	125	105	200	125	350	26	32	175	410	120	45	240	80	M 20	M 24
	SN 322 C	125	105	240	150	390	28	36	190	450	130	50	300	90	M 24	M 24
120	SN 224 C	135	115	215	140	350	26	32	185	410	120	45	270	86	M 20	M 24
	SN 324 C	135	115	260	160	450	33	42	200	530	160	60	320	96	M 24	M 30
130	SN 226 C	145	125	230	150	380	28	36	190	445	130	50	290	90	M 24	M 24
	SN 326 C	150	125	280	170	470	33	42	210	550	160	60	340	103	M 24	M 30
140	SN 228 C	155	135	250	150	420	33	42	205	500	150	50	305	98	M 24	M 30
	SN 328 C	160	135	300	180	520	35	45	235	610	170	65	365	112	M 30	M 30
150	SN 230 C	165	145	270	160	450	33	42	220	530	160	60	325	106	M 24	M 30
	SN 330 C	170	145	320	190	560	35	45	245	650	180	65	385	118	M 30	M 30
160	SN 232 C	175	150	290	170	470	33	42	235	550	160	60	345	114	M 24	M 30
	SN 332 C	180	150	340	200	580	42	50	255	680	190	70	405	124	M 30	M 36

Nota (1) Incluye el retén de aceite.

Para realizar un pedido de una unidad completa, especifique "Soporte partido + rodamiento + adaptador+anillo de fijación". **Observaciones 1.** Las roscas para los tapones son R 1/8 para SN219C, y R 1/4 para SN319C y SN220C y superiores.

2. Los soportes de fundición con rodamientos con números mayores que SN32C y SN224C, se suministran con tornillos.


Anillo de Fijación

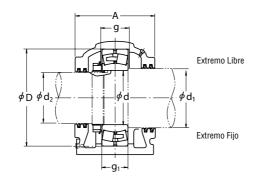
Masa				Partes Apli	cables				Retenes	
(kg)	Rod. Bolas	Autoalineante	s Rod. Rodillos		Tuerca	Arandela	Anillo de Emplazami	ento	,	,
aprox.	Números	B. D. L. R. (4) <i>C</i> _r (N)	Números	B. D. L. R. (4) $C_{\rm r}$ (N)	Números	Números M	Nominal (Diám. xAncho)	Cant.	Cara d_1	Cara d_2
15	1219 2219	64 000 84 000	— 22219 EAE4	 330 000	AN 19 AN 19	AW 19X AW 19X	SR 170 x 10.5 SR 170 x 10	2 1	GS 24	GS 20
22	1319 2319		21319 CE4 22319 EAE4	345 000 590 000		AW 19X AW 19X	SR 200 x 16 SR 200 x 10	2	GS 24	GS 20
18.5	1220 2220 —	69 500 94 500 —	 22220 EAE4 23220 CE4	— 365 000 420 000		AW 20X AW 20X AW 20X	SR 180 x 18.1 SR 180 x 12.1 SR 180 x 10	2 2 1	GS 26	GS 21
25	1320 2320		21320 CE4 22320 EAE4	395 000 690 000		AW 20X AW 20X	SR 215 x 18 SR 215 x 10	2 1	GS 26	GS 21
20	1222 2222 —	87 000 122 000 —	 22222 EAE4 23222 CE4	— 485 000 515 000		AW 22X AW 22X AW 22X	SR 200 x 21 SR 200 x 13.5 SR 200 x 10	2 2 1	GS 28	GS 23
32	1322 2322		21322 CAE4 22322 EAE4	395 000 825 000		AW 22X AW 22X	SR 240 x 20 SR 240 x 10	2 1	GS 28	GS 23
24.5	_	_	22224 EAE4 23224 CE4	550 000 630 000		AW 24 AW 24	SR 215 x 14 SR 215 x 10	2	GS 30	GS 26
48	_	_	22324 EAE4	955 000	AN 24	AW 24	SR 260 x 10	1	GS 30	GS 26
30		_	22226 EAE4 23226 CE4	655 000 700 000		AW 26 AW 26	SR 230 x 13 SR 230 x 10	2	GS 33	GS 28
56	_	_	22326 CE4	995 000	AN 26	AW 26	SR 280 x 10	1	GS 34	GS 28
38	_	_	22228 CDE4 23228 CE4	645 000 835 000		AW 28 AW 28	SR 250 x 15 SR 250 x 10	2	GS 35	GS 30
72	_	_	22328 CE4	1 160 000	AN 28	AW 28	SR 300 x 10	1	GS 36	GS 30
46	=		22230 CDE4 23230 CE4	765 000 975 000		AW 30 AW 30	SR 270 x 16.5 SR 270 x 10	2	GS 37	GS 33
98	-	_	22330 CAE4	1 220 000	AN 30	AW 30	SR 320 x 10	1	GS 38	GS 33
50	_	_	22232 CDE4 23232 CE4	910 000 1 100 000		AW 32 AW 32	SR 290 x 17 SR 290 x 10	2	GS 39	GS 34
115	_	_	22332 CAE4	1 360 000	AN 32	AW 32	SR 340 x 10	1	GS 40	GS 34

Notas (²) La dimensión X indica el desplazamiento del centro del rodamiento respecto al centro del soporte partido. Si se utiliza un anillo de fijación pasa a ser 1/2 del ancho de dicho anillo, y si se utilizan dos anillos pasa a ser 0

⁽³⁾ Aplicable al Tipo ZF con el mismo número. (4) B. D. L. R.: Índices Básicos de Carga Dinámica

Tipos SD 2 C y SD 3 C Diámetro del Eje $170\sim320~\text{mm}$

Diám. del Eje		e Soportes para						D	imensi (mm						
(mm) d		nientos (¹) e Extremo Fijo	d_1	d_2	$_{\rm H8}^{D}$	H h13	J	N	N_1	A	L	A_1	H_1	H_2	J_1
170	SD 234 C	SD 234 CG	190	160	310	180	510	36	46	270	620	250	60	360	140
	SD 334 C	SD 334 CG	190	160	360	210	610	36	46	300	740	290	65	420	170
180	SD 236 C	SD 236 CG	200	170	320	190	540	36	46	280	650	260	60	380	150
	SD 336 C	SD 336 CG	200	170	380	225	640	43	59	320	780	310	70	450	180
190	SD 238 C	SD 238 CG	210	180	340	200	570	36	46	290	700	280	65	400	160
	SD 338 C	SD 338 CG	210	180	400	240	680	43	59	330	820	320	70	475	190
200	SD 240 C	SD 240 CG	220	190	360	210	610	36	46	300	740	290	65	420	170
200	SD 340 C	SD 340 CG	220	190	420	250	710	43	59	350	860	340	85	500	200
220	SD 244 C	SD 244 CG	240	210	400	240	680	43	59	330	820	320	70	475	190
	SD 344 C	SD 344 CG	240	210	460	280	770	43	59	360	920	350	85	550	210
240	SD 248 C	SD 248 CG	260	230	440	260	740	43	59	340	880	330	85	515	200
	SD 348 C	SD 348 CG	260	230	500	300	830	50	67	390	990	380	100	590	230
260	SD 252 C	SD 252 CG	280	250	480	280	790	43	59	370	940	360	85	560	210
	SD 352 C	SD 352 CG	280	250	540	325	890	50	67	410	1 060	400	100	640	250
280	SD 256 C	SD 256 CG	300	260	500	300	830	50	67	390	990	380	100	590	230
		SD 356 CG	300	260	580	355	930	57	77	440	1 110	430	110	690	270
200	CD 260 C	SD 260 CG	220	200	E40	225	000	ΕO	67	410	1.060	400	100	640	250
300	SD 260 C	200 CG	320	280	540	325	890	50	67	410	1 060	400	100	640	250
320	SD 264 C	SD 264 CG	340	300	580	355	930	57	77	440	1 110	430	110	690	270


Nota (1) Incluye el retén de aceite.

Para realizar un pedido de una unidad completa, especifique "Soporte partido + rodamiento + adaptador+anillo de fijación".

Observaciones 1. Las roscas para los tapones del orificio de rellenado de aceite son R 1/4, y las de los tapones de vaciado son R 3/8.

2. Los soportes de fundición con rodamientos mostrados anteriormente se suministran con tornillos.

				Masa (kg)		Partes Aplicat	oles		Retenes	de Aceite
				(kg)	Rod. de Rodill		Tuerca	Arandela o	(,
g H13	g 1 H13	t nominal	S nominal	aprox.		ces Básicos de Car Dinámica $C_{ m r}$ (N)	rga Números	Tope Números	Cara d_1	Cara d_2
96	86	M 24	M 30	100	22234 CDE4	990 000	AN 34	AW 34	GS 42	GS 36
130	120	M 30	M 30	160	22334 CAE4	1 580 000	AN 34	AW 34	GS 42	GS 36
96	86	M 24	M 30	110	22236 CDE4	1 020 000	AN 36	AW 36	GS 44	GS 38
136	126	M 30	M 36	195	22336 CAE4	1 740 000	AN 36	AW 36	GS 44	GS 38
102	92	M 30	M 30	130	22238 CAE4	1 140 000	AN 38	AW 38	GS 46	GS 40
142	132	M 30	M 36	210	22338 CAE4	1 890 000	AN 38	AW 38	GS 46	GS 40
108	98	M 30	M 30	155	22240 CAE4	1 300 000	AN 40	AW 40	GS 48	GS 42
148	138	M 36	M 36	240	22340 CAE4	2 000 000	AN 40	AW 40	GS 48	GS 42
118	108	M 30	M 36	205	22244 CAE4	1 570 000	AN 44	AL 44	GS 52	GS 46
155	145	M 36	M 36	315	22344 CAE4	2 350 000	AN 44	AL 44	GS 52	GS 46
130	120	M 36	M 36	240	22248 CAE4	1 870 000	AN 48	AL 44	GS 56	GS 50
165	155	M 36	M 42	405	22348 CAE4	2 600 000	AN 48	AL 44	GS 56	GS 50
140	130	M 36	M 36	315	22252 CAE4	2 180 000	AN 52	AL 52	GS 60	GS 54
175	165	M 36	M 42	480	22352 CAE4	3 100 000	AN 52	AL 52	GS 60	GS 54
140	130	M 36	M 42	390	22256 CAE4	2 280 000	AN 56	AL 52	GS 64	GS 56
185	175	M 42	M 48	610	22356 CAE4	3 500 000	AN 56	AL 52	GS 64	GS 56
150	140	M 36	M 42	465	22260 CAE4	2 610 000	AN 60	AL 60	GS 68	GS 60
160	150	M 42	M 48	595	22264 CAE4	2 990 000	AN 64	AL 64	GS 72	GS 64

Nota (2) Aplicable al Tipo ZF con el mismo número.

RODAMIENTOS DE RODILLOS CILÍNDRICOS PARA ROLDANAS

RODAMIENTOS DE RODILLOS CILÍNDRICOS PARA ROLDANAS

Tipo abierto Diámetro Interior 50~560 mm . . .Páginas B324~B327

Tipo Prelubricado Diámetro Interior 40~400 mm. . . Páginas B328~B329

DISEÑO, TIPOS Y CARACTERÍSTICAS

Los rodamientos de rodillos cilíndricos para roldanas son rodamientos de rodillos cilíndricos de doble hilera de tipo completo, con sección fina ampliamente utilizados en maquinaria industrial en general, que funcionen a baja velocidad y bajo cargas pesadas. Existen varias series tal como se indica en la Tabla 1.

Tabla 1 Series de Rodamientos de Rodillos Cilíndricos para Roldanas

Tipo de R	odamiento	Extremo Fijo	Extremo Libre
Tipo abierto	Sin anillo de fijación	RS-48E4	RSF-48E4
·	,	RS-49E4	RSF-49E4
Tipo blindado	Sin anillo de fijación	RS-50	-
	Con anillo de fijación	RS-50NR	

Puesto que se trata de rodamientos del tipo no separable, los anillos interior y exterior no se pueden separar, pero los del tipo RSF pueden ser utilizados como rodamientos de extremo libre. En este caso, el desplazamiento axial admisible se lista en las tablas de rodamientos.

Puesto que los rodamientos de rodillos cilíndricos para roldanas son del tipo completo de doble hilera, pueden soportar importantes cargas de impacto y momentos y disponen de suficiente capacidad de carga axial para su uso en roldanas.

Puesto que el tipo blindado es uno de los tipos de rodamiento, el número de componentes que acompañan al rodamiento se puede reducir y lograr de esta forma un diseño compacto.

La superficie de estos rodamientos recibe un tratamiento anticorrosión.

TOLERANCIAS Y PRECISIÓN DE FUNCIONAMIENTO.....Tabla 8.2 (Páginas A60~A63)

AJUSTES Y TOLERANCIAS INTERNAS RECOMENDADOS

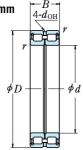
Cuando se usan con rotación del anillo externo para roldanas o ruedas, el ajuste y el juego interno radial debe seguir con los valores indicados en la Tabla 2.

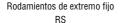
Tabla 2 Ajustes y Juegos Internos en Rodamientos de Rodillos Cilíndricos para Roldanas

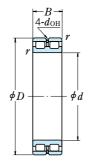
	Condiciones Operativas	Ajuste entre el Anillo Interior y Eje	Ajuste entre el anillo y el Interior del Alojamiento	Juego Interno Recomendado
	Alojamientos de pared fina y cargas pesadas	g6 o h6	P7	C3
Rotación del Anillo Ext.	Cargas pesadas a normales	g6 o h6	N7	C3
	Cargas ligeras o fluctuantes	g6 or h6	M7	CN

Tabla 3

Juegos

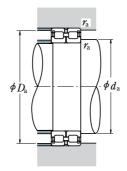

Diám Int


Nominal		ouo	gus	
d (mm)	C	N	C	3
over incl	min	máx.	min	máx.
30 40	15	50	35	70
40 50	20	55	40	75
50 65	20	65	45	90
65 80	25	75	55	105
80 100	30	80	65	115
100 120	35	90	80	135
120 140	40	105	90	155
140 160	50	115	100	165
160 180	60	125	110	175
180 200	65	135	125	195
200 225	75	150	140	215
225 250	90	165	155	230
250 280	100	180	175	255
280 315	110	195	195	280
315 355	125	215	215	305
355 400	140	235	245	340
400 450	155	275	270	390
450 500	180	300	300	420


RODAMIENTOS DE RODILLOS CILÍNDRICOS PARA ROLDANAS

Tipos RS-48 · RS-49 Tipos RSF-48 · RSF-49

Diámetro Interior 50~220 mm

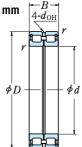

Rodamientos de extremo libre RSF

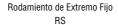
	Dimen: (m			(Índices Básicos N)	de Carga	{kgf}		les Límite _{em)}
d	D	B	? min	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grasa	Aceite
50	72	22	0.6	48 000	75 500	4 900	7 700	2 000	4 000
60	85	25	1	68 500	118 000	6 950	12 000	1 600	3 200
65	90	25	1	70 500	125 000	7 150	12 700	1 600	3 200
70	100	30	1	102 000	168 000	10 400	17 200	1 400	2 800
80	110	30	1	109 000	191 000	11 100	19 500	1 300	2 600
90	125	35	1.1	147 000	268 000	15 000	27 400	1 100	2 200
100	125	25	1	87 500	189 000	8 900	19 300	1 100	2 200
	140	40	1.1	194 000	400 000	19 800	41 000	1 000	2 000
105	130	25	1	89 000	196 000	9 100	19 900	1 000	2 000
	145	40	1.1	199 000	420 000	20 300	43 000	950	1 900
110	140	30	1	114 000	260 000	11 700	26 500	950	1 900
	150	40	1.1	202 000	430 000	20 600	44 000	900	1 800
120	150	30	1	119 000	283 000	12 200	28 900	900	1 800
	165	45	1.1	226 000	480 000	23 100	49 000	800	1 600
130	165	35	1.1	162 000	390 000	16 500	39 500	800	1 600
	180	50	1.5	262 000	555 000	26 700	56 500	750	1 500
140	175	35	1.1	167 000	415 000	17 000	42 500	750	1 500
	190	50	1.5	272 000	595 000	27 700	60 500	710	1 400
150	190 210	40 60	1.1	235 000 390 000	575 000 865 000	23 900 40 000	58 500 88 500	670 670	1 400 1 300
160	200	40	1.1	243 000	615 000	24 800	63 000	630	1 300
	220	60	2	410 000	930 000	41 500	95 000	600	1 200
170	215 230	45 60	1.1	265 000 415 000	650 000 975 000	27 000 42 500	66 500 99 500	600 600	1 200 1 200
180	225 250	45 69	1.1	272 000 495 000	685 000 1 130 000	27 800 50 500	70 000 115 000	560 530	1 100
190	240 260	50 69	1.5 2	315 000 510 000	785 000 1 180 000	32 000 52 000	80 000 120 000	530 500	1 100
200	250 280	50 80	1.5 2.1	320 000 665 000	825 000 1 500 000	33 000 68 000	84 000 153 000	500 480	1 000
220	270	50	1.5	340 000	905 000	34 500	92 500	450	900
	300	80	2.1	695 000	1 620 000	70 500	165 000	430	850

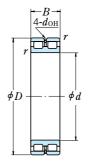
Observaciones

Los rodamientos de rodillos cilíndricos para roldanas están diseñados para aplicaciones específicas. Consulte con NSK para su utilización.

Números de	Rodamiento(1)	Dimen (m			nsiones de To Chaflán (mm)		Masa (kg)
Rodamiento de Extremo Fijo	Rodamiento de Extremo Libre	$d_{ m OH}$ (2)	Axial Disp.(3)	$d_{\scriptscriptstyle m a}$ mín.	$D_{ m a}$ máx.	$\emph{\textbf{r}}_{a}$ máx.	Aprox.
RS-4910E4	RSF-4910E4	2.5	1.5	54	68	0.6	0.30
RS-4912E4	RSF-4912E4	2.5	1.5	65	80	1	0.46
RS-4913E4	RSF-4913E4	2.5	2	70	85	1	0.50
RS-4914E4	RSF-4914E4	3	2	75	95	1	0.79
RS-4916E4	RSF-4916E4	3	2	85	105	1	0.89
RS-4918E4	RSF-4918E4	3	2	96.5	118.5	1	1.35
RS-4820E4	RSF-4820E4	2.5	1.5	105	120	1	0.74
RS-4920E4	RSF-4920E4	3	2	106.5	133.5	1	1.97
RS-4821E4	RSF-4821E4	2.5	1.5	110	125	1	0.77
RS-4921E4	RSF-4921E4	3	2	111.5	138.5	1	2.05
RS-4822E4	RSF-4822E4	3	2	115	135	1	1.09
RS-4922E4	RSF-4922E4		2	116.5	143.5	1	2.15
RS-4824E4	RSF-4824E4	3	2	125	145	1	1.28
RS-4924E4	RSF-4924E4	4	3	126.5	158.5	1	2.95
RS-4826E4	RSF-4826E4	3	2	136.5	158.5	1	1.9
RS-4926E4	RSF-4926E4	5	3.5	138	172	1.5	3.95
RS-4828E4	RSF-4828E4	3	2	146.5	168.5	1	2.03
RS-4928E4	RSF-4928E4	5	3.5	148	182	1.5	4.25
RS-4830E4	RSF-4830E4	3	2	156.5	183.5	1	2.85
RS-4930E4	RSF-4930E4	5	3.5	159	201	2	6.65
RS-4832E4	RSF-4832E4	3	2	166.5	193.5	1	3.05
RS-4932E4	RSF-4932E4	5	3.5	169	211	2	7.0
RS-4834E4	RSF-4834E4	4	3	176.5	208.5	1	4.1
RS-4934E4	RSF-4934E4	4	3.5	179	221	2	7.35
RS-4836E4	RSF-4836E4	4	3	186.5	218.5	1	4.3
RS-4936E4	RSF-4936E4	6	4.5	189	241	2	10.7
RS-4838E4	RSF-4838E4	5	3.5	198	232	1.5	5.65
RS-4938E4	RSF-4938E4	6	4.5	199	251	2	11.1
RS-4840E4	RSF-4840E4	5	3.5	208	242	1.5	5.95
RS-4940E4	RSF-4940E4	7	5	211	269	2	15.7
RS-4844E4	RSF-4844E4	5	3.5	228	262	1.5	6.45
RS-4944E4	RSF-4944E4	7	5	231	289	2	17

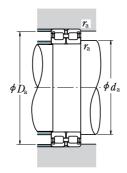

Notas (1) El sufijo E4 indica que el anillo exterior cuenta con orificios y ranuras para la lubricación.


- (²) $d_{\rm OH}$ representa el diámetro del orificio para el aceite en el anillo exterior. (³) Desplazamiento axial permisible para rodamientos de extremo libre.


RODAMIENTOS DE RODILLOS CILÍNDRICOS PARA ROLDANAS

Tipos RS-48 · RS-49 Tipos RSF-48 · RSF-49

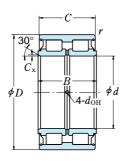
Diámetro Interior 240∼560 mm


Rodamiento de Extremo Libre RSF

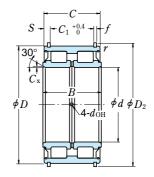
	Dimensiones (mm)			(1	Índices Básicos N)	de Carga	{kgf}	Velocidade (rpr	
d	D	B	∤ min	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	Grasa	Aceite
240	300	60	2	495 000	1 340 000	50 500	137 000	430	850
	320	80	2.1	725 000	1 770 000	74 000	181 000	400	800
260	320	60	2	515 000	1 450 000	52 500	148 000	380	750
	360	100	2.1	1 050 000	2 530 000	107 000	258 000	360	710
280	350	69	2	610 000	1 690 000	62 500	173 000	340	710
	380	100	2.1	1 090 000	2 720 000	111 000	277 000	340	670
300	380	80	2.1	805 000	2 160 000	82 000	220 000	320	630
	420	118	3	1 460 000	3 400 000	149 000	350 000	300	600
320	400	80	2.1	835 000	2 310 000	85 000	236 000	300	600
	440	118	3	1 500 000	3 600 000	153 000	365 000	280	560
340	420	80	2.1	855 000	2 430 000	87 500	248 000	280	560
	460	118	3	1 560 000	3 900 000	159 000	395 000	260	530
360	440	80	2.1	885 000	2 580 000	90 000	264 000	260	530
	480	118	3	1 600 000	4 050 000	163 000	415 000	260	500
380	480	100	2.1	1 260 000	3 600 000	128 000	365 000	240	500
	520	140	4	2 040 000	5 200 000	209 000	530 000	240	450
400	500	100	2.1	1 290 000	3 750 000	132 000	385 000	240	480
	540	140	4	2 100 000	5 450 000	214 000	555 000	220	450
420	520	100	2.1	1 320 000	3 950 000	135 000	405 000	220	450
	560	140	4	2 150 000	5 700 000	219 000	580 000	200	430
440	540	100	2.1	1 350 000	4 150 000	138 000	420 000	200	430
	600	160	4	2 840 000	7 350 000	289 000	750 000	190	380
460	580	118	3	1 730 000	5 150 000	177 000	525 000	190	380
	620	160	4	2 870 000	7 500 000	293 000	765 000	190	380
480	600	118	3	1 760 000	5 300 000	180 000	545 000	190	380
	650	170	5	3 200 000	8 500 000	325 000	865 000	180	360
500	620	118	3	1 810 000	5 600 000	184 000	570 000	180	360
	670	170	5	3 300 000	8 900 000	335 000	910 000	170	340
530	710	180	5	3 400 000	9 200 000	350 000	935 000	160	320
560	750	190	5	3 800 000	10 100 000	385 000	1 030 000	150	300

Observaciones

Los rodamientos de rodillos cilíndricos para roldanas están diseñados para aplicaciones específicas. Consulte con NSK para su utilización.


Números de	Rodamiento(1)	Dimen (m	siones m)		ensiones de To Chaflán (mm)		Masa (kg)
Rodamiento de Extremo Fijo	Rodamiento de Extremo Libre	$d_{ m OH}^{(2)}$	Axial Disp.(3)	$d_{ m a}$ min	$D_{ m a}$ máx.	γ _a máx.	Aprox.
RS-4848E4	RSF-4848E4	5	3.5	249	291	2	10.3
RS-4948E4	RSF-4948E4	7	5	251	309	2	18.4
RS-4852E4	RSF-4852E4	5	3.5	269	311	2	11
RS-4952E4	RSF-4952E4	8	6	271	349	2	32
RS-4856E4	RSF-4856E4	6	4.5	289	341	2	16
RS-4956E4	RSF-4956E4	8	6	291	369	2	34
RS-4860E4	RSF-4860E4	6	5	311	369	2	23
RS-4960E4	RSF-4960E4	9	7	313	407	2.5	52
RS-4864E4	RSF-4864E4	6	5	331	389	2	24.3
RS-4964E4	RSF-4964E4	9	7	333	427	2.5	55
RS-4868E4	RSF-4868E4	6	5	351	409	2	25.6
RS-4968E4	RSF-4968E4	9	7	353	447	2.5	58
RS-4872E4	RSF-4872E4	6	5	371	429	2	27
RS-4972E4	RSF-4972E4	9	7	373	467	2.5	61
RS-4876E4	RSF-4876E4	8	6	391	469	2	45.5
RS-4976E4	RSF-4976E4	11	8	396	504	3	90.5
RS-4880E4	RSF-4880E4	8	6	411	489	2	47.5
RS-4980E4	RSF-4980E4	11	8	416	524	3	94.5
RS-4884E4	RSF-4884E4	8	6	431	509	2	49.5
RS-4984E4	RSF-4984E4	11	8	436	544	3	98.5
RS-4888E4	RSF-4888E4	8	6	451	529	2	51.5
RS-4988E4	RSF-4988E4	11	8	456	584	3	136
RS-4892E4	RSF-4892E4	9	7	473	567	2.5	77.5
RS-4992E4	RSF-4992E4	11	8	476	604	3	142
RS-4896E4	RSF-4896E4	9	7	493	587	2.5	80.5
RS-4996E4	RSF-4996E4	12	9	500	630	4	167
RS-48/500E4	RSF-48/500E4	9	7	513	607	2.5	83.5
RS-49/500E4	RSF-49/500E4	12	9	520	650	4	173
RS-49/530E4	RSF-49/530E4	12	11	550	690	4	206
RS-49/560E4	RSF-49/560E4	12	11	580	730	4	231

Notas (1) El sufijo E4 indica que el anillo exterior cuenta con orificios y ranuras para la lubricación.


- (²) $d_{\rm OH}$ representa el diámetro del orificio para el aceite en el anillo exterior. (³) Desplazamiento axial permisible para rodamientos de extremo libre.

RODAMIENTOS DE RODILLOS CILÍNDRICOS PARA ROLDANAS

Tipo RS-50 (Prelubricado) Diámetro Interior 40~400 mm

Sin Anillo de Fijación

Con Anillo de Fijación

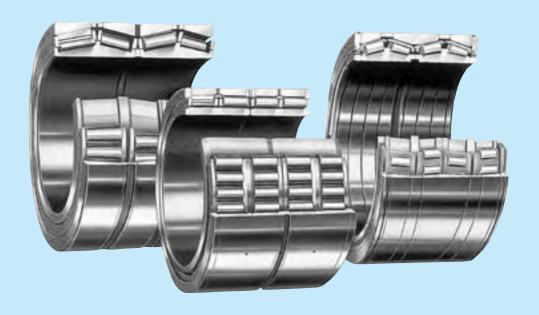
			siones m)			(1	Índices Básicos	de Carga	{kgf}	Velocidades Límite
d	D	B	С	$C_{\mathrm{xin}}^{(1)}$	r min	C_{r}	$C_{0\mathrm{r}}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	(rpm) Grasa
40	68	38	37	0.4	0.6	79 500	116 000	8 100	11 800	2 400
45	75	40	39	0.4	0.6	95 500	144 000	9 750	14 700	2 200
50	80	40	39	0.4	0.6	100 000	158 000	10 200	16 100	2 000
55	90	46	45	0.6	0.6	118 000	193 000	12 100	19 700	1 800
60	95	46	45	0.6	0.6	123 000	208 000	12 600	21 200	1 700
65	100	46	45	0.6	0.6	128 000	224 000	13 100	22 800	1 600
70	110	54	53	0.6	0.6	171 000	285 000	17 500	29 000	1 400
75	115	54	53	0.6	0.6	179 000	305 000	18 200	31 500	1 400
80	125	60	59	0.6	0.6	251 000	430 000	25 600	43 500	1 200
85	130	60	59	0.6	0.6	256 000	445 000	26 200	45 500	1 200
90	140	67	66	1	0.6	305 000	540 000	31 000	55 000	1 100
95	145	67	66	1	0.6	310 000	565 000	32 000	57 500	1 100
100	150	67	66	1	0.6	320 000	585 000	32 500	59 500	1 000
110	170	80	79	1.1	1	385 000	695 000	39 000	71 000	900
120	180	80	79	1.1	1	400 000	750 000	40 500	76 500	850
130	200	95	94	1.1	1	535 000	1 000 000	54 500	102 000	750
140	210	95	94	1.1	1	550 000	1 040 000	56 000	106 000	710
150	225	100	99	1.3	1	620 000	1 210 000	63 500	124 000	670
160	240	109	108	1.3	1.1	695 000	1 370 000	71 000	140 000	630
170	260	122	121	1.3	1.1	860 000	1 680 000	88 000	171 000	600
180	280	136	135	1.3	1.1	980 000	1 910 000	100 000	195 000	530
190	290	136	135	1.3	1.1	1 120 000	2 230 000	114 000	227 000	500
200	310	150	149	1.3	1.1	1 310 000	2 650 000	133 000	270 000	480
220	340	160	159	1.5	1.1	1 510 000	3 100 000	154 000	320 000	430
240	360	160	159	1.5	1.1	1 570 000	3 350 000	160 000	340 000	400
260	400	190	189	2	1.5	2 130 000	4 500 000	217 000	460 000	360
280	420	190	189	2	1.5	2 170 000	4 700 000	221 000	480 000	340
300	460	218	216	2	1.5	2 670 000	5 850 000	272 000	600 000	300
320	480	218	216	2	1.5	2 720 000	6 100 000	277 000	620 000	300
340	520	243	241	2.1	2	3 350 000	7 550 000	345 000	770 000	260
360	540	243	241	2.1	2	3 450 000	7 850 000	350 000	800 000	260
380	560	243	241	2.1	2	3 550 000	8 400 000	365 000	855 000	240
400	600	272	270	2.1	2	4 250 000	9 950 000	435 000	1 010 000	220


Nota Observaciones

Observaciones 1. Los rodamientos están prelubricados con grasa de calidad.

⁽¹⁾ Dimensiones del chaflán del anillo interior en dirección radial.

^{2.} Se puede añadir grasa a través de los orificios de lubricación de los anillos interiores.



Números de Rodamiento			nes del Anillo ción (mm)		Orificios de Engrase		nes de Tope án (mm)	Masa (kg)
Sin Anillo de Fijación Con Anillo de Fijación	C_1	S	D_2	f	$d_{ m OH}$	$d_{ m a}$ min	$D_{ m x}$ min	Aprox.
RS-5008 RS-5008NR	28	4.5	71.8	2	2.5	43.5	77.5	0.56
RS-5009 RS-5009NR	30	4.5	78.8	2	2.5	48.5	84.5	0.70
RS-5010 RS-5010NR	30	4.5	83.8	2	2.5	53.5	89.5	0.76
RS-5011 RS-5011NR	34	5.5	94.8	2.5	3	60	101	1.17
RS-5012 RS-5012NR	34	5.5	99.8	2.5	3	65	106	1.25
RS-5013 RS-5013NR	34	5.5	104.8	2.5	3	70	111	1.32
RS-5014 RS-5014NR	42	5.5	114.5	2.5	3	75	121	1.87
RS-5015 RS-5015NR	42	5.5	119.5	2.5	3	80	126	2.0
RS-5016 RS-5016NR	48	5.5	129.5	2.5	3	85	136	2.65
RS-5017 RS-5017NR	48	5.5	134.5	2.5	3	90	141	2.75
RS-5018 RS-5018NR	54	6	145.4	2.5	4	96	153.5	3.75
RS-5019 RS-5019NR	54	6	150.4	2.5	4	101	158.5	3.95
RS-5020 RS-5020NR	54	6	155.4	2.5	4	106	163.5	4.05
RS-5022 RS-5022NR	65	7	175.4	2.5	5	116.5	183.5	6.1
RS-5024 RS-5024NR	65	7	188	3	5	126.5	197	7.0
RS-5026 RS-5026NR	77	8.5	207	3	5	136.5	217	10.6
RS-5028 RS-5028NR	77	8.5	217	3	5	146.5	227	11.3
RS-5030 RS-5030NR	81	9	232	3	6	157	242	13.7
RS-5032 RS-5032NR	89	9.5	247	3	6	167	257	16.8
RS-5034 RS-5034NR	99	11	270	4	6	177	285	22.2
RS-5036 RS-5036NR	110	12.5	294	5	6	187	318	30
RS-5038 RS-5038NR	110	12.5	304	5	6	197	328	32
RS-5040 RS-5040NR	120	14.5	324	5	6	207	352	41
RS-5044 RS-5044NR	130	14.5	356	6	7	228.5	382	53
RS-5048 RS-5048NR	130	14.5	376	6	7	248.5	402	57
RS-5052 RS-5052NR	154	17.5	416	7	8	270	444	86
RS-5056 RS-5056NR	154	17.5	436	7	8	290	472	92
RS-5060 RS-5060NR RS-5064 — RS-5068 —	178 — —	19 — —	476 — —	7 —	8 8 10	310 330 352	512 — —	130 135 185
RS-5072 — RS-5076 — RS-5080 —	Ξ				10 10 10	372 392 412		192 196 280

Observaciones

- 3. Los rodamientos de rodillos cilíndricos para roldanas están diseñados para aplicaciones específicas. Consulte con NSK para su utilización.
- 4. Para rodamientos sellados de diámetro exterior superior a 180 mm, la figura tendrá una forma distinta. Para más detalles acerca de la ilustración, consulte con NSK.

RODAMIENTOS DE LAMINACIÓN

RODAMIENTOS DE RODILLOS CÓNICOS DE CUATRO HILERAS

Diámetro Interior 100~ 939.800mm Páginas B334-B335

RODAMIENTOS DE RODILLOS CILÍNDRICOS DE CUATRO HILERAS

Diámetro Interior 100~ 920mm Páginas B336-B339

DISEÑO. TIPOS Y CARACTERÍSTICAS

El mantenimiento y revisión de los rodamientos de rodillos cónicos y cilíndricos de cuatro hileras ensamblados en cuellos de cilindro para laminación es sencillo, y están diseñados para proporcionar el máximo índice de carga posible en el limitado espacio disponible en los cuellos de los cilindros. Asimismo, están diseñados para funcionar a alta velocidad para cumplir los requisitos de laminación a velocidad elevada.

Además de los rodamientos de rodillos cónicos de cuatro hileras de tipo abierto (KV) mostrados en este catálogo, también están disponibles los de tipo sellado. Si desea información más detallada, consulte los catálogos "Rodamientos de Gran Tamaño" (CAT. № E125) o "Rodamientos de Cuello de Cilindro con Cilindros Sellados y Extra Capacidad ™" (CAT. № E1225).

TOLERANCIAS Y PRECISIÓN DE FUNCIONAMIENTO

AJUSTES RECOMENDADOS

RODAMIENTOS DE RODILLOS CÓNICOS DE CUATRO HILERAS (DIÁMETROS INTERNOS CILÍNDRICOS)

Las Tablas 1 y 2 se aplican a los rodamientos de series métricas, y las Tablas 3 y 4 a los de diseño en pulgadas.

Tabla 1 Ajustes de los Rodamientos de Rodillos Cónicos de Cuatro Hileras de Diseño Métrico en los Cuellos de Cilindro

Unidades: µm

Diámetro Interior Nominal d (mm)		Diám. Int. Medio en un Solo Plano △dmp			ancia	Jue	go	Límites de Desgaste
más de	hasta	alta	baja	alta	baja	mín.	máx.	Ref.
80 120 180	120 180 250	0 0 0	- 20 - 25 - 30	— 120 — 150 — 175	- 150 - 175 - 200	100 125 145	150 175 200	300 350 400
250 315 400	315 400 500	0 0 0	- 35 - 40 - 45	-210 -240 -245	-250 -300 -300	175 200 200	250 300 300	500 600 600
500 630	630 800	0	— 50 — 75	- 250 - 325	-300 -400	200 250	300 400	600 800

Tabla 2 Ajustes de los Rodamientos de Rodillos Cónicos de Cuatro Hileras de Diseño Métrico en las Ampuesas

Unidades : μm

Diámetro Exterior Nominal D (mm)		Desviación del Diámetro Exterior Medio en un Solo Plano ΔD^{mp}		Tolerancia para el Diámetro Interior de la Ampuesa		Juego		Límites de Desgaste de la Ampuesa
más de	hasta	alta	baja	alta	baja	mín.	máx.	Ref.
120 150 180 250	150 180 250 315	0 0 0	18253035	+ 57 +100 +120 +115	+25 +50 +50 +50	25 50 50	75 125 150 150	150 250 300 300
315 400	400 500	0	- 40 - 45	+110 +105	+50 +50 +50	50 50 50	150 150 150	300 300 300
500 630 800	630 800 1 000	0 0 0	5075100	+100 +150 +150	+50 +75 +75	50 75 75	150 225 250	300 450 500

Tabla 3 Ajustes de los Rodamientos de Rodillos Cónicos de Cuatro Hileras de Diseño en Pulgadas en los Cuellos de Cilindro

Unidades : μm

	ámetro Inter		Desvia del Diár Interior	netro	Diámetro	ia para el del Cuello lindro	Ju	ego	Límites de Desgaste del	
más (mm)	de 1/25.4	hast (mm)	a 1/25.4	alta	baja	alta	baja	mín.	máx.	Cuello de Cilindro Ref.
152.400 203.200 304.800	6.0000 8.0000 12.0000	203.200 304.800 609.600	8.0000 12.0000 24.0000	+ 25 + 25 + 51		— 175	- 175 - 200 - 250	175		400 450 600
609.600 914.400	24.0000 36.0000	914.400 —	36.0000	+ 76 +102			-325 -400			800 1 000

Tabla 4 Ajustes de los Rodamientos de Rodillos Cónicos de Cuatro Hileras de Diseño en Pulgadas en las Ampuesas

Unidades : μm

Diái	Diámetro Exterior Nominal D					Tolerancia para el Diámetro Interior de la Ampuesa		Juego		Límites de Desgaste
más ((mm)	de 1/25.4	hasta (mm)	a 1/25.4	alta	baja	alta	baja	mín.	máx.	de la Ampuesa Ref.
304.800 609.600	 12.0000 24.0000	304.800 609.600 914.400	12.0000 24.0000 36.0000	+ 25 + 51 + 76	0	+ 75 +150 +225	+ 50 +100 +150	25 49 74	75 150 225	150 300 450
914.400 1 219.200	36.0000 48.0000	1 219.200 1 524.000	48.0000 60.0000	+102 +127	0	+300 +375	+200 +250		300 375	600 750

RODAMIENTOS DE RODILLOS CILÍNDRICOS DE CUATRO HILERAS (DIÁMETROS INTERNOS CILÍNDRICOS)

Cuando se utilizan en los cilindros de apoyo de los trenes de laminación de cuatro stands, las tolerancias para los diámetros del cuello de cilindro se muestran en la Tabla 5. Para el ajuste entre el rodamiento y el diámetro interior de la ampuesa. recomendamos G7.

Para el ajuste de los rodamientos de rodillos cilíndricos de cuatro hileras en los cuellos de cilindro de otros trenes de laminación, generalmente se aplica la Tabla 9.2 (Página A84) y la Tabla 9.4 (Página A85).

Tabla 5 Tolerancias Recomendadas del Cuello de Cilindro de Apovo

		Unida	ades : µm			
Diámetro Intel	rior Nominal	Tolerancias para el Diámetro del Cuello de Cilindro				
más de	hasta	alta	baja			
280 355 400 450 500 560 630 710 800 900	355 400 450 500 560 630 710 800 900 1 000	+0.165 +0.19 +0.22 +0.25 +0.28 +0.32 +0.35 +0.39 +0.44 +0.48	+0.13 +0.15 +0.17 +0.19 +0.21 +0.25 +0.27 +0.31 +0.35 +0.39			

JUEGOS INTERNOS

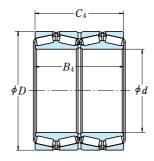
RODAMIENTOS DE RODILLOS CÓNICOS DE CUATRO HILERAS

Los juegos internos radiales de los rodamientos de rodillos cónicos de cuatro hileras (diámetros interiores cilíndricos) utilizados en los cuellos de cilindros para trenes de laminación con ajuste por hólgura son C2 o a menudo inferiores a C2. Los juegos estándar NSK de los rodamientos de rodillos cónicos de cuatro hileras para cuellos de cilindro se muestran en la Tabla 6. Según las condiciones de funcionamiento, es posible que sea necesario realizar una selección especial del juego radial: en estos casos, consulte con NSK.

El juego interno de los rodamientos de rodillos cónicos de cuatro hileras está preajustado en todos los componentes del rodamiento, por lo que es necesario utilizar cada uno de los componentes de un rodamiento observando las marcas de emparejamiento al ensamblarlos.

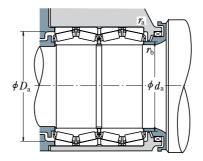
RODAMIENTOS DE RODILLOS CILÍNDRICOS DE CUATRO HILERAS

Consulte con NSK los aspectos relativos al juego interno.


Tabla 6 Juegos Internos Radiales Estándar en Rodamientos de Rodillos Cónicos de Cuatro Hileras (Diámetros Interiores Cilíndricos)

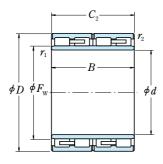
Unidades : µm

Diámetro Inte		Juego Interno Radial						
más de	hasta	mín.	máx.					
80	120	25	45					
120	180	30	50					
180	250	40	60					
250	315	50	70					
315	400	60	80					
400	500	70	90					
500	630	80	100					
630	800	100	120					
800	1 000	120	140					


RODAMIENTOS DE RODILLOS CÓNICOS DE CUATRO HILERAS

Diámetro Interior 100 \sim 939.800 mm

	Dimens (mr			(Índices Básico	s de Carga	{kgf}
d	D	B_4	C_4	C_{r}	$C_{0\mathrm{r}}$	C_{r}	C_{0r}
100	140	104	104	320 000	765 000	32 500	78 000
120	170	124	124	475 000	1 080 000	48 000	110 000
135	180	160	160	455 000	1 280 000	46 500	130 000
150	212	155	155	750 000	1 880 000	76 500	192 000
165.100	225.425	165.100	168.275	705 000	2 160 000	72 000	220 000
177.800	247.650	192.088	192.088	950 000	2 570 000	97 000	262 000
190.500	266.700	187.325	188.912	1 010 000	2 870 000	103 000	293 000
206.375	282.575	190.500	190.500	995 000	2 870 000	101 000	292 000
228.600	400.050	296.875	296.875	2 570 000	5 450 000	262 000	555 000
240	338	248	248	1 960 000	5 300 000	199 000	540 000
244.475	327.025	193.675	193.675	1 300 000	3 700 000	132 000	375 000
254.000	358.775	269.875	269.875	2 230 000	6 150 000	227 000	630 000
266.700	355.600	230.188	228.600	1 810 000	5 050 000	185 000	515 000
279.400	393.700	269.875	269.875	2 010 000	5 450 000	205 000	555 000
304.648	438.048	280.990	279.400	2 600 000	6 750 000	265 000	685 000
343.052	457.098	254.000	254.000	2 520 000	7 250 000	256 000	740 000
368.300	523.875	382.588	382.588	5 050 000	14 900 000	515 000	1 520 000
384.175	546.100	400.050	400.050	5 750 000	16 600 000	585 000	1 700 000
406.400	546.100	288.925	288.925	2 960 000	8 550 000	300 000	875 000
415.925	590.550	434.975	434.975	6 450 000	19 500 000	655 000	1 990 000
457.200	596.900	276.225	279.400	3 300 000	10 000 000	335 000	1 020 000
479.425	679.450	495.300	495.300	8 200 000	25 500 000	840 000	2 600 000
482.600	615.950	330.200	330.200	4 100 000	13 800 000	415 000	1 410 000
500	705	515	515	8 350 000	26 600 000	850 000	2 710 000
509.948	654.924	377.000	379.000	4 700 000	16 100 000	480 000	1 640 000
558.800	736.600	409.575	409.575	6 050 000	19 400 000	620 000	1 980 000
571.500	812.800	593.725	593.725	11 700 000	37 000 000	1 200 000	3 800 000
609.600	787.400	361.950	361.950	5 750 000	18 700 000	585 000	1 910 000
635	900	660	660	13 300 000	43 500 000	1 350 000	4 400 000
685.800	876.300	352.425	355.600	6 350 000	22 200 000	645 000	2 270 000
711.200	914.400	317.500	317.500	5 500 000	19 300 000	560 000	1 970 000
749.300	990.600	605.000	605.000	13 000 000	47 000 000	1 330 000	4 800 000
762.000	1 066.800	723.900	736.600	18 000 000	59 500 000	1 840 000	6 050 000
840.000	1 170.000	840.000	840.000	22 200 000	76 000 000	2 260 000	7 750 000
939.800	1 333.500	952.500	952.500	26 900 000	92 000 000	2 740 000	9 400 000


Números de	Dime	ensiones de ' (mn		ián	Masa (kg)	Números de Referencia
Rodamiento	$d_{\scriptscriptstyle m a}$	D_{a}	$m{\gamma}_{ m a}$ máx.	∤ ъ máx.	aprox.	Numeros de riererencia
100 KV 895 120 KV 895 135 KV 1802	109 131 145	130 158 169	2 2 1.5	1.5 2 2	4.9 8.5 11.1	_
150 KV 895	162	196	2	2	17	—
*165 KV 2252	178	209	3.3	0.8	20.2	46791D -720-721D
*177 KV 2452	192	228	3.3	1.5	27.9	67791D -720-721D
*190 KV 2651	204	246	3.3	1.5	32.8	67885D -820-820D
*206 KV 2854	218	261	3.3	0.8	35.2	67986D -920-921D
*228 KV 4051	264	367	3.3	3.3	152	EE 529091D -157-158XD
240 KV 895	257	315	2.5	2.5	68.5	—
*244 KV 3251	260	306	3.3	1.5	44.6	LM 247748D -710-710D
*254 KV 3551	272	335	3.3	1.5	85.6	M 249748DW -710-710D
*266 KV 3552	281	335	3.3	1.5	60.6	LM 451349D -310-310D
*279 KV 3951	302	363	6.4	1.5	100	EE 135111D -155-156XD
*304 KV 4353	329	407	4.8	3.3	133	M 757448DW -410-410D
*343 KV 4555	362	430	3.3	1.5	114	LM 761649DW -610-610D
*368 KV 5251	396	487	6.4	3.3	274	HM 265049D -010-010D
*384 KV 5452	417	510	6.4	3.3	309	HM 266449D -410-410D
*406 KV 5455	430	512	6.4	1.5	186	LM 767749DW -710-710D
*415 KV 5951	451	550	6.4	3.3	395	M 268749D -710-710D
*457 KV 5952	487	566	3.3	1.5	201	L 770849DW -810-810D
*479 KV 6751	520	635	6.4	3.3	595	M 272749DW -710-710D
*482 KV 6152	508	582	6.4	3.3	242	LM 272249DW -210-210D
500 KV 895	544	657	5	5	654	—
*509 KV 6551	536	619	6.4	1.5	312	
*558 KV 7352	588	697	6.4	3.3	457	LM 377449DW -410-410D
*571 KV 8151	622	755	6.4	3.3	1 020	M 278749DW -710-710D
*609 KV 7851 A	644	745	6.4	3.3	454	EE 649241DW -310-311D
635 KV 9001	695	840	5	4	1 380	—
*685 KV 8751	730	833	6.4	3.3	543	EE 655271DW -345-346D
*711 KV 9151	770	870	6.4	3.3	549	EE 755281DW -360-361D
*749 KV 9951	804	940	6.4	3.3	1 310	LM 283649DW -610-610D
*762 KV 1051	828	996	12.7	5	2 100	—
*840 KV 1151	910	1 095	7	7	2 900	
*939 KV 1351	1 035	1 245	12.7	4.8	4 380	LM 287849DW -810-810D

Nota Observaciones

- (*) Los rodamientos marcados con * son de diseño en pulgadas.
- 1. Si los rodamientos de rodillos cónicos de cuatro hileras no se muestran en la tabla anterior, consulte con NSK.
 - 2. Los rodamientos de rodillos cónicos de cuatro hileras están diseñados para aplicaciones específicas; cuando los utilice, consulte con NSK.

RODAMIENTOS DE RODILLOS CILÍNDRICOS DE CUATRO HILERAS

Diámetro Interior 100∼330 mm

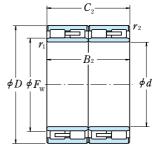
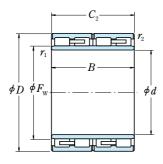


Figura 1

Figura 2

			Dimens (mn				1)	Índices Básicos d	le Carga	{kgf}
d	D	B, B ₂	C_2	$F_{ m w}$	γ 1 mín.	${m \gamma}_2$ mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	$C_{0\mathrm{r}}$
100	140	104	104	111	1.5	1.1	345 000	820 000	35 000	84 000
145	225	156	156	169	2	2	835 000	1 820 000	85 000	185 000
150	220 230	150 156	150 156	168 174	2 2	2	770 000 825 000	1 700 000 1 810 000	78 500 84 500	174 000 185 000
160	230 230	130 168	130 168	178 180	2 2	2	665 000 895 000	1 340 000 2 200 000	68 000 91 500	136 000 225 000
170	250	168	168	192	2.1	2.1	1 040 000	2 320 000	106 000	237 000
	255	180	180	193	2.1	2.1	1 130 000	2 500 000	115 000	255 000
180	250	156	156	200	2	2	880 000	2 230 000	89 500	227 000
	260	168	168	202	2.1	2.1	990 000	2 300 000	101 000	235 000
190	260	168	168	212	2	2	980 000	2 600 000	100 000	265 000
	270	200	200	212	2.1	2.1	1 260 000	3 100 000	128 000	315 000
200	280	200	200	224	2.1	2.1	1 210 000	3 200 000	123 000	325 000
	290	192	192	226	2.1	2.1	1 220 000	3 000 000	124 000	305 000
220	310	192	192	247	2.1	2.1	1 320 000	3 450 000	134 000	350 000
	310	225	225	245	2.1	2.1	1 500 000	3 900 000	153 000	395 000
	320	210	210	248	2.1	2.1	1 530 000	3 650 000	156 000	375 000
230	330	206	206	260	2.1	2.1	1 510 000	3 900 000	154 000	395 000
	340	260	260	261	3	3	2 050 000	5 100 000	209 000	520 000
240	330	220	220	270	3	3	1 520 000	4 400 000	155 000	445 000
250	350	220	220	278	3	3	1 660 000	4 200 000	169 000	430 000
260	370	220	220	292	3	3	1 760 000	4 450 000	179 000	455 000
	380	280	280	294	3	3	2 420 000	6 250 000	247 000	635 000
270	380	230	230	298	2.1	2.1	2 000 000	5 050 000	204 000	515 000
280	390	220	220	312	3	3	1 820 000	4 800 000	186 000	490 000
300	400 420	300 240	300 240	328 332	2	2	2 330 000 2 280 000	6 900 000 5 750 000	238 000 233 000	700 000 585 000
310	430	240	240	344.5	3	3	2 240 000	5 950 000	228 000	605 000
320	450	240	240	355	3	3	2 320 000	5 750 000	237 000	585 000
330	460	340	340	365	4	4	3 050 000	8 650 000	310 000	880 000

Observaciones


^{1.} Si los rodamientos de rodillos cilíndricos de cuatro hileras no se muestran en la tabla anterior, consulte con NSK.

^{2.} Los rodamientos de rodillos cilíndricos de cuatro hileras están diseñados para aplicaciones específicas; cuando los utilice, consulte con NSK.

Números de Rodamiento	Masa (kg) aprox.	Figuras	Números de Referencia del Rodamiento
100 RV 1401	4	2	
145 RV 2201	23	1	313924A
150 RV 2201	20	1	
150 RV 2302	23	1	313891A
160 RV 2301	16	1	_
160 RV 2302	22	1	
170 RV 2501	27	1	_
170 RV 2503	31	1	
180 RV 2501	23	1	—
180 RV 2601	29	1	313812
190 RV 2601	26	1	
190 RV 2701	36	1	314199B
200 RV 2801	38	1	—
200 RV 2901	42	1	313811
220 RV 3101	46	1	_
220 RV 3102	52	1	_
220 RV 3201	56	1	_
230 RV 3301	58	1	313824
230 RV 3401	81	1	—
240 RV 3301	57	1	313921
250 RV 3501	64	1	—
260 RV 3701	76	1	313823
260 RV 3801	107	1	—
270 RV 3801	83	1	—
280 RV 3901	80	1	313822
300 RV 4021	103	2	_
300 RV 4201	101	1	
310 RV 4301	107	1	
320 RV 4502	116	1	
330 RV 4601	174	1	

RODAMIENTOS DE RODILLOS CILÍNDRICOS DE CUATRO HILERAS

Diámetro Interior 370∼920 mm

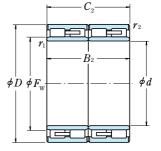
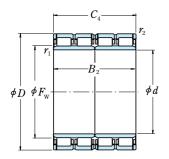


Figura 1

Figura 2


			Dimens (mr				(1	Índices Básicos	de Carga	{kgf}
d	D	B, B_2	C_2	$F_{ m w}$	$ eals_1$ mín.	\emph{r}_2 mín.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}
370	540	400	400	415	4	4	4 500 000	12 000 000	440 000	1 230 000
380	540	400	400	424	5	5	4 300 000	12 000 000		1 220 000
390	550	400	400	434	5	5	4 400 000	12 400 000		1 260 000
400	560	410	410	445	5	2	5 600 000	16 500 000	455 000	1 680 000
430	591	420	420	476	4	4	4 450 000	13 400 000		1 370 000
440	620	450	450	490	4	4	6 350 000	19 000 000		1 940 000
450	630	450	450	500	4	4	5 950 000	17 500 000	780 000	1 780 000
460	670	500	500	522	6	6	7 650 000	22 700 000		2 320 000
480	680	500	500	534	5	5	7 700 000	23 100 000		2 360 000
500	690 700 720	510 515 530	510 515 530	552 554 560	5 5 6	5 5 6	7 750 000 7 800 000 8 550 000	24 600 000 23 800 000 25 300 000	800 000	2 500 000 2 430 000 2 580 000
520	735	535	535	574.5	5	5	8 900 000	26 300 000	1 030 000	2 680 000
530	780	570	570	601	6	6	10 100 000	29 200 000		2 980 000
570	815	594	594	628	6	6	11 700 000	33 500 000		3 450 000
610	870	660	660	680	6	6	13 200 000	41 500 000	1 450 000	4 250 000
650	920	690	690	723	7.5	7.5	14 200 000	45 000 000		4 600 000
690	980	715	715	767.5	7.5	7.5	15 300 000	48 000 000		4 900 000
700	930 980	620 700	620 700	763 774	6 6	6 6	11 100 000 15 300 000	38 000 000 49 000 000		3 900 000 5 000 000
725	1 000	700	700	796	6	6	15 600 000	51 000 000	1 940 000	5 200 000
760	1 080	805	790	845	6	6	19 000 000	61 000 000		6 200 000
800	1 080	750	750	880	6	6	16 000 000	56 500 000		5 750 000
820	1 160	840	840	911	7.5	7.5	21 900 000	71 500 000	2 230 000	7 300 000
	1 100	745	720	892	6	3	16 900 000	58 500 000	1 720 000	6 000 000
850	1 180	850	850	940	7.5	7.5	21 100 000	72 000 000	2 150 000	7 350 000
860	1 130 1 160	670 735	670 710	934 940	6 7.5	6 4	15 700 000 17 500 000	56 500 000 60 000 000		5 800 000 6 100 000
900	1 230	895	870	985	7.5	7.5	22 100 000	76 000 000	2 250 000	
920	1 280	865	850	1 015	7.5	7.5	24 000 000	80 000 000	2 450 000	

Observaciones

^{1.} Si los rodamientos de rodillos cilíndricos de cuatro hileras no se muestran en la tabla anterior, consulte con NSK.

^{2.} Los rodamientos de rodillos cilíndricos de cuatro hileras están diseñados para aplicaciones específicas; cuando los utilice, consulte con NSK.

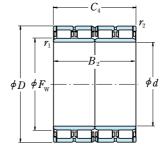


Figura 3

Figura 4

Números de Rodamiento	Masa (kg) aprox.	Figuras	Números de Referencia del Rodamiento
370 RV 5401	311	1	_
380 RV 5401	280	1(¹)	_
390 RV 5521	303	2(¹)	_
400 RV 5611	315	3	313015
430 RV 5921	347	2	—
440 RV 6221	430	2	—
450 RV 6321 460 RV 6721 480 RV 6811	440 596 610	2 2(¹) 3	_
500 RV 6921	580	2(¹)	_
500 RV 7021	622	2(¹)	_
500 RV 7211	782	3	_
520 RV 7331	750	4	_
530 RV 7811	960	3	_
570 RV 8111	960	3	_
610 RV 8711	1 330	3	_
650 RV 9211	1 520	3	_
690 RV 9831	1 790	4	_
700 RV 9311	1 200	3	_
700 RV 9821	1 720	2(¹)	
725 RV 1011	1 670	3	_
760 RV 1032	2 430	4	_
800 RV 1032	2 050	4	_
820 RV 1121	2 900	2(¹)	
820 RV 1132	2 000	4	
850 RV 1111	2 850	3	_
860 RV 1132	1 780	4	_
860 RV 1133	2 200	4	_
900 RV 1211	3 200	3	_
920 RV 1211	3 510	3	_

Nota (¹) En el centro de los anillos exteriores existen orificios y ranuras de engrase.

Rodamientos para Ejes Ferroviarios

Los rodamientos para ejes ferroviarios son componentes importantes por lo que precisan de una alta fiabilidad.

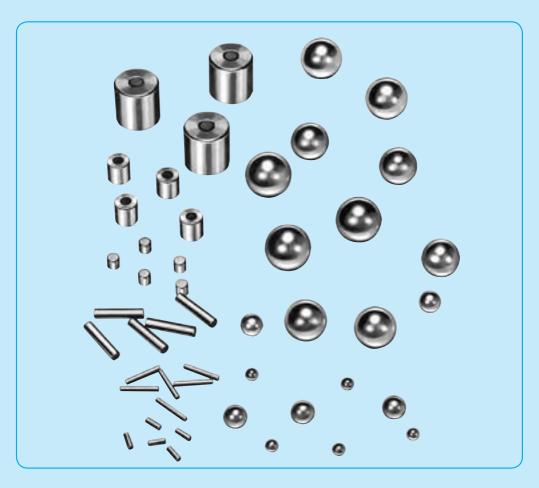
Los rodamientos principales consisten en rodamientos de eje montados en los dos extremos del eje, y que soportan todo el peso rodante. Además, existen rodamientos de motores de tracción para ferrocarriles que se utilizan en el motor del eje principal, y rodamientos de unidades de reductores que transfieren la potencia del motor al eje. NSK ha diseñado y fabricado rodamientos específicos para estas mismas aplicaciones.

Tipos y Características

Rodamientos de Ejes

- Los rodamientos de ejes constan de los siguientes tipos para cumplir con las exigencias de la aplicación en cuanto a la capacidad de soportar las altas velocidades del material rodante, reducciones de peso, mantenimiento mínimo y requisitos de inspección:
 - Rodamientos de rodillos cilíndricos con collar de empuje (lubricación por baño de aceite, lubricación por grasa)
 - > Rodamientos de rodillos cónicos (lubricación por baño de aceite)
 - > Rodamientos RCC (rodamientos de rodillos cilíndricos con sellado ensamblado) (lubricación por grasa)
 - Rodamientos RCT (rodamientos de rodillos cónicos con sellado ensamblado) (lubricación por grasa)
- NSK cuenta con la aprobación de la AAR ("Association of American Railroads", o Asociación de Ferrocarriles Americanos).

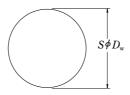
Rodamientos de Motores de Reductoras


- Los rodamientos para los motores de CA controlados por un inversor están diseñados especialmente para cumplir con las especificaciones de alta velocidad y los requisitos para garantizar la estabilidad dimensional. NSK recomienda utilizar una grasa de larga duración para estos rodamientos.
- NSK ofrece los siguientes rodamientos como medida contra la erosión eléctrica, que se produce cuando fluye corriente eléctrica por los rodamientos del motor:
 - Rodamientos con aislamiento de cerámica (rodamientos con recubrimiento de cerámica) y rodamientos con aislamiento de PPS
- Rodamientos de alta capacidad también disponibles para motores de tracción de gran tamaño, como los utilizados en las locomotoras

Rodamientos de Unidades de Engranajes

- Estos rodamientos están diseñados para cumplir con las especificaciones de alta velocidad y ofrecer una excelente resistencia a la deformación.
- Para estos rodamientos se ha utilizado una jaula reforzada.

Catálogos especificados


- Rodamientos para Ejes Ferroviarios CAT № E1156
- Rodamientos de Ejes para Ejes Ferroviarios (Rodamientos de Rodillos Cilíndricos)
 CAT № E1239
- Rodamientos de Ejes para Ejes Ferroviarios (Rodamientos de Rodillos Esféricos)
 CAT № E1240
- Rodamientos para Motores de Tracción CAT Nº E1241

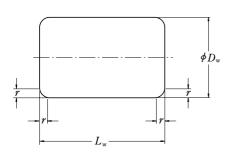
BOLAS Y RODILLOS DE ACERO

BOLAS DE ACERO Para rodamientos	Diámetro Nominal 0.3~114.3mm	Páginas B344~B345
RODILLOS CILÍNDRICOS PARA RODAMIENTOS RODILLOS CILÍNDRICOS LABOOS	Diámetro Nominal 3~80mm	Páginas B346~B347
RODILLOS CILÍNDRICOS LARGOS PARA RODAMIENTOS	Diámetro Nominal 5.5~15mm	Páginas B348~B349
RODILLOS DE AGUJAS PARA RODAMIENTOS	Diámetro Nominal 15mm	Páginas R350R351

Tamaño Nominal, Diámetros Básicos y Masa

Tamaño I	Nominal	Diámetro Básico $D_{ m w}$ (mm)	Masa (kg) por 10000 pcs aprox.	Tar	Tamaño Nominal		Diámetro Básico $D_{\rm w}$	Masa (kg) por 1000 pcs aprox.	Tamaño	Nominal	Diámetro Básico $D_{ m w}$	Masa (kg) por 10 pcs aprox.
Métrico	Pulgada	(111111)		Mé	étrico	Pulgada	(111111)		Métrico	Pulgada	(111111)	
0.3mm 0.4mm 0.5mm		0.30000 0.40000 0.50000	0.0011 0.0026 0.0051	10	mm	3/8 13/32	9.52500 10.00000 10.31875	3.523 4.076 4.479	30mm	1 ³ /16 1 ¹ /4	30.00000 30.16250 31.75000	1.101 1.119 1.305
0.6mm 0.7mm	0.025	0.60000 0.63500 0.70000	0.0088 0.0104 0.0140		mm 5mm	7/16	11.00000 11.11250 11.50000	5.425 5.594 6.199	32mm 34mm	1 ⁵ /16	32.00000 33.33750 34.00000	1.336 1.510 1.602
0.8mm 1 mm	1/32	0.79375 0.80000 1.00000	0.0204 0.0209 0.0408	12	mm	15/32 1/2	11.90625 12.00000 12.70000	6.880 7.044 8.350	35mm 36mm	1 ³ /8	34.92500 35.00000 36.00000	1.736 1.748 1.902
1.2mm 1.5mm	3/64	1.19062 1.20000 1.50000	0.0688 0.0704 0.1376		mm mm	17/32	13.00000 13.49375 14.00000	8.955 10.02 11.19	38mm	1 ⁷ /16 1 ¹ /2	36.51250 38.00000 38.10000	1.984 2.237 2.254
2 mm	1/16 5/64	1.58750 1.98438 2.00000	0.1631 0.3185 0.3261	15	mm	9/16 19/32	14.28750 15.00000 15.08125	11.89 13.76 13.98	40mm	1 ⁹ /16 1 ⁵ /8	39.68750 40.00000 41.27500	2.548 2.609 2.866
2.5mm	3/32 7/64	2.38125 2.50000 2.77812	0.5504 0.6369 0.8740	16	mm	5/8 21/32	15.87500 16.00000 16.66875	16.31 16.70 18.88	45mm	1 ¹¹ /16 1 ³ /4	42.86250 44.45000 45.00000	3.210 3.580 3.714
3 mm 3.5mm	1/8	3.00000 3.17500 3.50000	1.101 1.305 1.748		mm mm	11/16	17.00000 17.46250 18.00000	20.03 21.71 23.77		1 ¹³ /16 1 ⁷ /8 1 ¹⁵ /16	46.03750 47.62500 49.21250	3.977 4.403 4.858
4 mm	9/64 5/32	3.57188 3.96875 4.00000	1.858 2.548 2.609	19	mm	23/32 3/4	18.25625 19.00000 19.05000	24.80 27.96 28.18	50mm	2 2 1/8	50.00000 50.80000 53.97500	5.095 5.344 6.410
4.5mm 5 mm	3/16	4.50000 4.76250 5.00000	3.714 4.403 5.095	20	mm	25/32 13/16	19.84375 20.00000 20.63750	31.85 32.61 35.83	55mm 60mm	2 1/4	55.00000 57.15000 60.00000	6.782 7.609 8.805
5.5mm	7/32 15/64	5.50000 5.55625 5.95312	6.782 7.016 8.600		mm mm	27/32	21.00000 21.43125 22.00000	37.75 40.12 43.40	65mm	2 ³ /8 2 ¹ / ₂	60.32500 63.50000 65.00000	8.948 10.44 11.19
6 mm	1/4	6.00000 6.35000 6.50000	8.805 10.44 11.19	23	mm	7/8 29/32	22.22500 23.00000 23.01875	44.75 49.60 49.72		2 ⁵ /8 2 ³ /4 2 ⁷ /8	66.67500 69.85000 73.02500	12.08 13.89 15.87
7 mm	17/64 9/32	6.74688 7.00000 7.14375	12.52 13.98 14.86	24	mm	15/16 31/32	23.81250 24.00000 24.60625	55.04 56.35 60.73		3 3 1/4 3 1/2	76.20000 82.55000 88.90000	18.04 22.93 28.64
7.5mm 8 mm	5/16	7.50000 7.93750 8.00000	17.20 20.38 20.87		mm mm	1	25.00000 25.40000 26.00000	63.69 66.80 71.64		3 ³ / ₄ 4 4 _{1/4}	95.25000 101.60000 107.95000	35.23 42.75 51.28
8.5mm 9 mm	11/32	8.50000 8.73125 9.00000	25.03 27.13 29.72	28	mm	1 ¹ /16 1 ¹ /8	26.98750 28.00000 28.57500	80.12 89.48 95.11		4 1/2	114.30000	60.87

Aplicación, Tamaño Nominal, Tolerancias, Rugosidad y Calibres


Unidades : μm

	Tamaño I			Tolerancia	as	Calibres			
Clase	Tamano			Esfericidad	Rugosidad	Diferencia de Diám.	Intervalo	Calibre	
	Métrico	Pulgada	en Diám. máx.	máx.	R _a máx.	por Lote máx.	de Calibre	- Canara	
3	0.3mm~12mm	0.025~ 1/2	0.08	0.08	0.012	0.13	0.5	- 5, ·····, - 0.5, 0, + 0.5, ·····, + 5	
5	0.3mm~12mm	0.025~ ¹ /2	0.13	0.13	0.02	0.25	1	- 5,, - 1 , 0, + 1 ,, + 5	
10	0.3mm~25mm	0.025~1	0.25	0.25	0.025	0.5	1	_ 9,, _ 1 , 0, + 1 ,, + 9	
16	0.3mm~25mm	0.025~1	0.4	0.4	0.032	0.8	2	-10,, - 2 , 0, + 2 ,, +10	
20	0.3mm~38mm	0.025~1 ¹ /2	0.5	0.5	0.04	1	2	-10,, - 2 , 0, + 2 ,, +10	
28	0.3mm~38mm	0.025~1 ¹ /2	0.7	0.7	0.05	1.4	2	-12, ·····, - 2 , 0, + 2 , ·····, +12	
40	0.3mm~50mm	0.025~2	1	1	0.08	2	4	-16, ·····, - 4 , 0, + 4 , ·····, +16	
60	0.3mm~65mm	0.025~3	1.5	1.5	0.095	3	5	-25, ·····, - 5 , 0, + 5 , ·····, +25	
100	0.3mm~65mm	0.025~4 1/2	2.5	2.5	0.125	5	10	-40, ·····, -10 , 0, +10 , ·····, +40	
200	0.3mm~65mm	0.025~4 ¹ /2	5	5	0.2	10	15	− 60, ·····, − 15 , 0, + 15 , ·····, + 60	

Dureza

Tamaño No	ominal	Dureza		
Métrico	Pulgada	HV	HRC	
0.3mm~ 3mm	0.025~ ⁷ /64	772~900	(63~67)(¹)	
3.5mm~30mm	1/8~1 1/8	_	62~67	
32 mm~65mm	1 ³ /16~4 ¹ /2	_	61~67	

Nota (¹) Los valores entre () están convertidos a valores por referencia.

Tolerancias para los Chaflanes de Rodillos Cilíndricos

	Unidades : mm
mín.	máx.
0.1	0.3
0.2	0.5
0.3	0.8
0.5	1.2
0.6	1.5
0.7	1.7
1	2.2(¹)
1.5	3.5
2	4

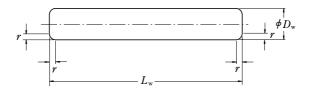
Nota (1) Si Dw supera los 40mm, r (máx.) es de 2.7mm.

nm	Unidades : mm

Unidades : mm					Unidades : mm					
Tamaño Nominal	Dw	Lw	r mín.	Masa (kg) por 100 pcs aprox.	Tamaño Nominal	Dw	Lw	r mín.	Masa (kg) por 100 pcs aprox.	
3 × 3 3 × 5	3 3	3 5	0.1 0.1	0.016 0.027	15 × 15 15 × 22	15 15	15 22	0.5 0.5	2.04 3.0	
3.5× 5	3.5	5	0.2	0.037	16 × 16 16 × 24	16 16	16 24	0.5 0.5	2.48 3.75	
4 × 4 4 × 6 4 × 8	4 4 4	4 6 8	0.2 0.2 0.2	0.039 0.058 0.078	17 × 17 17 × 24	17 17	17 24	0.5 0.5	2.97 4.2	
4.5× 4.5 4.5× 6	4.5 4.5	4.5 6	0.2 0.2	0.055 0.073	18 × 18 18 × 26	18 18	18 26	0.5 0.5	3.55 5.1	
5 × 5 5 × 8 5 ×10	5 5 5	5 8 10	0.2 0.2 0.2	0.075 0.121 0.152	19 × 19 19 × 28 20 × 20	19 19 20	19 28 20	0.6 0.6 0.6	4.16 6.1 4.85 7.3	
5.5× 5.5 5.5× 8	5.5 5.5	5.5 8	0.2	0.10 0.146	20 × 30 21 × 21 21 × 30	20 21 21	30 21 30	0.6 0.6 0.6	7.3 5.6 8.0	
6 × 6 6 × 8 6 ×12	6 6 6	6 8 12	0.2 0.2 0.2	0.13 0.178 0.261	22 × 22 22 × 34	22 22	22 34 23	0.6 0.6	6.4 10	
6.5× 6.5 6.5× 9	6.5 6.5	6.5 9	0.3 0.3	0.166 0.23	23 × 23 23 × 34	23 23	34	0.6 0.6	7.4 11.2	
7 × 7 7 ×10 7 ×14	7 7 7	7 10 14	0.3 0.3 0.3	0.206 0.296 0.415	24 × 24 24 × 36 25 × 25	24 24 25 25	24 36 25	0.6 0.6 0.7	8.4 12.6 9.5	
7.5× 7.5 7.5×11	7.5 7.5	7.5 11	0.3 0.3	0.254 0.375	25 × 36 26 × 26	26	36 26	0.7	13.7	
8 × 8 8 ×12	8	8 12	0.3 0.3	0.31 0.465	26 × 40 28 × 28 28 × 44	26 28 28	40 28 44	0.7 0.7 0.7	16.4 13.3 21	
9 × 9 9 ×14	9 9	9 14	0.3 0.3	0.44 0.68	30 × 30 30 × 48	30 30	30 48	0.7 0.7 0.7	16.3 26.2	
10 ×10 10 ×14	10 10	10 14	0.3 0.3	0.60 0.85	32 × 32 32 × 52	32 32	32 52	1	19.9 32.5	
11 ×11 11 ×15	11 11	11 15	0.3 0.3	0.81 1.1	34 × 34 34 × 55	34 34	34 55	1 1	23.9 38.5	
12 ×12 12 ×18	12 12	12 18	0.3 0.3	1.04 1.57	36 × 36 36 × 58	36 36	36 58	1 1	28.3 45.5	
13 ×13 13 ×20	13 13	13 20	0.3 0.3	1.33 2.04	38 × 38 38 × 62	38 38	38 62	1 1	33.5 55	
14 ×14 14 ×20	14 14	14 20	0.3 0.3	1.66 2.38	40 × 40 40 × 65	40 40	40 65	1 1	39 63	

Unidades: mm

Tamaño Nominal	$D_{ m W}$	Lw	r mín.	Masa (kg) por 100 pcs aprox.
42 × 42 45 × 45	42 45	42 45	1	45 55.5
48 × 48	48	48	1	67
50 × 50	50	50	1	76
52 × 52	52	52	1.5	85
54 × 54	54	54	1.5	95.5
56 × 56	56	56	1.5	107
60 × 60	60	60	1.5	131
64 × 64	64	64	1.5	159
68 × 68	68	68	1.5	191
75 × 75	75	75	2	256
80 × 80	80	80	2	310


Precisión de los Rodillos Cilíndricos

Unidades : μm

Clase	_	hasta	Ovalidad (¹) <i>AR</i> máx.	Variación Media del Diámetro del Rodillo de Plano Único(²) VDwmp máx.	Diámetro Total	l	ión de la Longitud $^{(3)}$ ΔL w $_{ m s}$ $^{(4)}$	Variación de la Longitud Total del Calibre del Rodillo VLwl máx.	Salto de la Cara Final Sw máx.
1	3	18	0.5	0.8	1	+10	-[(IT9)-10]	5	3
1A	3	30	0.7	1	1.5	+10	-[(IT9)-10]	7	5
2	3	50	1	1.5	2	+10	- [(IT9) - 10]	10	6
2A	10	80	1.3	2	2.5	+10	-[(IT9)-10]	13	8
3	18	80	1.5	3	3	+10	-[(IT9)-10]	15	10
5	30	80	2.5	4	5	+10	-[(IT9)-10]	25	15

Notas

- (¹) Aplicable al centro del rodillo (dirección de longitud).
 (²) Aplicable a la superficie exterior cilíndrica.
 (³) Para consultar la tolerancia estándar IT9 según la clasificación de tamaño Lw, consulte la columna IT9 de la Tabla 11 del Apéndice, en la Página C22.
- (4) El valor más bajo de la desviación de longitud es 10 μm inferior respecto al valor de la tolerancia estándar para cada longitud de rodillo.

Observaciones La figura muestra un ejemplo de rodillo cilíndrico largo de extremo plano.

ш	Inic	lades	mm

			Uni	dades : mm	Unidades : mm				
Tamaño Nominal	Dw	Lw	$m{r}$ $(^1)$ mín.	Masa (kg) por 100 pcs aprox.	Tamaño Nominal	Dw	Lw	r (¹) mín.	Masa (kg) por 100 pcs aprox.
5.5×18 5.5×22.4 5.5×28	5.5 5.5 5.5	18 22.4 28	0.2 0.2 0.2	0.333 0.414 0.518	8 ×25 8 ×31.5 8 ×40 8 ×50 8 ×63	88888	25 31.5 40 50 63	0.3 0.3 0.3 0.3 0.3	0.978 1.23 1.56 1.96 2.46
6 ×20 6 ×25 6 ×31.5 6 ×40 6 ×50	66666	20 25 31.5 40 50	0.2 0.2 0.2 0.2 0.2	0.44 0.55 0.693 0.88 1.1	9 ×28 9 ×35.5 9 ×45 9 ×56	9999	28 35.5 45 56	0.3 0.3 0.3 0.3	1.39 1.76 2.23 2.77
6.5×20 6.5×25 6.5×31.5	6.5 6.5 6.5	20 25 31.5	0.3 0.3 0.3	0.516 0.645 0.813	10×31.5 10×40 10×50 10×63	10 10 10 10	31.5 40 50 63	0.3 0.3 0.3 0.3	1.93 2.44 3.06 3.85
7 ×22.4 7 ×28 7 ×35.5 7 ×45 7 ×56	7 7 7 7 7	22.4 28 35.5 45 56	0.3 0.3 0.3 0.3 0.3	0.671 0.838 1.06 1.35 1.68	12×40 12×50 12×63	12 12 12	40 50 63	0.3 0.3 0.3	3.52 4.4 5.54
7.5×31.5 7.5×40	7.5 7.5	31.5 40	0.3 0.3	1.08 1.38	15×45 15×56 15×71 15×90	15 15 15 15	45 56 71 90	0.5 0.5 0.5 0.5	6.16 7.68 9.74 12.4

Nota (1) Sólo para rodillos de extremo plano.

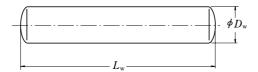
Tolerancias para los Chaflanes de Rodillos Cilíndricos Largos

Unidades: mm mín. máx. 0.2 0.3 0.5 0.5 0.8 1.2

Precisión de los Rodillos Cilíndricos Largos

Unidades : μm

١					
	Clase	Ovalidad (¹) ⊿R máx.	Variación Media del Diámetro del Rodillo de Plano Único (³) VDwnp máx.	Variación del Diámetro Total del Calibre del Rodillo ⁽¹⁾ VD _{WL} máx.	Desviación de la Longitud(²) ΔLws
	3	1.5	3	3	h12
	5	2	5	5	h12


Notas

- Aplicable al centro del rodillo (dirección de longitud). Clasificado por $L_{\rm W}$. Consulte Tolerancia para la Desviación de Longitud.
- (3) Aplicable a la superficie exterior cilíndrica.

Tolerancia para la Desviación de Longitud

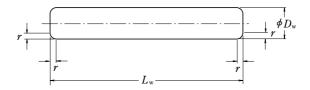
Unidades · mm

				UI	iluaues . IIIIII			
Long	itud	h1	2	h13				
más de	hasta	alta	baja	alta	baja			
3 6	6 10	- -	_ _	0 0	- 0.18 - 0.22			
10	18	-	_	0	- 0.27			

Tipo de Extremo Esférico

Unidades: mm

Unidades: mm


			0111	uaues . IIIII				011	idades . IIIII
Tamaño Nominal	<i>D</i> w	Lw	r $(^1)$ mín.	Masa (kg) por 1000 pcs aprox.	Tamaño Nominal	<i>D</i> w	Lw	<i>r</i> (¹) mín.	Masa (kg) por 1000 pcs aprox.
1 × 5.8 1 × 6.8 1 × 7.8 1 × 9.8 1.5× 6.8 1.5× 7.8 1.5× 13.8 2 × 6.8 2 × 9.8 2 × 11.8 2 × 15.8 2 × 15.8 2 × 15.8 2 × 15.8 2 × 15.8 2 × 17.8 2 × 15.8 2 × 17.8 2 × 17.8 3 × 17.8	1 1 1 1 1 1 1 1 222 222 22 22 222 222 2	5.888	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.035 0.042 0.048 0.060 0.093 0.105 0.135 0.160 0.190 0.240 0.2335 0.435 0.435 0.435 0.435 0.435 0.435 0.435 0.55 0.55 0.505 0.505 0.505 0.500 0.755 0.500 0.760 0	3.5×19.8 3.5×21.8 3.5×25.8 3.5×27.8 3.5×27.8 3.5×31.8 4.×13.8 4.×17.8 4.×17.8 4.×21.8 4.5×21.8 4.5×21.8 4.5×21.8 4.5×21.8 4.5×31.8 4.5×31.8 4.5×31.8 5.×31.8 5	55 555 555 555 555 555 555 555 555 555	19.8 21.8 225.8 235.8 235.8 237.8 231.8 235.8 135.8 135.8 135.8 257.8 31.8 257.8 31.8 257.8 31.8 257.8 31.8 257.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.50 1.65 1.80 1.95 2.10 2.25 2.40 2.35 1.75 1.95 2.35 2.570 2.90 3.10 3.40 3.70 2.45 2.70 2.45 2.70 3.90 3.70 4.70 4.70 4.70 4.70 4.70 4.70 4.70 4

Nota (¹) Sólo para rodillos de extremo plano. Observaciones 1. La figura muestra un tipo La figura muestra un tipo de extremo esférico y uno de extremo plano.

2. El radio R del tipo de extremo esférico tiene los siguientes límites:

Mínimo: $D_{\rm W}/2$ Máximo: Lw/2

Tipo de Extremo Plano

Tolerancias para los Chaflanes de Rodillos de Agujas

Unidades : mm

			Omadado : mm
D	W	r	r
más de	hasta	mín.	máx.
_	_ 1 1 3		0.4
1			0.6
3	5	0.1	0.9

Observaciones Sólo para rodillos de agujas de extremo plano.

Precisión de los Rodillos de Agujas

Unidades : μm

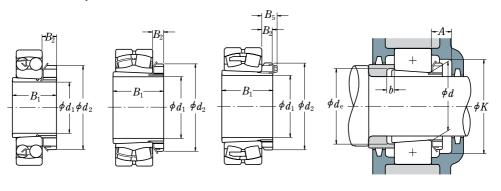
				Offidades . pm
Clase	Variación Media del Diámetro del Rodillo de Plano Único (¹) VDwp máx.	Ovalidad (¹)	Variación del Diámetro Total del Calibre del Rodillo ⁽¹) <i>VD</i> wl máx.	Desviación de la Longitud(²) ΔLws
2	1	1	2	h13
3	1.5	1.5	3	h13
5	2	2.5	5	h13

Notas

- (1) Aplicable al centro del rodillo (dirección de longitud).
- 2) Clasificado por Lw. Consulte la Tolerancia para la Désviación de Longitud en la Página B349.

Observaciones El diámetro real en cualquier punto de la longitud no debería superar los sigiuentes valores en comparación con el diámetro máximo real en el centro del rodillo (dirección de longitud).

Clase2: $0.5\mu m$ Clase3: $0.8\mu m$ Clase5: $1.0\mu m$

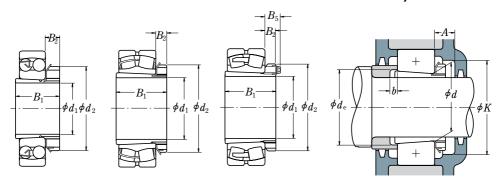


ACCESORIOS PARA RODAMIENTOS DE RODILLOS

ADAPTADORES PARA RODAMIEI	NTOS
DE RODILLOS	Diámetro del Eje 17~470mm Páginas B354~B361
MANGUITOS DE DESMONTAJE P	ARA RODAMIENTOS
DE RODILLOS	Diámetro del Eje 35~480mm Páginas B362~B367
TUERCAS PARA RODAMIENTOS	
DE RODILLOS	Páginas B368~B372
TOPES PARA RODAMIENTOS DE	RODILLOS Página B373
ARANDELAS PARA RODAMIENTO	OS DE RODILLOS Páginas B374~B375

ADAPTADORES PARA RODAMIENTOS DE RODILLOS

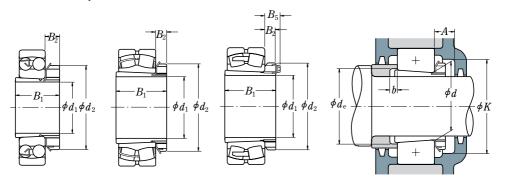
Diámetro del Eje $17\sim$ 40 mm



	Diám. Int. del Rod.	N.C Naminala		Dimens (mr			Números del	Dim	ensione (mr		pe	Masa (kg)
del Eje (mm) d1	Nominal $^{(mm)}$	Números Nominales Rodamientos Aplicables	B_1	d_2	B_2	B_5	Manguito del Adaptador	$_{\min }^{A}$	$K \atop ext{min}$	$d_{ m e}$ min	$_{ m min}^{m b}$	aprox.
17	20 20 20 20	1204K + H 204X 2204K + H 304X 1304K + H 304X 2304K + H2304X	24 28 28 31	32 32 32 32	7 7 7 7	_ _ _	A 204X A 304X A 304X A2304X	14 14 14 14	39 39 39 39	23 24 24 24	5 5 8 5	0.045 0.045 0.045 0.050
20	25 25 25	1205K + H 205X 2205K + H 305X 1305K + H 305X	26 29 29	38 38 38	8 8 8	_	A 205X A 305X A 305X	15 15 15	45 45 45	28 29 29	5 5 6	0.065 0.075 0.075
	25 25	21305C DKE4 + H 305X 2305K + H2305X	29 35	38 38	8 8	_	A 305X A2305X	15 15	45 45	29 29	6 5	0.075 0.090
25	30 30 30	1206K + H 206X 2206K + H 306X 1306K + H 306X	27 31 31	45 45 45	8 8 8	=	A 206X A 306X A 306X	15 15 15	50 50 50	33 34 34	5 5 6	0.10 0.11 0.11
	30 30	21306C DKE4 + H 306X 2306K + H2306X	31 38	45 45	8	_	A 306X A2306X	15 15	50 50	34 35	6 5	0.11 0.125
30	35 35 35	1207K + H 207X 2207K + H 307X 1307K + H 307X	29 35 35	52 52 52	9 9 9	=	A 207X A 307X A 307X	17 17 17	58 58 58	38 39 39	5 5 7	0.125 0.145 0.145
	35 35	21307C DKE4 + H 307X 2307K + H2307X	35 43	52 52	9 9	_	A 307X A2307X	17 17	58 58	39 40	7 5	0.145 0.16
35	40 40 40	1208K + H 208X 2208K + H 308X 1308K + H 308X	31 36 36	58 58 58	10 10 10	=	A 208X A 308X A 308X	17 17 17	65 65 65	44 44 44	5 5 5	0.175 0.19 0.19
	40 40 40	21308E AKE4 + H 308X 2308K + H2308X 22308E AKE4 + H2308X	36 46 46	58 58 58	10 10 10	_	A 308X A2308X A2308X	17 17 17	65 65 65	44 45 45	5 5 5	0.19 0.225 0.225
40	45 45 45	1209K + H 209X 2209K + H 309X 1309K + H 309X	33 39 39	65 65 65	11 11 11	=	A 209X A 309X A 309X	17 17 17	72 72 72	49 49 49	5 8 5	0.225 0.26 0.26
	45 45 45	21309E AKE4 + H 309X 2309K + H2309X 22309E AKE4 + H2309X	39 50 50	65 65 65	11 11 11	_ _ _	A 309X A 2309X A 2309X	17 17 17	72 72 72	49 50 50	5 5 5	0.26 0.30 0.30

Observaciones

Diámetro del Eje $45{\sim}60~\mathrm{mm}$

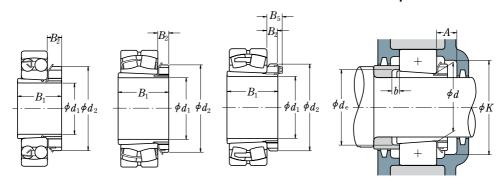


Diám.	Diám. Int. del Rod.	Managa Naminda		Dimens (mr			Números del	Dim	ensione (mr		pe	Masa (kg)
d_1	Rod. Nominal $^{(mm)}$ d	Números Nominales Rodamientos Aplicables	B_1	d_2	B_2	B_5	Manguito del Adaptador	$_{\min }^{A}$	$K \atop { m min}$	$d_{ m e} \atop { m min}$	$_{ m min}^{m b}$	aprox.
45	50 50 50	1210K + H 210X 2210K + H 310X 1310K + H 310X	35 42 42	70 70 70	12 12 12	_	A 210X A 310X A 310X	19 19 19	76 76 76	53 54 54	5 10 5	0.275 0.30 0.30
	50 50 50	21310E AKE4 + H 310X 2310K + H2310X 22310E AKE4 + H2310X	42 55 55	70 70 70	12 12 12	_ _ _	A 310X A2310X A2310X	19 19 19	76 76 76	54 56 56	5 5 5	0.30 0.35 0.35
50	55 55 55	1211K + H 211X 2211K + H 311X 22211E AKE4 + H 311X	37 45 45	75 75 75	12 12 12	_	A 211X A 311X A 311X	19 19 19	85 85 85	60 60 60	6 11 11	0.305 0.35 0.35
	55 55 55 55	1311K + H 311X 21311E AKE4 + H 311X 2311K + H2311X 22311E AKE4 + H2311X	45 45 59 59	75 75 75 75	12 12 12 12	_ _ _	A 311X A 311X A2311X A2311X	19 19 19 19	85 85 85 85	60 60 61 61	6 6 6	0.35 0.35 0.40 0.40
55	60 60 60	1212K + H 212X 2212K + H 312X 22212E AKE4 + H 312X	38 47 47	80 80 80	13 13 13	=	A 212X A 312X A 312X	20 20 20	90 90 90	64 65 65	5 9 9	0.365 0.40 0.40
	60 60 60 60	1312K + H 312X 21312E AKE4 + H 312X 2312K + H2312X 22312E AKE4 + H2312X	47 47 62 62	80 80 80 80	13 13 13 13	_ _ _	A 312X A 312X A2312X A2312X	20 20 20 20	90 90 90 90	65 65 66 66	5 5 5 5	0.40 0.40 0.45 0.45
60	65 65 65	1213K + H 213X 2213K + H 313X 22213E AKE4 + H 313X	40 50 50	85 85 85	14 14 14	_	A 213X A 313X A 313X	21 21 21	96 96 96	70 70 70	5 8 8	0.40 0.45 0.45
	65 65 65 65	1313K + H 313X 21313E AKE4 + H 313X 2313K + H2313X 22313E AKE4 + H2313X	50 50 65 65	85 85 85 85	14 14 14 14	_ _ _	A 313X A 313X A2313X A2313X	21 21 21 21	96 96 96 96	70 70 72 72	5 5 5 5	0.45 0.45 0.55 0.55
	70 70 70	22214E AKE4 + H 314X 21314E AKE4 + H 314X 22314E AKE4 + H2314X	52 52 68	92 92 92	14 14 14	=	A 314X A 314X A2314X	21 21 21	96 96 96	70 70 72	8 5 5	0.65 0.65 0.80

Observaciones

ADAPTADORES PARA RODAMIENTOS DE RODILLOS

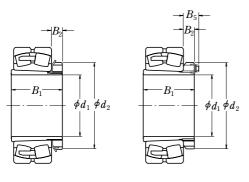
Diámetro del Eje $65{\sim}80~\mathrm{mm}$

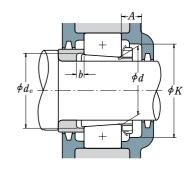


Diám.	Diám. Int. del Rod.	Noncora Nanciada		Dimens (mr			Números del	Dim	ensione (mn		pe	Masa (kg)
del Eje (mm) d_1	Rod. Nominal $^{(mm)}$ d	Números Nominales Rodamientos Aplicables	B_1	d_2	B_2	B_5	Manguito del Adaptador	$_{\rm min}^{A}$	$K \atop ext{min}$	$d_{ m e} \atop { m min}$	b min	aprox.
65	75 75 75	1215K + H 215X 2215K + H 315X 22215E AKE4 + H 315X	43 55 55	98 98 98	15 15 15	_ _ _	A 215X A 315X A 315X	23 23 23	110 110 110	80 80 80	5 12 12	0.70 0.85 0.85
	75 75 75 75	1315K + H 315X 21315E AKE4 + H 315X 2315K + H2315X 22315E AKE4 + H2315X	55 55 73 73	98 98 98 98	15 15 15 15	_	A 315X A 315X A2315X A2315X	23 23 23 23	110 110 110 110	80 80 82 82	5 5 5	0.85 0.85 1.05 1.05
70	80 80 80	1216K + H 216X 2216K + H 316X 22216E AKE4 + H 316X	46 59 59	105 105 105	17 17 17	_	A 216X A 316X A 316X	25 25 25	120 120 120	85 86 86	5 12 12	0.85 1.05 1.05
	80 80 80 80	1316K + H 316X 21316E AKE4 + H 316X 2316K + H2316X 22316E AKE4 + H2316X	59 59 78 78	105 105 105 105	17 17 17 17	_ _ _	A 316X A 316X A2316X A2316X	25 25 25 25	120 120 120 120	86 86 87 87	5 5 5	1.05 1.05 1.3 1.3
75	85 85 85	1217K + H 217X 2217K + H 317X 22217E AKE4 + H 317X	50 63 63	110 110 110	18 18 18	_	A 217X A 317X A 317X	27 27 27	128 128 128	90 91 91	6 12 12	1.0 1.2 1.2
	85 85 85 85	1317K + H 317X 21317E AKE4 + H 317X 2317K + H2317X 22317E AKE4 + H2317X	63 63 82 82	110 110 110 110	18 18 18 18	_ _ _	A 317X A 317X A2317X A2317X	27 27 27 27	128 128 128 128	91 91 94 94	6 6 6	1.2 1.2 1.45 1.45
80	90 90 90	1218K + H 218X 2218K + H 318X 22218E AKE4 + H 318X	52 65 65	120 120 120	18 18 18	_	A 218X A 318X A 318X	28 28 28	139 139 139	95 96 96	6 10 10	1.15 1.4 1.4
	90 90 90	1318K + H 318X 21318E AKE4 + H 318X 2318K + H2318X	65 65 86	120 120 120	18 18 18	_	A 318X A 318X A2318X	28 28 28	139 139 139	96 96 99	6 6 6	1.4 1.4 1.7
	90 90	23218C KE4 + H2318X 22318E AKE4 + H2318X	86 86	120 120	18 18	_	A2318X A2318X	28 28	139 139	99 99	6 6	1.7 1.7

Observaciones

Diámetro del Eje 85 \sim 115 mm

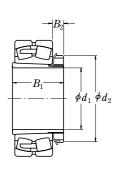


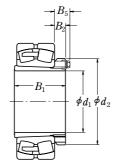

Diám. del Eje	Diám. Int. del Rod.	M.Co. and Manager		Dimens (mr			Números del	Dim	ensione (mr		pe	Masa (kg)
d_1	Nominal (mm) d	Números Nominales Rodamientos Aplicables	B_1	d_2	B_2	B_5	Manguito del Adaptador	$_{\min }^{A}$	$K \atop ext{min}$	$d_{ m e}$ min	$_{ m min}^{\it b}$	aprox.
85	95 95 95	1219K + H 219X 2219K + H 319X 22219E AKE4 + H 319X	55 68 68	125 125 125	19 19 19	_	A 219X A 319X A 319X	29 29 29	145 145 145	101 102 102	7 9 9	1.35 1.55 1.55
	95 95 95 95	1319K + H 319X 21319C KE4 + H 319X 2319K + H2319X 22319E AKE4 + H2319X	68 68 90 90	125 125 125 125	19 19 19 19	_ _ _	A 319X A 319X A2319X A2319X	29 29 29 29	145 145 145 145	102 102 105 105	7 7 7 7	1.55 1.55 1.9 1.9
90	100 100 100	1220K + H 220X 2220K + H 320X 22220E AKE4 + H 320X	58 71 71	130 130 130	20 20 20	_	A 220X A 320X A 320X	30 30 30	150 150 150	106 107 107	7 8 8	1.45 1.7 1.7
	100 100 100	1320K + H 320X 21320C KE4 + H 320X 2320K + H2320X	71 71 97	130 130 130	20 20 20	_	A 320X A 320X A 2320X	30 30 30	150 150 150	107 107 110	7 7 7	1.7 1.7 2.15
	100 100	23220C KE4 + H2320X 22320E AKE4 + H2320X	97 97	130 130	20 20	_	A2320X A2320X	30 30	150 150	110 110	7 7	2.15 2.15
100	110 110 110	23122C KE4 + H3122X 1222K + H 222X 2222K + H 322X	81 63 77	145 145 145	21 21 21	=	A3122X A 222X A 322X	32 32 32	170 170 170	117 116 117	7 7 6	2.25 1.95 2.3
	110 110 110	22222E AKE4 + H 322X 1322K + H 322X 2322K + H2322X	77 77 105	145 145 145	21 21 21		A 322X A 322X A2322X	32 32 32	170 170 170	117 117 121	6 9 7	2.3 2.3 2.75
	110 110	23222C KE4 + H2322X 22322E AKE4 + H2322X	105 105	145 145	21 21	_	A2322X A2322X	32 32	170 170	121 121	17 7	2.75 2.75
110	120 120 120	23024C DKE4 + H3024 23124C KE4 + H3124 22224E AKE4 + H3124	72 88 88	145 155 155	22 22 22	=	A 3024 A 3124 A 3124	33 33 33	180 180 180	127 128 128	7 7 11	1.95 2.65 2.65
	120 120	23224C KE4 + H2324 22324E AKE4 + H2324	112 112	155 155	22 22	_	A 2324 A 2324	33 33	180 180	131 131	17 7	3.2 3.2
115	130 130 130	23026C DKE4 + H3026 23126C KE4 + H3126 22226E AKE4 + H3126	80 92 92	155 165 165	23 23 23	=	A 3026 A 3126 A 3126	34 34 34	190 190 190	137 138 138	8 8 8	2.85 3.65 3.65
	130 130	23226C KE4 + H2326 22326C KE4 + H2326	121 121	165 165	23 23	=	A 2326 A 2326	34 34	190 190	142 142	21 8	4.6 4.6

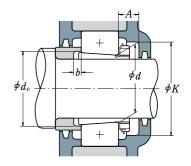
Observaciones

ADAPTADORES PARA RODAMIENTOS DE RODILLOS

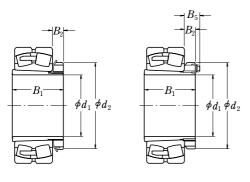
Diámetro del Eje 125 \sim 170 mm

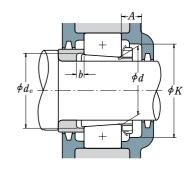





Diám.	Diám. Int. del Rod.	N.S Noviceles		Dimens (mr			Números del Manguito del	Dim	ensione (mi		pe	Masa (kg)
$der Eje$ (mm) d_1	Rod. Nominal $^{(mm)}$ d	Números Nominales Rodamientos Aplicables	B_1	d_2	B_2	B_5	Adaptador	$_{\min }^{A}$	$K \atop ext{min}$	$d_{ m e}$ min	$_{ m min}^{\it b}$	aprox.
125	140 140 140	23028C DKE4 + H3028 23128C KE4 + H3128 22228C DKE4 + H3128	82 97 97	165 180 180	24 24 24	_	A 3028 A 3128 A 3128	36 36 36	205 205 205	147 149 149	8 8 8	3.15 4.35 4.35
	140 140	23228C KE4 + H2328 22328C KE4 + H2328	131 131	180 180	24 24	_	A 2328 A 2328	36 36	205 205	152 152	22 8	5.55 5.55
135	150 150 150	23030C DKE4 + H3030 23130C KE4 + H3130 22230C DKE4 + H3130	87 111 111	180 195 195	26 26 26	_	A 3030 A 3130 A 3130	37 37 37	220 220 220	158 160 160	8 8 15	3.9 5.5 5.5
	150 150	23230C KE4 + H2330 22330C AKE4 + H2330	139 139	195 195	26 26	=	A 2330 A 2330	37 37	220 220	163 163	20 8	6.6 6.6
140	160 160 160	23932C AKE4 + H3932 23032C DKE4 + H3032 23132C KE4 + H3132	78 93 119	190 190 210	28 28 28	_	A 3932 A 3032 A 3132	39 39 39	205 230 230	168 168 170	8 8 8	4.64 5.2 7.65
	160 160 160	22232C DKE4 + H3132 23232C KE4 + H2332 22332C AKE4 + H2332	119 147 147	210 210 210	28 28 28	_	A 3132 A 2332 A 2332	39 39 39	230 230 230	170 174 174	14 18 8	7.65 9.15 9.15
150	170 170 170	23934B CAKE4 + H3934 23034C DKE4 + H3034 23134C KE4 + H3134	79 101 122	200 200 220	29 29 29	_	A 3934 A 3034 A 3134	40 40 40	215 250 250	179 179 180	8 8 8	5.07 6.0 8.4
	170 170 170	22234C DKE4 + H3134 23234C KE4 + H2334 22334C AKE4 + H2334	122 154 154	220 220 220	29 29 29	=	A 3134 A 2334 A 2334	40 40 40	250 250 250	180 185 185	10 18 8	8.4 10 10
160	180 180 180	23936C AKE4 + H3936 23036C DKE4 + H3036 23136C KE4 + H3136	87 109 131	210 210 230	30 30 30	=	A 3936 A 3036 A 3136	41 41 41	230 260 260	189 189 191	8 8 8	5.87 6.85 9.5
	180 180 180	22236C DKE4 + H3136 23236C KE4 + H2336 22336C AKE4 + H2336	131 161 161	230 230 230	30 30 30	_	A 3136 A 2336 A 2336	41 41 41	260 260 260	191 195 195	18 22 8	9.5 11.5 11.5
170	190 190 190	23938C AKE4 + H3938 23038C AKE4 + H3038 23138C KE4 + H3138	89 112 141	220 220 240	31 31 31	_	A 3938 A 3038 A 3138	43 43 43	240 270 270	199 199 202	9 9 9	6.35 7.45 11
	190 190 190	22238C AKE4 + H3138 23238C KE4 + H2338 22338C AKE4 + H2338	141 169 169	240 240 240	31 31 31	_	A 3138 A 2338 A 2338	43 43 43	270 270 270	202 206 206	21 21 9	11 12.5 12.5

Diámetro del Eje $180\sim$ 260 mm

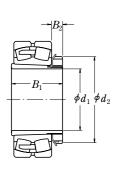


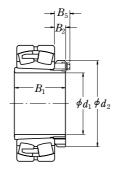


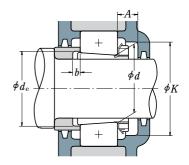
Diám. del Eje	Diám. Int. del Rod.	Números Nominalos		Dimens (mr			Números del Manguito del	Dim	nension (mi		pe	Masa (kg)
d_1	Nominal (mm) d	Números Nominales Rodamientos Aplicables	B_1	d_2	B_2	B_5	Adaptador	$_{\min }^{A}$	$K \atop { m min}$	$d_{ m e}$ min	$_{\min }^{\pmb{b}}$	aprox.
180	200 200 200	23940C AKE4 + H3940 23040C AKE4 + H3040 23140C KE4 + H3140	98 120 150	240 240 250	32 32 32	_	A 3940 A 3040 A 3140	46 46 46	260 280 280	210 210 212	10 10 10	8.0 9.2 12
	200 200 200	22240C AKE4 + H3140 23240C KE4 + H2340 22340C AKE4 + H2340	150 176 176	250 250 250	32 32 32	_	A 3140 A 2340 A 2340	46 46 46	280 280 280	212 216 216	24 20 10	12 14 14
200	220	23944C AKE4 + H3944	96	260	30	41	A 3944	55	280	231	10	8.32
	220	23044C AKE4 + H3044	128	260	30	41	A 3044	55	320	231	12	10.5
	220	23144C KE4 + H3144	158	280	32	44	A 3144	55	320	233	10	14.5
	220	22244C AKE4 + H3144	158	280	32	44	A 3144	55	320	233	22	14.5
	220	23244C KE4 + H2344	183	280	32	44	A 2344	55	320	236	11	16.5
	220	22344C AKE4 + H2344	183	280	32	44	A 2344	55	320	236	10	16.5
220	240	23948C AKE4 + H3948	101	290	34	46	A 3948	60	300	251	11	11.2
	240	23048C AKE4 + H3048	133	290	34	46	A 3048	60	340	251	11	13
	240	23148C KE4 + H3148	169	300	34	46	A 3148	60	340	254	11	17.5
	240	22248C AKE4 + H3148	169	300	34	46	A 3148	60	340	254	19	17.5
	240	23248C AKE4 + H2348	196	300	34	46	A 2348	60	340	257	6	19.5
	240	22348C AKE4 + H2348	196	300	34	46	A 2348	60	340	257	11	19.5
240	260	23952C AKE4 + H3952	116	310	34	46	A 3952	60	330	272	11	13.4
	260	23052C AKE4 + H3052	147	310	34	46	A 3052	60	370	272	13	15.5
	260	23152C AKE4 + H3152	187	330	36	49	A 3152	60	370	276	11	22
	260	22252C AKE4 + H3152	187	330	36	49	A 3152	60	370	276	25	22
	260	23252C AKE4 + H2352	208	330	36	49	A 2352	60	370	278	2	24
	260	22352C AKE4 + H2352	208	330	36	49	A 2352	60	370	278	11	24
260	280	23956C AKE4 + H3956	121	330	38	50	A 3956	65	350	292	12	15.5
	280	23056C AKE4 + H3056	152	330	38	50	A 3056	65	390	292	12	17.5
	280	23156C AKE4 + H3156	192	350	38	51	A 3156	65	390	296	12	24.5
	280	22256C AKE4 + H3156	192	350	38	51	A 3156	65	390	296	28	24.5
	280	23256C AKE4 + H2356	221	350	38	51	A 2356	65	390	299	11	28
	280	22356C AKE4 + H2356	221	350	38	51	A 2356	65	390	299	12	28

ADAPTADORES PARA RODAMIENTOS DE RODILLOS

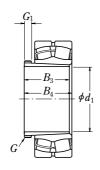
Diámetro del Eje 280~410 mm





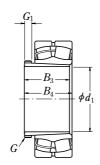

Diám.	Diám. Int. del Rod.	Números Nominales		Dimens (mr			Números del Manguito del	Dim	n ension (mi		pe	Masa (kg)
d_1	Rod. Nominal $^{(mm)}$ d	Rodamientos Aplicables	B_1	d_2	B_2	B_5	Adaptador	$_{\min }^{A}$	$K \atop ext{min}$	$d_{ m e}$ min	$_{ m min}^{\it b}$	aprox.
280	300	23960C AKE4 + H3960	140	360	42	54	A3960	69	380	313	12	20.7
	300	23060C AKE4 + H3060	168	360	42	54	A3060	69	430	313	12	23
	300	23160C AKE4 + H3160	208	380	40	53	A3160	69	430	317	12	30
	300	22260C AKE4 + H3160	208	380	40	53	A3160	69	430	317	32	30
	300	23260C AKE4 + H3260	240	380	40	53	A3260	69	430	321	12	34
300	320	23964C AKE4 + H3964	140	380	42	55	A3964	72	400	334	13	21.8
	320	23064C AKE4 + H3064	171	380	42	55	A3064	72	450	334	13	24.5
	320	23164C AKE4 + H3164	226	400	42	56	A3164	72	450	339	13	35
	320	22264C AKE4 + H3164	226	400	42	56	A3164	72	450	339	39	35
	320	23264C AKE4 + H3264	258	400	42	56	A3264	72	450	343	13	39.5
320	340	23968C AKE4 + H3968	144	400	45	58	A3968	75	430	354	14	24.6
	340	23068C AKE4 + H3068	187	400	45	58	A3068	75	490	355	14	28.5
	340	23168C AKE4 + H3168	254	440	55	72	A3168	75	490	360	14	49.5
	340	23268C AKE4 + H3268	288	440	55	72	A3268	75	490	364	14	54.5
340	360	23972C AKE4 + H3972	144	420	45	58	A3972	75	450	374	14	25.7
	360	23072C AKE4 + H3072	188	420	45	58	A3072	75	510	375	14	30.5
	360	23172C AKE4 + H3172	259	460	58	75	A3172	75	510	380	14	54
	360	23272C AKE4 + H3272	299	460	58	75	A3272	75	510	385	14	60.5
360	380	23976C AKE4 + H3976	164	450	48	62	A3976	82	480	396	15	31.9
	380	23076C AKE4 + H3076	193	450	48	62	A3076	82	540	396	15	36
	380	23176C AKE4 + H3176	264	490	60	77	A3176	82	540	401	15	61.5
	380	23276C AKE4 + H3276	310	490	60	77	A3276	82	540	405	15	69.5
380	400	23980C AKE4 + H3980	168	470	52	66	A3980	86	500	417	15	35.2
	400	23080C AKE4 + H3080	210	470	52	66	A3080	86	580	417	15	41.5
	400	23180C AKE4 + H3180	272	520	62	82	A3180	86	580	421	15	70.5
	400	23280C AKE4 + H3280	328	520	62	82	A3280	86	580	427	15	81
400	420 420 420 420	23984C AKE4 + H3984 23084C AKE4 + H3084 23184C AKE4 + H3184 23284C AKE4 + H3284	168 212 304 352	490 490 540 540	52 52 70 70	66 66 90 90	A3984 A3084 A3184 A3284	86 86 86	520 600 600 600	437 437 443 448	16 16 16 16	36.6 43.5 84 94
410	440	23988C AKE4 + H3988	189	520	60	77	A3988	99	550	458	17	58.6
	440	23088C AKE4 + H3088	228	520	60	77	A3088	99	620	458	17	65
	440	23188C AKE4 + H3188	307	560	70	90	A3188	99	620	464	17	104
	440	23288C AKE4 + H3288	361	560	70	90	A3288	99	620	469	17	118

Diámetro del Eje 430 \sim 470 mm

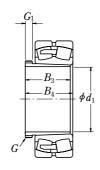


Diám.	Diám. Int. del Rod.	Números Nominales		Dimens (mr			Números del Manguito del	Dim	ensione (mr		pe	Masa (kg)
del Eje $^{(\mathrm{mm})}$ d_1	Nominal (mm) d	Rodamientos Aplicables	B_1	d_2	B_2	B_5	Adaptador	$_{\min }^{A}$	$K \atop ext{min}$	$d_{ m e}$ min	$_{ m min}^{\it b}$	aprox.
430	460	23992C AKE4 + H3992	189	540	60	77	A 3992	99	570	478	17	62
	460	23092C AKE4 + H3092	234	540	60	77	A 3092	99	650	478	17	69.5
	460	23192C AKE4 + H3192	326	580	75	95	A 3192	99	650	485	17	116
	460	23292C AKE4 + H3292	382	580	75	95	A 3292	99	650	491	17	132
450	480	23996C AKE4 + H3996	200	560	60	77	A 3996	99	600	499	18	67.5
	480	23096C AKE4 + H3096	237	560	60	77	A 3096	99	690	499	18	73.5
	480	23196C AKE4 + H3196	335	620	75	95	A 3196	99	690	505	18	133
	480	23296C AKE4 + H3296	397	620	75	95	A 3296	99	690	512	18	152
470	500	239/500C AKE4 + H39/500	208	580	68	85	A 39/500	109	620	519	18	74.6
	500	230/500C AKE4 + H30/500	247	580	68	85	A 30/500	109	700	519	18	82
	500	231/500C AKE4 + H31/500	356	630	80	100	A 31/500	109	700	527	18	143
	500	232/500C AKE4 + H32/500	428	630	80	100	A 32/500	109	700	534	18	166

MANGUITOS DE DESMONTAJE PARA RODAMIENTOS DE RODILLOS

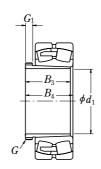

Diámetro del Eje $35{\sim}85~\mathrm{mm}$

Diámetro del Eie	Diámetro Interno del Rodamiento	Números Nominales	Rosca del Tornillo	Dimensiones (mm)		Masa (kg)
d_1	Nominal (mm) d	Rodamientos Aplicables	G	B_3 G_1	B_4	aprox.
35 40	40 40 45 45	21308EAKE4 + AH 308 22308EAKE4 + AH 2308 21309EAKE4 + AH 309 22309EAKE4 + AH 2309	M 45 x 1.5 M 45 x 1.5 M 50 x 1.5 M 50 x 1.5	29 6 40 7 31 6 44 7	32 43 34 47	0.09 0.13 0.11 0.165
45	50	21310EAKE4 + AHX 310	M 55 × 2	35 7	38	0.16
	50	22310EAKE4 + AHX 2310	M 55 × 2	50 9	53	0.235
50	55	22211EAKE4 + AHX 311	M 60 × 2	37 7	40	0.19
	55	21311EAKE4 + AHX 311	M 60 × 2	37 7	40	0.19
	55	22311EAKE4 + AHX 2311	M 60 × 2	54 10	57	0.285
55	60	22212EAKE4 + AHX 312	M 65 x 2	40 8	43	0.215
	60	21312EAKE4 + AHX 312	M 65 x 2	40 8	43	0.215
	60	22312EAKE4 + AHX 2312	M 65 x 2	58 11	61	0.34
60	65	22213EAKE4 + AH 313	M 75 × 2	42 8	45	0.255
	65	21313EAKE4 + AH 313	M 75 × 2	42 8	45	0.255
	65	22313EAKE4 + AH 2313	M 75 × 2	61 12	64	0.395
65	70	22214EAKE4 + AH 314	M 80 × 2	43 8	47	0.28
	70	21314EAKE4 + AH 314	M 80 × 2	43 8	47	0.28
	70	22314EAKE4 + AHX 2314	M 80 × 2	64 12	68	0.53
70	75	22215EAKE4 + AH 315	M 85 x 2	45 8	49	0.315
	75	21315EAKE4 + AH 315	M 85 x 2	45 8	49	0.315
	75	22315EAKE4 + AHX 2315	M 85 x 2	68 12	72	0.605
75	80	22216EAKE4 + AH 316	M 90 × 2	48 8	52	0.365
	80	21316EAKE4 + AH 316	M 90 × 2	48 8	52	0.365
	80	22316EAKE4 + AHX 2316	M 90 × 2	71 12	75	0.665
80	85	22217EAKE4 + AHX 317	M 95 × 2	52 9	56	0.48
	85	21317EAKE4 + AHX 317	M 95 × 2	52 9	56	0.48
	85	22317EAKE4 + AHX 2317	M 95 × 2	74 13	78	0.745
85	90	22218EAKE4 + AHX 318	M 100 × 2	53 9	57	0.52
	90	21318EAKE4 + AHX 318	M 100 × 2	53 9	57	0.52
	90	23218CKE4 + AHX 3218	M 100 × 2	63 10	67	0.58
	90	22318EAKE4 + AHX 2318	M 100 × 2	79 14	83	0.845

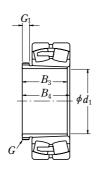

Diámetro del Eje 90 \sim 135 mm

Diámetro del Eje	Diámetro Interno del Rodamiento	NZ N · · ·	Rosca del Tornillo	D	imensione: (mm)	S	Masa (kg)
d_1	Nominal (mm) d	Números Nominales Rodamientos Aplicables	G	B_3	G_1	B_4	aprox.
90	95	22219EAKE4 + AHX 319	M 105 × 2	57	10	61	0.595
	95	21319CKE4 + AHX 319	M 105 × 2	57	10	61	0.595
	95	22319EAKE4 + AHX 2319	M 105 × 2	85	16	89	0.89
95	100	21320CKE4 + AHX 3120	M 110 x 2	64	11	68	0.70
	100	22220EAKE4 + AHX 320	M 110 x 2	59	10	63	0.66
	100	21320CKE4 + AHX 320	M 110 x 2	59	10	63	0.66
	100	23220CKE4 + AHX 3220	M 110 x 2	73	11	77	0.77
	100	22320EAKE4 + AHX 2320	M 110 x 2	90	16	94	1.0
105	110	23122CKE4 + AHX 3122	M 120 x 2	68	11	72	0.76
	110	22222EAKE4 + AHX 3122	M 120 x 2	68	11	72	0.76
	110	24122CK30E4 + AH 24122	M 115 x 2	82	13	91	0.73
	110	23222CKE4 + AHX 3222	M 125 × 2	82	11	86	1.04
	110	22322EAKE4 + AHX 2322	M 125 × 2	98	16	102	1.35
115	120	23024C DKE4 + AHX 3024	M 130 x 2	60	13	64	0.75
	120	24024C K30E4 + AH 24024	M 125 x 2	73	13	82	0.70
	120	23124C KE4 + AHX 3124	M 130 x 2	75	12	79	0.95
	120	22224EAKE4 + AHX 3124	M 130 × 2	75	12	79	0.95
	120	24124CK30E4 + AH 24124	M 130 × 2	93	13	102	1.02
	120	23224CKE4 + AHX 3224	M 135 × 2	90	13	94	1.3
	120	22324EAKE4 + AHX 2324	M 135 × 2	105	17	109	1.6
125	130	23026C DKE4 + AHX 3026	M 140 × 2	67	14	71	0.95
	130	24026C K30E4 + AH 24026	M 135 × 2	83	14	93	0.89
	130	23126C KE4 + AHX 3126	M 140 × 2	78	12	82	1.08
	130	22226EAKE4 + AHX 3126	M 140 x 2	78	12	82	1.08
	130	24126CK30E4 + AH 24126	M 140 x 2	94	14	104	1.14
	130	23226CKE4 + AHX 3226	M 145 x 2	98	15	102	1.58
	130	22326CKE4 + AHX 2326	M 145 x 2	115	19	119	1.97
135	140	23028C DKE4 + AHX 3028	M 150 x 2	68	14	73	1.01
	140	24028C K30E4 + AH 24028	M 145 x 2	83	14	93	0.96
	140	23128C KE4 + AHX 3128	M 150 x 2	83	14	88	1.28
	140	22228C DKE4 + AHX 3128	M 150 × 2	83	14	88	1.28
	140	24128C K30E4 + AH 24128	M 150 × 2	99	14	109	1.3
	140	23228C KE4 + AHX 3228	M 155 × 3	104	15	109	1.84
	140	22328C KE4 + AHX 2328	M 155 × 3	125	20	130	2.33

MANGUITOS DE DESMONTAJE PARA RODAMIENTOS DE RODILLOS

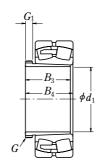

Diámetro del Eje $145{\sim}180~\text{mm}$

Diámetro	Diámetro Interno del Rodamiento		Rosca del Tornillo	D	imensione (mm)	s	Masa (kg)
del Eje (mm)	Nominal (mm) d	Números Nominales Rodamientos Aplicables	G	B_3	G_1	B_4	aprox.
145	150	23030CDKE4 + AHX 3030	M 160 × 3	72	15	77	1.15
	150	24030CK30E4 + AH 24030	M 155 × 3	90	15	101	1.11
	150	23130CKE4 + AHX 3130	M 165 × 3	96	15	101	1.79
	150	22230CDKE4 + AHX 3130	M 165 × 3	96	15	101	1.79
	150	24130CK30E4 + AH 24130	M 160 × 3	115	15	126	1.63
	150	23230CKE4 + AHX 3230	M 165 × 3	114	17	119	2.22
	150	22330CAKE4 + AHX 2330	M 165 × 3	135	24	140	2.82
150	160	23032CDKE4 + AH 3032	M 170 × 3	77	16	82	2.05
	160	24032CK30E4 + AH 24032	M 170 × 3	95	15	106	2.28
	160	23132CKE4 + AH 3132	M 180 × 3	103	16	108	3.2
	160	22232CDKE4 + AH 3132	M 180 x 3	103	16	108	3.2
	160	24132CK30E4 + AH 24132	M 170 x 3	124	15	135	3.03
	160	23232CKE4 + AH 3232	M 180 x 3	124	20	130	4.1
	160	22332CAKE4 + AH 2332	M 180 x 3	140	24	146	4.7
160	170	23034CDKE4 + AH 3034	M 180 × 3	85	17	90	2.45
	170	24034CK30E4 + AH 24034	M 180 × 3	106	16	117	2.74
	170	23134CKE4 + AH 3134	M 190 × 3	104	16	109	3.4
	170	22234CDKE4 + AH 3134	M 190 x 3	104	16	109	3.4
	170	24134CK30E4 + AH 24134	M 180 x 3	125	16	136	3.26
	170	23234CKE4 + AH 3234	M 190 x 3	134	24	140	4.8
	170	22334CAKE4 + AH 2334	M 190 x 3	146	24	152	5.25
170	180	23036CDKE4 + AH 3036	M 190 × 3	92	17	98	2.8
	180	24036CK30E4 + AH 24036	M 190 × 3	116	16	127	3.19
	180	23136CKE4 + AH 3136	M 200 × 3	116	19	122	4.2
	180	24136C K30E4 + AH 24136	M 190 x 3	134	16	145	3.74
	180	22236C DKE4 + AH 2236	M 200 x 3	105	17	110	3.75
	180	23236C KE4 + AH 3236	M 200 x 3	140	24	146	5.3
	180	22336C AKE4 + AH 2336	M 200 x 3	154	26	160	5.85
180	190	23038CAKE4 + AH 3038	Tr 205 × 4	96	18	102	3.35
	190	24038CK30E4 + AH 24038	M 200 × 3	118	18	131	3.47
	190	23138CKE4 + AH 3138	Tr 210 × 4	125	20	131	4.9
	190	24138C K30E4 + AH 24138	M 200 × 3	146	18	159	4.38
	190	22238C AKE4 + AH 2238	Tr 210 × 4	112	18	117	4.25
	190	23238C KE4 + AH 3238	Tr 210 × 4	145	25	152	5.9
	190	22338C AKE4 + AH 2338	Tr 210 × 4	160	26	167	6.65

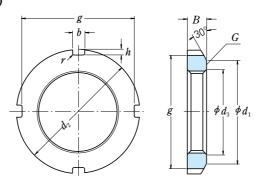

Diámetro del Eje 190~260 mm

Diámetro del Eie	Diámetro Interno del Rodamiento	M/maria Naminda	Rosca del Tornillo	D	imensione: (mm)	S	Masa (kg)
d1	Nominal (mm) d	Números Nominales Rodamientos Aplicables	G	B_3	G_1	B_4	aprox.
190	200	23040CAKE4 + AH 3040	Tr 215 x 4	102	19	108	3.8
	200	24040CK30E4 + AH 24040	Tr 210 x 4	127	18	140	3.92
	200	23140CKE4 + AH 3140	Tr 220 x 4	134	21	140	5.5
	200	24140CK30E4 + AH 24140	Tr 210 × 4	158	18	171	5.0
	200	22240CAKE4 + AH 2240	Tr 220 × 4	118	19	123	4.7
	200	23240CKE4 + AH 3240	Tr 220 × 4	153	25	160	6.7
	200	22340CAKE4 + AH 2340	Tr 220 × 4	170	30	177	7.55
200	220	23044CAKE4 + AH 3044	Tr 235 × 4	111	20	117	7.4
	220	24044CK30E4 + AH 24044	Tr 230 × 4	138	20	152	8.23
	220	23144CKE4 + AH 3144	Tr 240 × 4	145	23	151	10.5
	220 220 220 220 220	24144CK30E4 + AH 24144 22244CAKE4 + AH 2244 23244CKE4 + AH 2344 22344CAKE4 + AH 2344	Tr 230 × 4 Tr 240 × 4 Tr 240 × 4 Tr 240 × 4	170 130 181 181	20 20 30 30	184 136 189 189	10.3 9.1 13.5 13.5
220	240	23048CAKE4 + AH 3048	Tr 260 × 4	116	21	123	8.75
	240	24048CK30E4 + AH 24048	Tr 250 × 4	138	20	153	9.0
	240	23148CKE4 + AH 3148	Tr 260 × 4	154	25	161	12
	240	24148CK30E4 + AH 24148	Tr 260 × 4	180	20	195	12.6
	240	22248CAKE4 + AH 2248	Tr 260 × 4	144	21	150	11
	240	23248CAKE4 + AH 2348	Tr 260 × 4	189	30	197	15.5
	240	22348CAKE4 + AH 2348	Tr 260 × 4	189	30	197	15.5
240	260	23052CAKE4 + AH 3052	Tr 280 × 4	128	23	135	10.5
	260	24052CAK30E4 + AH 24052	Tr 270 × 4	162	22	178	11.7
	260	23152CAKE4 + AH 3152	Tr 290 × 4	172	26	179	16
	260	24152CAK30E4 + AH 24152	Tr 280 × 4	202	22	218	15.5
	260	22252CAKE4 + AH 2252	Tr 290 × 4	155	23	161	14
	260	23252CAKE4 + AH 2352	Tr 290 × 4	205	30	213	19.5
	260	22352CAKE4 + AH 2352	Tr 290 × 4	205	30	213	19.5
260	280	23056CAKE4 + AH 3056	Tr 300 × 4	131	24	139	12
	280	24056CAK30E4 + AH 24056	Tr 290 × 4	162	22	179	12.6
	280	23156CAKE4 + AH 3156	Tr 310 × 5	175	28	183	17.5
	280	24156C AK30E4 + AH 24156	Tr 300 × 4	202	22	219	16.8
	280	22256C AKE4 + AH 2256	Tr 310 × 5	155	24	163	15
	280	23256C AKE4 + AH 2356	Tr 310 × 5	212	30	220	21.5
	280	22356C AKE4 + AH 2356	Tr 310 × 5	212	30	220	21.5

MANGUITOS DE DESMONTAJE PARA RODAMIENTOS DE RODILLOS


Diámetro del Eje $280{\sim}380~\mathrm{mm}$

Diámetro	Diámetro Interno del		Rosca del Tornillo	D	imensione (mm)	S	Masa (kg)
del Eje (mm) d_1	Rodamiento Nominal (mm) d	Números Nominales Rodamientos Aplicables	G	B_3	G_1	B_4	aprox.
280	300	23060CAKE4 + AH 3060	Tr 320 × 5	145	26	153	14.5
	300	24060CAK30E4 + AH 24060	Tr 310 × 5	184	24	202	15.5
	300	23160CAKE4 + AH 3160	Tr 330 × 5	192	30	200	21
	300	24160CAK30E4 + AH 24160	Tr 320 × 5	224	24	242	20.3
	300	22260CAKE4 + AH 2260	Tr 330 × 5	170	26	178	18
	300	23260CAKE4 + AH 3260	Tr 330 × 5	228	34	236	20
300	320	23064CAKE4 + AH 3064	Tr 345 x 5	149	27	157	16
	320	24064CAK30E4 + AH 24064	Tr 330 x 5	184	24	202	16.4
	320	23164CAKE4 + AH 3164	Tr 350 x 5	209	31	217	24.5
	320 320	24164CAK30E4 + AH 24164 23264CAKE4 + AH 3264	Tr 340 × 5 Tr 350 × 5	242 246	24 36	260 254	23.5 25
320	340	23068CAKE4 + AH 3068	Tr 365 × 5	162	28	171	19.5
	340	24068CAK30E4 + AH 24068	Tr 360 × 5	206	26	225	21.2
	340	23168CAKE4 + AH 3168	Tr 370 × 5	225	33	234	29
	340	24168CAK30E4 + AH 24168	Tr 360 × 5	269	26	288	28.3
	340	23268CAKE4 + AH 3268	Tr 370 × 5	264	38	273	35.5
340	360	23072CAKE4 + AH 3072	Tr 385 × 5	167	30	176	21
	360	24072CAK30E4 + AH 24072	Tr 380 × 5	206	26	226	22.5
	360	23172CAKE4 + AH 3172	Tr 400 × 5	229	35	238	33
	360	24172CAK30E4 + AH 24172	Tr 380 × 5	269	26	289	30
	360	23272CAKE4 + AH 3272	Tr 400 × 5	274	40	283	41.5
360	380	23076CAKE4 + AH 3076	Tr 410 × 5	170	31	180	23.5
	380	24076CAK30E4 + AH 24076	Tr 400 × 5	208	28	228	24.1
	380	23176CAKE4 + AH 3176	Tr 420 × 5	232	36	242	35.5
	380	24176CAK30E4 + AH 24176	Tr 400 × 5	271	28	291	32.1
	380	23276CAKE4 + AH 3276	Tr 420 × 5	284	42	294	45.5
380	400	23080CAKE4 + AH 3080	Tr 430 × 5	183	33	193	27.5
	400	24080CAK30E4 + AH 24080	Tr 420 × 5	228	28	248	28
	400	23180CAKE4 + AH 3180	Tr 440 × 5	240	38	250	39.5
	400	24180CAK30E4 + AH 24180	Tr 420 × 5	278	28	298	34.8
	400	23280CAKE4 + AH 3280	Tr 440 × 5	302	44	312	51.5


Diámetro del Eje 400~480 mm

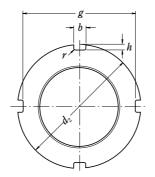
Diámetro del Eje	Diámetro Interno del Rodamiento	Números Nominales	Rosca del Tornillo	D	imensione: (mm)	S	Masa (kg)
d d d d d	Nominal (mm) d	Rodamientos Aplicables	G	B_3	G_1	B_4	aprox.
400	420	23084CAKE4 + AH 3084	Tr 450 × 5	186	34	196	29
	420	24084CAK30E4 + AH 24084	Tr 440 × 5	230	30	252	29.8
	420	23184CAKE4 + AH 3184	Tr 460 × 5	266	40	276	46.5
	420	24184CAK30E4 + AH 24184	Tr 440 × 5	310	30	332	41.4
	420	23284CAKE4 + AH 3284	Tr 460 × 5	321	46	331	59
420	440	23088CAKE4 + AHX 3088	Tr 470 × 5	194	35	205	42
	440	24088CAK30E4 + AH 24088	Tr 460 × 5	242	30	264	33
	440	23188CAKE4 + AHX 3188	Tr 480 × 5	270	42	281	50
	440	24188CAK30E4 + AH 24188	Tr 460 × 5	310	30	332	43.5
	440	23288CAKE4 + AHX 3288	Tr 480 × 5	330	48	341	64
440	460	23092CAKE4 + AHX 3092	Tr 490 × 5	202	37	213	46
	460	24092CAK30E4 + AH 24092	Tr 480 × 5	250	32	273	35.9
	460	23192CAKE4 + AHX 3192	Tr 510 × 6	285	43	296	58
	460	24192CAK30E4 + AH 24192	Tr 480 × 5	332	32	355	49.7
	460	23292CAKE4 + AHX 3292	Tr 510 × 6	349	50	360	74.5
460	480	23096CAKE4 + AHX 3096	Tr 520 × 6	205	38	217	51
	480	24096CAK30E4 + AH 24096	Tr 500 × 5	250	32	273	37.5
	480	23196CAKE4 + AHX 3196	Tr 530 × 6	295	45	307	63
	480	24196CAK30E4 + AH 24196	Tr 500 × 5	340	32	363	53
	480	23296CAKE4 + AHX 3296	Tr 530 × 6	364	52	376	82
480	500	230/500CAKE4 + AHX 30/500	Tr 540 × 6	209	40	221	54.5
	500	240/500CAK30E4 + AH 240/500	Tr 530 × 6	253	35	276	41.9
	500	231/500CAKE4 + AHX 31/500	Tr 550 × 6	313	47	325	71
	500	241/500CAK30E4 + AH 241/500	Tr 530 × 6	360	35	383	61.2
	500	232/500CAKE4 + AHX 32/500	Tr 550 × 6	393	54	405	94.5

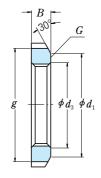
TUERCAS PARA RODAMIENTOS DE RODILLOS

(Para Adaptadores y Ejes)

Tuerca con Arandela

Unidades: mm


Serie de Tuerca AN Referencia Roscas de los Números de Números Dimensiones Básicas Masa Tornillos Diám, del Anillo Números de Diámetro **Nominales** r (kg) d_1 Int. del Manguițo d_2 h d_3 Bg h Arandela del Eie max aprox. Gdel Adaptador (1) 25 AN 02 M15×1 21 21 4 2 15.5 5 0.4 0.010 AW 02 X 15 AN 03 AN 04 2 AW 03 X AW 04 X M17×1 28 24 24 4 17.5 5 0.4 0.013 17 2 0.4 M20×1 32 26 28 4 20.5 6 0.019 04 20 AN 05 AN 06 AW 05 X AW 06 X M25×1.5 38 32 34 5 2 25.8 7 0.4 0.025 05 25 30.8 45 38 41 5 2 7 30 M30×1.5 0.043 06 0.4 AN 07 5 2 0.053 AW 07 X M35×1.5 52 44 48 35.8 8 0.4 07 35 **AN 08** 2.5 40.8 9 0.5 08 **AW 08 X** 40 M40×1.5 58 50 53 6 0.085 AW 09 X AW 10 X M45×1.5 **AN 09** 65 56 60 6 2.5 45.8 10 0.5 0.11909 45 2.5 **AN 10** M50×1.5 70 61 65 6 50.8 11 0.5 0.148 10 50 **AW 11 X AN 11** M55×2 75 67 69 7 3 56 11 0.5 0.158 11 55 AW 12 X **AN 12** M60x2 80 73 74 7 3 61 11 0.5 0.17412 60 **AN 13** M65×2 85 79 79 7 66 0.203 AW 13 X 3 12 0.5 13 65 AN 14 AN 15 3.5 AW 14 X AW 15 X M70x2 92 85 85 8 12 0.5 0.242 14 70 M75×2 98 90 91 8 3.5 76 13 0.5 0.287 15 75 **AN 16** M80x2 105 95 98 8 3.5 81 15 0.6 0.395 16 AW 16 X 80 **AN 17** M85×2 110 102 103 8 3.5 86 16 0.6 0.45 17 AW 17 X 85 AW 18 X AW 19 X **AN 18** M90x2 120 108 112 10 4 91 16 0.6 0.555 18 90 **AN 19** M95×2 125 113 117 10 4 96 17 0.6 0.66 19 95 AW 20 X **AN 20** M100×2 130 120 122 10 4 101 18 0.6 0.70 20 100 AW 21 X AW 22 X **AN 21** M105×2 140 126 130 12 5 106 18 0.7 0.845 21 105 **AN 22** M110×2 145 133 135 12 5 111 19 0.7 0.965 22 110 5 **AN 23** M115×2 150 137 140 12 116 19 0.7 1.01 AW 23 115 AN 24 AN 25 138 12 24 **AW 24** M120×2 155 145 5 121 20 0.7 1.08 120 0.7 M125×2 160 148 150 12 5 126 21 1.19 AW 25 125


Nota Observaciones

⁽¹⁾ Aplicable al manguito del adaptador de las Series A31, A2, A3 y A23.

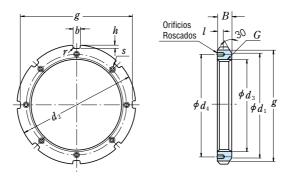
El diseño básico y las dimensiones de las roscas de los tornillos están de acuerdo con JIS B 0207.

Tuerca con Arandela

Unidades : mm

				Serie (de Tuer	ca AN						Referencia	
Número Nominal				Dir		nes Bás			r	Masa (kg)		Números de	
	G	d_2	d_1	g	b	h	d_3	В	max	aprox.	Int. del Manguito del Adaptador(¹)	Arandela	del Eje
AN 2 AN 2 AN 2	7 M135×2	165 175 180	149 160 160	155 163 168	12 14 14	5 6 6	131 136 141	21 22 22	0.7 0.7 0.7	1.25 1.55 1.56	26 — 28	AW 26 AW 27 AW 28	130 135 140
AN 2 AN 3 AN 3	0 M150×2	190 195 200	172 171 182	178 183 186	14 14 16	6 6 7	146 151 156.5	24 24 25	0.7 0.7 0.7	2.0 2.03 2.21	30 —	AW 29 AW 30	145 150 —
AN 3 AN 3 AN 3	3 M165×3	210 210 220	182 193 193	196 196 206	16 16 16	7 7 7	161.5 166.5 171.5	25 26 26	0.7 0.7 0.7	2.59 2.43 2.8	32 — 34	AW 32 	160 — 170
AN 3 AN 3 AN 4	8 M190×3	230 240 250	203 214 226	214 224 234	18 18 18	8 8 8	181.5 191.5 201.5	27 28 29	0.7 0.7 0.7	3.05 3.4 3.7	36 38 40	AW 36 AW 38 AW 40	180 190 200
		•		Serie d	e Tuero	a ANL							
ANL 2 ANL 2	6 M130×2	145 155 165	133 143 151	135 145 153	12 12 14	5 5 6	121 131 141	20 21 22	0.7 0.7 0.7	0.78 0.88 0.99	24 26 28	AWL 24 AWL 26 AWL 28	120 130 140
ANL 3 ANL 3	2 M160×3	180 190 200	164 174 184	168 176 186	14 16 16	6 7 7	151 161.5 171.5	24 25 26	0.7 0.7 0.7	1.38 1.56 1.72	30 32 34	AWL 30 AWL 32 AWL 34	150 160 170
ANL 3 ANL 4	8 M190×3	210 220 240	192 202 218	194 204 224	18 18 18	8 8 8	181.5 191.5 201.5	27 28 29	0.7 0.7 0.7	1.95 2.08 2.98	36 38 40	AWL 36 AWL 38 AWL 40	180 190 200

Nota


(¹) La Serie AN es aplicable al manguito del adaptador de la Serie A31 y A23 La Serie ANL es aplicable al manguito del adaptador de la Serie A30.

Observaciones

El diseño básico y las dimensiones de las roscas de los tornillos están de acuerdo con JIS B 0207.

TUERCAS PARA RODAMIENTOS DE RODILLOS

(Para Adaptadores y Ejes)

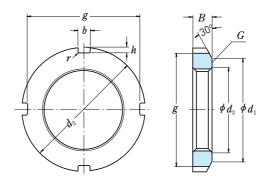
Tuerca con Fijación

Unidades: mm

																I.			. 111111
							Sei	rie de Tue	erca A	AN						Re	eferenc	cia	
Núm Nomi	eros nales	Roscas de los Tornillos ${\cal G}$	d_2	d_1	Dime g	nsioi <i>b</i>	nes B <i>h</i>	ásicas $oldsymbol{d}_3$	В	∤ max		ficios I cas de los		dos s (S) $m{d}^4$	Masa (kg) aprox.	Números de Diám. del Anillo Int. del Manguito del Adaptador(¹)	Núme de To		Diámetro del Eje
AN AN AN	44 48 52	Tr 220×4 Tr 240×4 Tr 260×4	280 300 330	250 270 300	260 280 306	20	10 10 12	222 242 262	32 34 36	8.0 8.0 8.0	15M 15M 18M	8×1 8×1 10×1	.25	238 258 281	5.2 5.95 8.05	44 48 52	AL AL AL	44 44 52	220 240 260
AN AN AN	56 60 64	Tr 300×4	350 380 400	320 340 360	326 356 376	24	12 12 12	282 302 322.5	38 40 42	8.0 8.0 8.0	18M 18M 18M		.5	301 326 345	9.05 11.8 13.1	56 60 64	AL AL AL	52 60 64	280 300 320
AN AN AN	68 72 76	Tr 340×5 Tr 360×5 Tr 380×5		400 420 450	410 430 454	28	15 15 18	342.5 362.5 382.5	55 58 60	1 1 1	21M	12×1 12×1 12×1	.75	372 392 414	23.1 25.1 31	68 72 76	AL AL AL	68 68 76	340 360 380
AN AN AN	80 84 88	Tr 400×5 Tr 420×5 Tr 440×5	540		484 504 520	32	18 18 20	402.5 422.5 442.5	70	1 1 1	27M	16×2 16×2 16×2		439 459 477	37 43.5 45	80 84 88	AL AL AL	80 80 88	400 420 440
AN AN AN	92 96 100	Tr 460×5 Tr 480×5 Tr 500×5	580 620 630	540 560 580	540 580 584	36	20 20 23		75 75 80	1 1 1	27M	16×2 16×2 16×2		497 527 539	50.5 62 63.5	92 96 /500	AL AL AL 1	88 96 00	460 480 500
							Serie	de Tuero	a AN	L									
ANL ANL ANL	48 52	Tr 220×4 Tr 240×4 Tr 260×4 Tr 280×4	260 290 310 330	270	242 270 290 310	20	9 10 10 10	222 242 262 282	30 34 34 38	0.8 0.8 0.8 0.8	12M 15M 15M 15M	6×1 8×1 8×1 8×1	.25 .25	229 253 273 293	3.1 5.15 5.65 6.8	44 48 52 56	ALL ALL ALL	48 48	220 240 260 280
ANL ANL ANL	64	Tr 300×4 Tr 320×5 Tr 340×5	360 380 400	336 356 376	336 356 376	24	12 12 12	302 322.5 342.5	42 42 45	0.8 0.8 1	15M 15M 15M	8×1 8×1 8×1	.25	316 335 355	9.6 9.95 11.7	60 64 68	ALL ALL ALL	64	300 320 340
ANL ANL ANL	76	Tr 360×5 Tr 380×5 Tr 400×5	420 450 470	394 422 442	394 422 442	28	13 14 14	362.5 382.5 402.5	45 48 52	1 1 1		8×1 10×1 10×1	.5	374 398 418	12 14.9 16.9	72 76 80	ALL ALL ALL	76	360 380 400
ANL ANL ANL	88	Tr 420×5 Tr 440×5 Tr 460×5	490 520 540	462 490 510		32 32 32	14 15 15	422.5 442.5 462.5	52 60 60	1 1 1	21M	10×1 12×1 12×1	.75	438 462 482	17.4 26.2 28	84 88 92	ALL ALL ALL	88	420 440 460
ANL ANL	96 100	Tr 480×5 Tr 500×5	560 580	530 550	530 550	36 36	15 15	482.5 502.5	60 68	1 1		12×1 12×1		502 522	29.5 33.5	96 /500	ALL ALL		480 500

Observaciones

Nota


(¹) La Serie AN es aplicable al manguito del adaptador de las Series A31, A32 y A23. La Serie ANL es aplicable al manguito del adaptador de la Serie A30.

1. El diseño básico y las dimensiones de las roscas de los tornillos están de acuerdo con JIS B 0216.

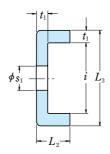
 El diseño básico y las dimensiones de las roscas de los orificios roscados están de acuerdo con JIS B 0205.

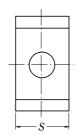
(Para Manguitos de Desmontaje)

Unidades: mm

					(Serie d	le Tue	erca l	HN						Refer	encia	
N	lúmero ominale	S F	Roscas de s Tornillos			Dime	nsion	ies B	ásicas			Masa		Número	os del Mangı	uito de Desmon	taje
14	omman	10	G	d_2	d_1	g	b	h	d_3	В	r max	(kg) aprox.	Δ	.Н 31	AH 22	AH 32	AH 23
H	IN 4: IN 4: IN 4:	4 T	r 210×4 r 220×4 r 240×4	270 280 300	250	250 260 280	20	10		30 32 34	0.8 0.8 0.8	4.75 5.35 6.2	AH AH AH	3138 3140 3144	AH 2238 AH 2240 AH 2244	AH 3238 AH 3240	AH 2338 AH 2340 AH 2344
H	IN 5: IN 5: IN 6:	8 T	r 260×4 r 290×4 r 310×5	330 370 390	330	306 346 366	24	12		36 40 42	0.8 0.8 0.8	8.55 11.8 13.4	AH AH AH	3148 3152 3156	AH 2248 AH 2252 AH 2256	_ _ _	AH 2348 AH 2352 AH 2356
H	IN 6 IN 7 IN 7	0 T	r 330×5 r 350×5 r 370×5	420 450 470	410	390 420 440	28	15 15 15	332.5 352.5 372.5	52 55 58		20.4 25.2 28.2	AH AH AH	3160 3164 3168	AH 2260 AH 2264	AH 3260 AH 3264 AH 3268	_
H	IN 8 IN 8 IN 8	4 T	r 400×5 r 420×5 r 440×5	520 540 560	490	484 504 520	32	18	402.5 422.5 442.5		1 1 1	40 46.9 48.5	AH AH AH	3172 3176 3180	_ 	AH 3272 AH 3276 AH 3280	_
Ì	IN 9: IN 9: IN 10:	6 T	r 460×5 r 480×5 r 510×6	580 620 650	560		36	20	462.5 482.5 513	75 75 80	1	55 67 75	AH)	3184 (3188 (3192	_ _ _	AH 3284 AHX 3288 AHX 3292	_ _ _
	IN 10		r 530×6 r 550×6	670 700		624 654			533 553	80 80	1 1	78 92.5		(3196 (31/500	_	AHX 3296 AHX 32/500	_
						Nut S	Series	s HNI	L				А	H 30	AH 2		
ŀ	INL 4	3 T	r 205×4 r 215×4 r 235×4	250 260 280	242 262	234 242 262	20 20	9	207 217 237 262	30 34	0.8 0.8 0.8	3.45 3.7 4.6	AH AH	3038 3040 3044	AH 238 AH 240 AH 244		
ŀ	INL 5	6 T	r 260×4 r 280×4 r 300×4	310 330 360	310 336	290 310 336	24 24	10 10 12	282 302	42	0.8 0.8 0.8	5.8 6.7 9.6	AH AH	3048 3052 3056	AH 248 AH 252 AH 256		
ŀ	INL 6	9 T	r 320×5 r 345×5 r 365×5	380 410 430	384	356 384 404	28	12 13 13	322.5 347.5 367.5	42 45 48	1	10.3 11.5 14.2	AH AH	3060 3064 3068			
H		2 T	r 385×5 r 410×5 r 430×5	450 480 500	452	422 452 472	32	14 14 14	387.5 412.5 432.5	48 52 52		15 19 19.8	AH	3072 3076 3080	_ _ _		
H		4 T	r 450×5 r 470×5 r 490×5	520 540 580	510	490 510 550	32	15 15 15	452.5 472.5 492.5	60 60 60	1	23.8 25 34	AH)	3084 (3088 (3092	_ 		
	INL 10 INL 10		r 520×6 r 540×6	600 630		570 590	36 40	15 20	523 543	68 68	1 1	37 43.5		(3096 (30/500	_		

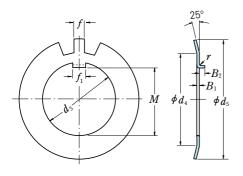
Observaciones

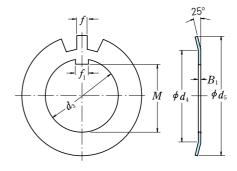

- 1. El diseño básico y las dimensiones de las roscas de los tornillos están de acuerdo con JIS B 0216.
- 2. El número de muescas de la tuerca puede ser superior al mostrado en la figura anterior.


TUERCAS PARA RODAMIENTOS DE RODILLOS

(Combinación de Manguitos de Desmontaje y Tuercas)

				Referencia			
Números Nominales			Números o	lel Manguito de l	Desmontaje		
	AH 30	AH 31	AH 2	AH 22	AH 32	AH 3	AH 23
AN 09 AN 10 AN 11	_ _ _	=	AH 208 AH 209 AH 210	_ _ _	_ _ _	AH 308 AH 309 AHX 310	AH 2308 AH 2309 AHX 2310
AN 12 AN 13 AN 14			AH 211 AH 212 —			AHX 311 AHX 312	AHX 2311 AHX 2312
AN 15 AN 16 AN 17	=	=	AH 213 AH 214 AH 215	=	=	AH 313 AH 314 AH 315	AH 2313 AHX 2314 AHX 2315
AN 18 AN 19 AN 20	=	=	AH 216 AH 217 AH 218	=	 AHX 3218	AH 316 AHX 317 AHX 318	AHX 2316 AHX 2317 AHX 2318
AN 21 AN 22 AN 23	=	=	AH 219 AH 220 AH 221	=	AHX 3220	AHX 319 AHX 320 AHX 321	AHX 2319 AHX 2320
AN 24 AN 25 AN 26	 AHX 3024	AHX 3122 — AHX 3124	AH 222 — AH 224	_ _ _	AHX 3222 —	AHX 322 AHX 324	AHX 2322 —
AN 27 AN 28 AN 29	AHX 3026	AHX 3126	AH 226 —	_ _ _	AHX 3224 AHX 3226	AHX 326	AHX 2324 AHX 2326
AN 30 AN 31 AN 32	AHX 3028 — AHX 3030	AHX 3128 — —	AH 228 — AH 230	_ _ _	AHX 3228 —	AHX 328 	AHX 2328 —
AN 33 AN 34 AN 36	— AH 3032 AH 3034	AHX 3130 — AH 3132	— AH 232 AH 234	_ _ _	AHX 3230 AH 3232	AHX 330 — AH 332	AHX 2330 — AH 2332
AN 38 AN 40	AH 3036 —	AH 3134 AH 3136	AH 236 —	 AH 2236	AH 3234 AH 3236	AH 334 —	AH 2334 AH 2336





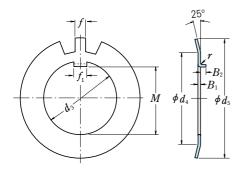
Unidades: mm

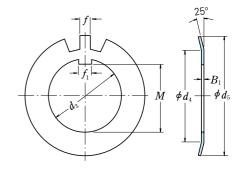
	Series del Tope AL										
Números			Dimens	siones Básic	as		Masa (kg)				
Nominales	t_1	S	L_2	S 1	i	L^3	por 100 pcs aprox.	Números de Tuerca			
AL 44	4	20	12	9	22.5	30.5	2.6	AN 44, AN 48			
AL 52	4	24	12	12	25.5	33.5	3.4	AN 52, AN 56			
AL 60	4	24	12	12	30.5	38.5	3.8	AN 60			
AL 64	5	24	15	12	31	41	5.35	AN 64			
AL 68	5	28	15	14	38	48	6.65	AN 68, AN 72			
AL 76	5	32	15	14	40	50	7.95	AN 76			
AL 80	5	32	15	18	45	55	8.2	AN 80, AN 84			
AL 88	5	36	15	18	43	53	9.0	AN 88, AN 92			
AL 96	5	36	15	18	53	63	10.4	AN 96			
AL 100	5	40	15	18	45	55	10.5	AN 100			
				Series del 1	ope ALL						
ALL 44	4	20	12	7	13.5	21.5	2.12	ANL 44			
ALL 48	4	20	12	9	17.5	25.5	2.29	ANL 48, ANL 52			
ALL 56	4	24	12	9	17.5	25.5	2.92	ANL 56			
ALL 60	4	24	12	9	20.5	28.5	3.15	ANL 60			
ALL 64	5	24	15	9	21	31	4.55	ANL 64, ANL 68			
ALL 72	5	28	15	9	20	30	5.05	ANL 72			
ALL 76	5	28	15	12	24	34	5.3	ANL 76, ANL 80			
ALL 84	5	32	15	12	24	34	6.1	ANL 84			
ALL 88	5	32	15	14	28	38	6.45	ANL 88, ANL 92			
ALL 96	5	36	15	14	28	38	7.3	ANL 96, ANL 100			

ARANDELAS PARA RODAMIENTOS DE RODILLOS

Aleta Doblada

Aleta Recta


Unidades: mm


Número	s Nominales				(Serie d	le Aran	delas A'	W				R	eferencia	
Aleta Doblada	Aleta Recta	d 3	М	fi	imensi $B_{ m 1}$	iones I	Básicas d_4	d5		leta oblada B_2	Nº de Dientes	Masa (kg) por 100 pcs aprox.	Números de Diám. del Anillo Int. del Manguito del Adaptador (¹)	Números de Tuerca	Diámetro del Eje
AW 02 AW 03 AW 04	AW 02 X AW 03 X AW 04 X	15 17 20	13.5 15.5 18.5	4 4 4	1 1 1	4 4 4	21 24 26	28 32 36	1 1 1	2.5 2.5 2.5	13 13 13	0.253 0.315 0.35	 04	AN 02 AN 03 AN 04	15 17 20
AW 05	AW 05 X	25	23	5	1.2	5	32	42	1	2.5	13	0.64	05	AN 05	25
AW 06	AW 06 X	30	27.5	5	1.2	5	38	49	1	2.5	13	0.78	06	AN 06	30
AW 07	AW 07 X	35	32.5	6	1.2	5	44	57	1	2.5	15	1.04	07	AN 07	35
AW 08	AW 08 X	40	37.5	6	1.2	6	50	62	1	2.5	15	1.23	08	AN 08	40
AW 09	AW 09 X	45	42.5	6	1.2	6	56	69	1	2.5	17	1.52	09	AN 09	45
AW 10	AW 10 X	50	47.5	6	1.2	6	61	74	1	2.5	17	1.6	10	AN 10	50
AW 11	AW 11 X	55	52.5	8	1.2	7	67	81	1	4	17	1.96	11	AN 11	55
AW 12	AW 12 X	60	57.5	8	1.5	7	73	86	1.2	4	17	2.53	12	AN 12	60
AW 13	AW 13 X	65	62.5	8	1.5	7	79	92	1.2	4	19	2.9	13	AN 13	65
AW 14	AW 14 X	70	66.5	8	1.5	8	85	98	1.2	4	19	3.35	14	AN 14	70
AW 15	AW 15 X	75	71.5	8	1.5	8	90	104	1.2	4	19	3.55	15	AN 15	75
AW 16	AW 16 X	80	76.5	10	1.8	8	95	112	1.2	4	19	4.65	16	AN 16	80
AW 17	AW 17 X	85	81.5	10	1.8	8	102	119	1.2	4	19	5.25	17	AN 17	85
AW 18	AW 18 X	90	86.5	10	1.8	10	108	126	1.2	4	19	6.25	18	AN 18	90
AW 19	AW 19 X	95	91.5	10	1.8	10	113	133	1.2	4	19	6.7	19	AN 19	95
AW 20	AW 20 X	100	96.5	12	1.8	10	120	142	1.2	6	19	7.65	20	AN 20	100
AW 21	AW 21 X	105	100.5	12	1.8	12	126	145	1.2	6	19	8.25	21	AN 21	105
AW 22	AW 22 X	110	105.5	12	1.8	12	133	154	1.2	6	19	9.4	22	AN 22	110
AW 23	AW 23 X	115	110.5	12	2	12	137	159	1.5	6	19	10.8		AN 23	115
AW 24	AW 24 X	120	115	14	2	12	138	164	1.5	6	19	10.5	24	AN 24	120
AW 25	AW 25 X	125	120	14	2	12	148	170	1.5	6	19	11.8		AN 25	125

Nota Observaciones

⁽¹) Aplicable al manguito del adaptador de las Series A31, A2, A3 y A23. Si las rendijas de los manguitos del adaptador son estrechas deben utilizarse arandelas con aletas rectas, mientras que si las rendijas son anchas puede utilizarse cualquier tipo de arandela.

Aleta Doblada

Aleta Recta

Unidades: mm

ı	Número	s Nominales						le Aran	delas A\	N				R	leferencia	
	Aleta Doblada	Aleta Recta	d_3	М	fi	imensi B_1	ones E	Básicas d_4	d5		leta oblada B_2	№ de Dientes	Masa (kg) por 100 pcs aprox.	Números de Diám. del Anillo Int. del Manguito del Adaptador (¹)	Números de Tuerca	Diámetro del Eje
	AW 26	AW 26 X	130	125	14	2	12	149	175	1.5	6	19	11.3	26	AN 26	130
	AW 27	AW 27 X	135	130	14	2	14	160	185	1.5	6	19	14.4	—	AN 27	135
	AW 28	AW 28 X	140	135	16	2	14	160	192	1.5	8	19	14.2	28	AN 28	140
	AW 29 AW 30 AW 31	AW 29 X AW 30 X AW 31 X	145 150 155	140 145 147.5	16 16 16	2 2 2.5	14 14 16	172 171 182	202 205 212	1.5 1.5 1.5	8 8 8	19 19 19	16.8 15.9 20.9	30	AN 29 AN 30 AN 31	145 150 155
	AW 32	AW 32 X	160	154	18	2.5	16	182	217	1.5	8	19	22.2	32	AN 32	160
	AW 33	AW 33 X	165	157.5	18	2.5	16	193	222	1.5	8	19	24.1	—	AN 33	165
	AW 34	AW 34 X	170	164	18	2.5	16	193	232	1.5	8	19	24.7	34	AN 34	170
	AW 36	AW 36 X	180	174	20	2.5	18	203	242	1.5	8	19	26.8	36	AN 36	180
	AW 38	AW 38 X	190	184	20	2.5	18	214	252	1.5	8	19	27.8	38	AN 38	190
	AW 40	AW 40 X	200	194	20	2.5	18	226	262	1.5	8	19	29.3	40	AN 40	200
						S	erie d	e Arand	elas AV	VL						
	AWL 24	AWL 24 X	120	115	14	2	12	133	155	1.5	6	19	7.7	24	ANL 24	120
	AWL 26	AWL 26 X	130	125	14	2	12	143	165	1.5	6	19	8.7	26	ANL 26	130
	AWL 28	AWL 28 X	140	135	16	2	14	151	175	1.5	8	19	10.9	28	ANL 28	140
	AWL 30	AWL 30 X	150	145	16	2	14	164	190	1.5	8	19	11.3	30	ANL 30	150
	AWL 32	AWL 32 X	160	154	18	2.5	16	174	200	1.5	8	19	16.2	32	ANL 32	160
	AWL 34	AWL 34 X	170	164	18	2.5	16	184	210	1.5	8	19	19	34	ANL 34	170
	AWL 36	AWL 36 X	180	174	20	2.5	18	192	220	1.5	8	19	18	36	ANL 36	180
	AWL 38	AWL 38 X	190	184	20	2.5	18	202	230	1.5	8	19	20.5	38	ANL 38	190
	AWL 40	AWL 40 X	200	194	20	2.5	18	218	250	1.5	8	19	21.4	40	ANL 40	200

Nota

Observaciones

(¹) La Serie AW es aplicable al manguito del adaptador de las Series A31 y A23. La Serie AWL es aplicable al manguito del adaptador de la Serie A30. Si las rendijas de los manguitos del adaptador son estrechas deben utilizarse arandelas con aletas rectas, mientras que si las rendijas son anchas puede utilizarse cualquier tipo de arandela.

Página

INTRODUCCIÓN DE LOS PRODUCTOS NSK - APÉNDICES

INTRODUCCIÓN DE LOS PRODUCTOS NSK

Fotos de Productos NSK

APÉNDICES		
Tabla 1 del Apéndice	Conversión a partir del Sistema SI (Unidades Internacionales).	C 8~C
Tabla 2 del Apéndice	Tabla de Conversión de Fuerza N a kgf	C1
Tabla 3 del Apéndice	Tabla de Conversión de Masa kg a lb	C1
Tabla 4 del Apéndice	Tabla de Conversión de Temperaturas °C a °F	C1
Tabla 5 del Apéndice	Tabla de Conversión de Viscosidad	C1
Tabla 6 del Apéndice	Tabla de Conversión de Dimensiones pulgadas a mm	C14~C1
Tabla 7 del Apéndice	Tabla de Conversión de Dureza	C1
Tabla 8 del Apéndice	Propiedades Físicas y Mecánicas de los Materiales	C1
Tabla 9 del Apéndice	Tolerancias para los Diámetros del Eje	C18~C1
Tabla 10 del Apéndice	Tolerancias para los Diámetros Interiores del Alojamiento	C20~C2
Tabla 11 del Apéndice	Valores de los Grados de Tolerancia Estándar IT	C22~C2
Tabla 12 del Apéndice	Factor de Velocidad $f_{ m n}$	
Tabla 13 del Apéndice	Factor de Vida de Fatiga f_h y Vida de Fatiga $\mathit{L} \cdot \mathit{L}_h$	
Tabla 14 del Apéndice	Índice de Diseño en Pulgadas de Rodamientos de Rodillos Cónicos	C26~C3

PRODUCTOS PARA AUTOMOCIÓN

Columna de Dirección con Asistencia Eléctrica (CAT.Nº E4102)

Columna de Dirección con Asistencia Eléctrica de Tipo Piñón (CAT.№ E4102)

Columna de Dirección con Asistencia Eléctrica de Tipo Husillo (CAT.Nº E4102)

Rodamientos para Bombas de Agua de Larga Duración (CAT.Nº E396, E4102)

Rodamientos para Hubs de Ruedas (CAT.Nº E4201)

Embrague de Una Dirección (CAT.Nº E4102)

COMPONENTES DE PRECISIÓN PARA PARA MÁQUINA HERRAMIENTA

HUSILLOS DE BOLAS

Husillos Rectificados (CAT.Nº E3161)

Husillos Rectificados de Alta Velocidad y Bajo Ruido Serie BSS (CAT.Nº E3229)

Husillos Rectificados de Alta Velocidad con Tuerca Compacta Serie FA (CAT.Nº E3230)

Husillos Rectificados de Bajo Coste Serie VFA (CAT.Nº E3161)

Husillos Rectificados de Alta Capacidad de Carga y Rigidez Serie HTF (CAT.№ E3218)

Husillos Miniatura (CAT.Nº E3161)

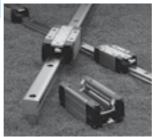
Husillos con Eje Hueco (CAT.Nº E3161)

Husillos Rectificados con Movimiento de Rotación y Traslación Serie ∑ ROBOTTE de NSK (CAT.№ E3161)

Husillos Laminados (CAT.Nº E3161)

MONOPOCARRIERS

Monocarriers (CAT.Nº E3161)



COMPONENTES DE PRECISIÓN PARA MÁQUINA HERRAMIENTA

GUÍAS LINEALES

Husillos de Bolas y Guías Lineales NSK Equipados con Unidad de Lubricación "NSK K1™n (CAT.Nº E3161)

Translide[™], Guía Laminada para Translación (CAT.Nº E3324)

Guías Lineales NSK Autoalineantes de la Serie LH · Serie LS (CAT.№ E3161)

Guías Lineales NSK en Miniatura de las Series PU y PE (CAT.Nº E3327)

Guía Lineal NSK de Rodillos Serie RA (CAT.Nº E3328)

Guía Lineal con separador de bolas Serie NSK S1[™] (CAT.Nº E3320)

CABEZALES

Husillos con Motor Integrados de Alta Velocidad

Husillos para Rectificadoras de Precisión (CAT.Nº E2202)

Puntos Giratorios (CAT.Nº E2202)

Unidad Lubricante de Aceite/Aire, Fine Lube (CAT.Nº E1254/A1387)

Cabezales de Precisión de Tipo Estándar (CAT.Nº E2202)


Husillos para Equipamiento Eléctrico

COMPONENTES DE PRECISIÓN PARA MÁQUINA HERRAMIENTA

ACTUADORES MECATRÓNICOS

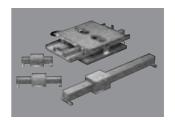
Motores Megatorque de la Serie PS (CAT.Nº E3510)

Módulos de Robot sin Motor

Motores Megatorque de la Serie YSB

Tablas XY

Motores Megatorque de la Serie RS


Motores Megathrust de la Serie Y

Motores Megathrust de la Serie PM

Deslizaderas de los Rodamientos de Aire

(CAT.Nº E3156)

CABEZALES POR AIRE

Cabezal por Aire

Suministrador de Aire Limpio

Cabezales de Aire DD

Stepper de Proximidad de Gran Tamaño de la Serie RZ

PRODUCTOS RELACIONADOS CON RODAMIENTOS

Calentador de Inducción para Rodamientos (CAT.Nº E398)

Embrague de Una Dirección

Embrague de Una Dirección (Tipo Package)

Monitor de Rodamientos Extra Pequeño NB-4 (Detector de Irregularidades en Rodamientos) (CAT.Nº E410)

Tabla 1 del Apéndice Tabla de Conversión a partir del Sistema ${\rm SI}$ (Unidades Internacionales)

Comparación de Unidades SI, CGS y de Ingeniería

Unidades Sistema de Unidades	Longitu	d Masa	Tiemp	o Temp.	Acel.	Fuerza	Tensión	Presión	Energía	Potencia
SI	m	kg	s	K, °C	m/s ²	N	Pa	Pa	J	W
Sistema CGS	cm	g	s	°C	Gal	dyn	dyn/cm ²	dyn/cm ²	erg	erg/s
Sistema de Unidades de Ingeniería	m	$kgf \cdot s^2/m$	s	°C	m/s ²	kgf	kgf/m ²	kgf/m ²	$kgf\cdot m$	$kgf\cdot m/s$

Factores de Conversión desde Unidades del SI

Parámetro	Unidades del SI	ſ	Unidades fuera de	Factores de Conversión	
Parametro	Nombres de Unidades	Símbolos	Nombre de Unidades	Símbolos	desde Unidades del SI
Ángulo	Radián	rad	Grado Minuto Segundo	o , ,,	180/π 10 800/π 648 000/π
Longitud	Metro	m	Micrón Angstrom	$_{\rm \mathring{A}}^{\mu}$	10 ⁶ 10 ¹⁰
Área	Metro cuadrado	m ²	Área Hectárea	a ha	10 ⁻² 10 ⁻⁴
Volumen	Metro cúbico	m ³	Litro Decilitro	l, L dl, dL	10 ³ 10 ⁴
Tiempo	Segundo	S	Minuto Hora Día	min h d	1/60 1/3 600 1/86 400
Frecuencia	Hercio	Hz	Ciclo	s^{-1}	1
Vel. de Rotación	Revoluciones por segundo	s ⁻¹	Revoluciones por minuto	rpm	60
Velocidad	Metros por segundo	m/s	Kilómetros por hora Nudo	km/h kn	3 600/1 000 3 600/1 852
Aceleración	Metros por segundo por segundo	m/s ²	Gal g	Gal G	10 ² 1/9.806 65
Masa	Kilogramo	kg	Tonelada	t	10 ⁻³
Fuerza	Newton	N	Kilogramo fuerza Tonelada fuerza Dina	kgf tf dyn	1/9.806 65 1/ (9.806 65×10 ³) 10 ⁵
Par o Momento	Newton · metro	N·m	Kilogramo fuerza metro	kgf⋅m	1/9.806 65
Tensión	Pascal	Pa (N/m²)	Kilogramo fuerza por centímetro cuadrado Kilogramo fuerza por milímetro cuadrado	kgf/cm ² kgf/mm ²	1/ (9.806 65×10 ⁴) 1/ (9.806 65×10 ⁶)

Prefijos Utilizados en el Sistema SI

Múltiplos	Prefijo	Símbolos	Múltiplos	Prefijo	Símbolos
$\begin{array}{c} 10^{18} \\ 10^{15} \\ 10^{12} \end{array}$	Exa	E	10 ⁻¹	Deci	d
	Peta	P	10 ⁻²	Centi	c
	Tera	T	10 ⁻³	Mili	m
10 ⁹	Giga	G	10 ⁻⁶	Micro	$\mu \\ n \\ p$
10 ⁶	Mega	M	10 ⁻⁹	Nano	
10 ³	Kilo	k	10 ⁻¹²	Pico	
$\frac{10^2}{10^1}$	Hecto	h	10 ⁻¹⁵	Femto	f
	Deca	da	10 ⁻¹⁸	Ato	a

Factores de Conversión desde Unidades del SI (Continúa)

Parámetro	Unidades del SI		Unidades fuera de	Factores de Conversión		
Parametro	Nombres de Unidades	Símbolos	Nombres de Unidades	Unidades	desde Unidades del SI	
Presión	Pascal (Newton por metro cuadrado)	Pa (N/m²)	Kilogramo fuerza por metro cuadrado Columna de Agua Columna de Mercurio Torr Bar Atmósfera	kgf/m ² mH ₂ O mmHg Torr bar atm	1/9.806 65 1/(9.806 65×10³) 760/(1.013 25×10⁵) 760/(1.013 25×10⁵) 10⁻⁵ 1/(1.013 25×10⁵)	
Energía	Joule (Newton · metro)	J (N·m)	Ergio Caloría (Internacional) Kilogramo fuerza metro Kilovatio hora Caballo fuerza hora	$\begin{array}{c} erg \\ cal_{TT} \\ kgf \cdot m \\ kW \cdot h \\ PS \cdot h \end{array}$	10 ⁷ 1/4.186 8 1/9.806 65 1/(3.6x10 ⁶) ≈ 3.776 72x10 ⁻⁷	
Trabajo	Vatio (Joule por segundo)	W (J/s)	Kilogramo fuerza metro por segundo Kilocaloría por hora Caballo fuerza	kgf·m/s kcal/h PS	1/9.806 65 1/1.163 ≈ 1/735.498 8	
Viscosidad, Índice de Visc	Pascal segundo	Pa·s	Poise	P	10	
Viscosidad Cinemática, Índice de Visc. Cinemática	Metro cuadrado por segundo	m²/s Centistokes	Stokes cSt	St 10 ⁶	10 ⁴	
Temperatura	Kelvin, grado Degree	K, °C	Grado	°C	(Consulte la nota (1))	
Corriente Eléctrica, Fuerza Magnetomotriz	Amperio	A	Amperio	A	1	
Voltaje, Fuerza Electromotriz	Volt	V	(Vatios por amperio)	(W/A)	1	
Int. del Campo Magnético	Amperio por metro	A/m	Oersted	Oe	$4\pi/10^3$	
Densidad del Flujo Magnético	Tesla	Т	Gaussio Gamma	Gs γ	10 ⁴ 10 ⁹	
Resistencia Eléctrica	Ohm	Ω	(Voltios por amperio)	(V/A)	1	

Nota (1) La conversión de T^K a θ °C es θ =T—273.15, pero para una diferencia de temperatura es ΔT = $\Delta \theta$. Sin embargo, ΔT y $\Delta \theta$ representan diferencias de temperatura medidas utilizando las escalas Kelvin y Celsius, respectivamente.

Observaciones Los nombres y símbolos entre (1) equivalen a los que se encuentran directamente encima o a su izquierda.

Ejemplo de conversión 1N=1/9.806 65kgf

Tabla 2 del Apéndice $\,$ Tabla de Conversión $\,N\text{-}kgf$

[Método de utilización de esta tabla]

Por ejemplo, para convertir 10N en kgf, lea la cifra de la columna kgf de la derecha, adyacente al n° 10 de la columna central del primer bloque. Vemos que 10N equivale a 1.0197 kgf. Para convertir 10 kgf en N, lea la cifra de la columna N de la izquierda de la misma fila, lo que nos muestra que la respuesta es 98.066N.

1 N=0.1019716 kgf 1 kgf=9.80665 N

					•		_			
N		kgf		N		kgf		N		kgf
9.8066 19.613 29.420 39.227 49.033	1 2 3 4 5	0.1020 0.2039 0.3059 0.4079 0.5099	-	333.43 343.23 353.04 362.85 372.65	34 35 36 37 38	3.4670 3.5690 3.6710 3.7729 3.8749	-	657.05 666.85 676.66 686.47 696.27	67 68 69 70 71	6.8321 6.9341 7.0360 7.1380 7.2400
58.840 68.647 78.453 88.260 98.066	6 7 8 9 10	0.6118 0.7138 0.8158 0.9177 1.0197		382.46 392.27 402.07 411.88 421.69	39 40 41 42 43	3.9769 4.0789 4.1808 4.2828 4.3848		706.08 715.89 725.69 735.50 745.31	72 73 74 75 76	7.3420 7.4439 7.5459 7.6479 7.7498
107.87 117.68 127.49 137.29 147.10	11 12 13 14 15	1.1217 1.2237 1.3256 1.4276 1.5296		431.49 441.30 451.11 460.91 470.72	44 45 46 47 48	4.4868 4.5887 4.6907 4.7927 4.8946		755.11 764.92 774.73 784.53 794.34	77 78 79 80 81	7.8518 7.9538 8.0558 8.1577 8.2597
156.91 166.71 176.52 186.33 196.13	16 17 18 19 20	1.6315 1.7335 1.8355 1.9375 2.0394		480.53 490.33 500.14 509.95 519.75	49 50 51 52 53	4.9966 5.0986 5.2006 5.3025 5.4045		804.15 813.95 823.76 833.57 843.37	82 83 84 85 86	8.3617 8.4636 8.5656 8.6676 8.7696
205.94 215.75 225.55 235.36 245.17	21 22 23 24 25	2.1414 2.2434 2.3453 2.4473 2.5493		529.56 539.37 549.17 558.98 568.79	54 55 56 57 58	5.5065 5.6084 5.7104 5.8124 5.9144		853.18 862.99 872.79 882.60 892.41	87 88 89 90 91	8.8715 8.9735 9.0755 9.1774 9.2794
254.97 264.78 274.59 284.39 294.20	26 27 28 29 30	2.6513 2.7532 2.8552 2.9572 3.0591		578.59 588.40 598.21 608.01 617.82	59 60 61 62 63	6.0163 6.1183 6.2203 6.3222 6.4242		902.21 912.02 921.83 931.63 941.44	92 93 94 95 96	9.3814 9.4834 9.5853 9.6873 9.7893
304.01 313.81 323.62	31 32 33	3.1611 3.2631 3.3651	_	627.63 637.43 647.24	64 65 66	6.5262 6.6282 6.7301	_	951.25 961.05 970.86	97 98 99	9.8912 9.9932 10.095

Tabla 3 del Apéndice Tabla de Conversión de kg a lb

[Método de utilización de esta tabla] Por ejemplo, para convertir 10 kg en lb, lea la cifra de la columna lb de la derecha, adyacente al nº 10 de la columna central del primer bloque. Vemos que 10 kg equivale a 22.046 lb. Para convertir 10 lb en kb, lea la cifra de la columna kg de la izquierda de la misma fila, lo que nos muestra que la respuesta es 4.536 kg.

1 kg=2.2046226 lb 1 lb=0.45359237 kg

kg		lb		kg		lb	kg		lb
0.454 0.907 1.361 1.814 2.268	1 2 3 4 5	2.205 4.409 6.614 8.818 11.023	-	15.422 15.876 16.329 16.783 17.237	34 35 36 37 38	74.957 77.162 79.366 81.571 83.776	30.391 30.844 31.298 31.751 32.205	67 68 69 70 71	147.71 149.91 152.12 154.32 156.53
2.722 3.175 3.629 4.082 4.536	6 7 8 9 10	13.228 15.432 17.637 19.842 22.046		17.690 18.144 18.597 19.051 19.504	39 40 41 42 43	85.980 88.185 90.390 92.594 94.799	32.659 33.112 33.566 34.019 34.473	72 73 74 75 76	158.73 160.94 163.14 165.35 167.55
4.990 5.443 5.897 6.350 6.804	11 12 13 14 15	24.251 26.455 28.660 30.865 33.069		19.958 20.412 20.865 21.319 21.772	44 45 46 47 48	97.003 99.208 101.41 103.62 105.82	34.927 35.380 35.834 36.287 36.741	77 78 79 80 81	169.76 171.96 174.17 176.37 178.57
7.257 7.711 8.165 8.618 9.072	16 17 18 19 20	35.274 37.479 39.683 41.888 44.092		22.226 22.680 23.133 23.587 24.040	49 50 51 52 53	108.03 110.23 112.44 114.64 116.84	37.195 37.648 38.102 38.555 39.009	82 83 84 85 86	180.78 182.98 185.19 187.39 189.60
9.525 9.979 10.433 10.886 11.340	21 22 23 24 25	46.297 48.502 50.706 52.911 55.116		24.494 24.948 25.401 25.855 26.308	54 55 56 57 58	119.05 121.25 123.46 125.66 127.87	39.463 39.916 40.370 40.823 41.277	87 88 89 90	191.80 194.01 196.21 198.42 200.62
11.793 12.247 12.701 13.154 13.608	26 27 28 29 30	57.320 59.525 61.729 63.934 66.139		26.762 27.216 27.669 28.123 28.576	59 60 61 62 63	130.07 132.28 134.48 136.69 138.89	41.730 42.184 42.638 43.091 43.545	92 93 94 95 96	202.83 205.03 207.23 209.44 211.64
14.061 14.515 14.969	31 32 33	68.343 70.548 72.753		29.030 29.484 29.937	64 65 66	141.10 143.30 145.51	43.998 44.452 44.906	97 98 99	213.85 216.05 218.26

Tabla 4 del Apéndice $\,$ Tabla de Conversión $\,^{\circ}C$ - $\,^{\circ}F$

[Método de utilización de esta tabla]

Por ejemplo, para convertir 38°C en °F, lea la cifra de la columna °F de la derecha, adyacente al nº 38 de la columna central del segundo bloque. Vemos que 38°C equivale a 100.4°F. Para convertir 38°F en °C, lea la cifra de la columna °C de la izquierda de la misma fila, lo que nos muestra que la respuesta es 3.3°C.

$$C = \frac{5}{9}(F - 32)$$
$$F = 32 + \frac{9}{5}C$$

°C		°F	°C		°F		°C		°F	°C		°F
-73.3 -62.2 -51.1 -40.0 -34.4	- 80 - 60 - 40	-148.0 -112.0 - 76.0 - 40.0 - 22.0	0.0 0.6 1.1 1.7 2.2	32 33 34 35 36	89.6 91.4 93.2 95.0 96.8	_	21.7 22.2 22.8 23.3 23.9	71 72 73 74 75	159.8 161.6 163.4 165.2 167.0	43.3 46.1 48.9 51.7 54.4	110 115 120 125 130	230 239 248 257 266
-28.9 -23.3 -17.8 -17.2 -16.7	- 20 - 10 0 1 2	- 4.0 14.0 32.0 33.8 35.6	2.8 3.3 3.9 4.4 5.0	37 38 39 40 41	98.6 100.4 102.2 104.0 105.8		24.4 25.0 25.6 26.1 26.7	76 77 78 79 80	168.8 170.6 172.4 174.2 176.0	57.2 60.0 65.6 71.1 76.7	135 140 150 160 170	275 284 302 320 338
-16.1 -15.6 -15.0 -14.4 -13.9	3 4 5 6 7	37.4 39.2 41.0 42.8 44.6	5.6 6.1 6.7 7.2 7.8	42 43 44 45 46	107.6 109.4 111.2 113.0 114.8		27.2 27.8 28.3 28.9 29.4	81 82 83 84 85	177.8 179.6 181.4 183.2 185.0	82.2 87.8 93.3 98.9 104.4	180 190 200 210 220	356 374 392 410 428
-13.3 -12.8 -12.2 -11.7 -11.1	8 9 10 11 12	46.4 48.2 50.0 51.8 53.6	8.3 8.9 9.4 10.0 10.6	47 48 49 50 51	116.6 118.4 120.2 122.0 123.8		30.0 30.6 31.1 31.7 32.2	86 87 88 89 90	186.8 188.6 190.4 192.2 194.0	110.0 115.6 121.1 148.9 176.7	230 240 250 300 350	446 464 482 572 662
-10.6 -10.0 - 9.4 - 8.9 - 8.3	13 14 15 16 17	55.4 57.2 59.0 60.8 62.6	11.1 11.7 12.2 12.8 13.3	52 53 54 55 56	125.6 127.4 129.2 131.0 132.8		32.8 33.3 33.9 34.4 35.0	91 92 93 94 95	195.8 197.6 199.4 201.2 203.0	204 232 260 288 316	400 450 500 550 600	752 842 932 1022 1112
- 7.8 - 7.2 - 6.7 - 6.1 - 5.6	18 19 20 21 22	64.4 66.2 68.0 69.8 71.6	13.9 14.4 15.0 15.6 16.1	57 58 59 60 61	134.6 136.4 138.2 140.0 141.8		35.6 36.1 36.7 37.2 37.8	96 97 98 99 100	204.8 206.6 208.4 210.2 212.0	343 371 399 427 454	650 700 750 800 850	1202 1292 1382 1472 1562
- 5.0 - 4.4 - 3.9 - 3.3 - 2.8	23 24 25 26 27	73.4 75.2 77.0 78.8 80.6	16.7 17.2 17.8 18.3 18.9	62 63 64 65 66	143.6 145.4 147.2 149.0 150.8		38.3 38.9 39.4 40.0 40.6	101 102 103 104 105	213.8 215.6 217.4 219.2 221.0	482 510 538 593 649	900 950 1000 1100 1200	1652 1742 1832 2012 2192
- 2.2 - 1.7 - 1.1 - 0.6	28 29 30 31	82.4 84.2 86.0 87.8	19.4 20.0 20.6 21.1	67 68 69 70	152.6 154.4 156.2 158.0		41.1 41.7 42.2 42.8	106 107 108 109	222.8 224.6 226.4 228.2	704 760 816 871	1300 1400 1500 1600	2372 2552 2732 2912

Tabla 5 del Apéndice Tabla de Conversión de Viscosidad

Viscosidad Cinemática	inemática SUS (se	ersal	Red	№ 1 wood seg.)	Engler E (grado)	Viscosidad Cinemática mm²/s –	Say Univ SUS		Tipo Redw R (s	/ood	Engler E (grado)
IIIII / S -	100°F	210°F	50°C	100°C		IIIII / S -	100°F	210°F	50°C	100°C	
2	32.6	32.8	30.8	31.2	1.14	35	163	164	144	147	4.70
3	36.0	36.3	33.3	33.7	1.22	36	168	170	148	151	4.83
4	39.1	39.4	35.9	36.5	1.31	37	172	173	153	155	4.96
5	42.3	42.6	38.5	39.1	1.40	38	177	178	156	159	5.08
6	45.5	45.8	41.1	41.7	1.48	39	181	183	160	164	5.21
7	48.7	49.0	43.7	44.3	1.56	40	186	187	164	168	5.34
8	52.0	52.4	46.3	47.0	1.65	41	190	192	168	172	5.47
9	55.4	55.8	49.1	50.0	1.75	42	195	196	172	176	5.59
10	58.8	59.2	52.1	52.9	1.84	43	199	201	176	180	5.72
11	62.3	62.7	55.1	56.0	1.93	44	204	205	180	185	5.85
12	65.9	66.4	58.2	59.1	2.02	45	208	210	184	189	5.98
13	69.6	70.1	61.4	62.3	2.12	46	213	215	188	193	6.11
14	73.4	73.9	64.7	65.6	2.22	47	218	219	193	197	6.24
15	77.2	77.7	68.0	69.1	2.32	48	222	224	197	202	6.37
16	81.1	81.7	71.5	72.6	2.43	49	227	228	201	206	6.50
17	85.1	85.7	75.0	76.1	2.54	50	231	233	205	210	6.63
18	89.2	89.8	78.6	79.7	2.64	55	254	256	225	231	7.24
19	93.3	94.0	82.1	83.6	2.76	60	277	279	245	252	7.90
20	97.5	98.2	85.8	87.4	2.87	65	300	302	266	273	8.55
21	102	102	89.5	91.3	2.98	70	323	326	286	294	9.21
22	106	107	93.3	95.1	3.10	75	346	349	306	315	9.89
23	110	111	97.1	98.9	3.22	80	371	373	326	336	10.5
24	115	115	101	103	3.34	85	394	397	347	357	11.2
25	119	120	105	107	3.46	90	417	420	367	378	11.8
26	123	124	109	111	3.58	95	440	443	387	399	12.5
27	128	129	112	115	3.70	100	464	467	408	420	13.2
28	132	133	116	119	3.82	120	556	560	490	504	15.8
29	137	138	120	123	3.95	140	649	653	571	588	18.4
30	141	142	124	127	4.07	160	742	747	653	672	21.1
31	145	146	128	131	4.20	180	834	840	734	757	23.7
32	150	150	132	135	4.32	200	927	933	816	841	26.3
33	154	155	136	139	4.45	250	1 159	1 167	1 020	1 051	32.9
34	159	160	140	143	4.57	300	1 391	1 400	1 224	1 241	39.5

Observaciones 1mm²/s=1cSt

Tabla 6 del Apéndice Tabla de Conversión pulgadas - mm 1″=25.4mm												
I	oulgada		0	1	2	3	4	5	6	7	8	9 10
Fracció	n Decimal						mm					
0 1/64 1/32 3/64	0.00000 0.015625 0.031250 0.046875	0.000 0.397 0.794 1.191	25.400 25.797 26.194 26.591	50.800 51.197 51.594 51.991	76.200 76.597 76.994 77.391	101.600 101.997 102.394 102.791	127.000 127.397 127.794 128.191	152.400 152.797 153.194 153.591	177.800 178.197 178.594 178.991	203.200 203.597 203.994 204.391	228.600 228.997 229.394 229.791	254.000 254.397 254.794 255.191
1/16 5/64 3/32 7/64	0.062500 0.078125 0.093750 0.109375	1.588 1.984 2.381 2.778	26.988 27.384 27.781 28.178	52.388 52.784 53.181 53.578	77.788 78.184 78.581 78.978	103.188 103.584 103.981 104.378	128.588 128.984 129.381 129.778	153.988 154.384 154.781 155.178	179.388 179.784 180.181 180.578	204.788 205.184 205.581 205.978	230.188 230.584 230.981 231.378	255.588 255.984 256.381 256.778
1/8 9/64 5/32 11/64	0.125000 0.140625 0.156250 0.171875	3.175 3.572 3.969 4.366	28.575 28.972 29.369 29.766	53.975 54.372 54.769 55.166	79.375 79.772 80.169 80.566	104.775 105.172 105.569 105.966	130.175 130.572 130.969 131.366	155.575 155.972 156.369 156.766	180.975 181.372 181.769 182.166	206.375 206.772 207.169 207.566	231.775 232.172 232.569 232.966	257.175 257.572 257.969 258.366
3/16 13/64 7/32 15/64	0.187500 0.203125 0.218750 0.234375	4.762 5.159 5.556 5.953	30.162 30.559 30.956 31.353	55.562 55.959 56.356 56.753	80.962 81.359 81.756 82.153	106.362 106.759 107.156 107.553	131.762 132.159 132.556 132.953	157.162 157.559 157.956 158.353	182.562 182.959 183.356 183.753	207.962 208.359 208.756 209.153	233.362 233.759 234.156 234.553	258.762 259.159 259.556 259.953
1/4 17/64 9/32 19/64	0.250000 0.265625 0.281250 0.296875	6.350 6.747 7.144 7.541	31.750 32.147 32.544 32.941	57.150 57.547 57.944 58.341	82.550 82.947 83.344 83.741	107.950 108.347 108.744 109.141	133.350 133.747 134.144 134.541	158.750 159.147 159.544 159.941	184.150 184.547 184.944 185.341	209.550 209.947 210.344 210.741	234.950 235.347 235.744 236.141	260.350 260.747 261.144 261.541
5/16 21/64 11/32 23/64	0.312500 0.328125 0.343750 0.359375	7.938 8.334 8.731 9.128	33.338 33.734 34.131 34.528	58.738 59.134 59.531 59.928	84.138 84.534 84.931 85.328	109.538 109.934 110.331 110.728	134.938 135.334 135.731 136.128	160.338 160.734 161.131 161.528	185.738 186.134 186.531 186.928	211.138 211.534 211.931 212.328	236.538 236.934 237.331 237.728	261.938 262.334 262.731 263.128
3/8 25/64 13/32 27/64	0.375000 0.390625 0.406250 0.421875	9.525 9.922 10.319 10.716	34.925 35.322 35.719 36.116	60.325 60.722 61.119 61.516	87.725 86.122 86.519 86.916	111.125 111.522 111.919 112.316	136.525 136.922 137.319 137.716	161.925 162.322 162.719 163.116	187.325 187.722 188.119 188.516	212.725 213.122 213.519 213.916	238.125 238.522 238.919 239.316	263.525 263.922 264.319 264.716
7/16 29/64 15/32 31/64	0.437500 0.453125 0.468750 0.484375	11.112 11.509 11.906 12.303	36.512 36.909 37.306 37.703	61.912 62.309 62.706 63.103	87.312 87.709 88.106 88.503	112.712 113.109 113.506 113.903	138.112 138.509 138.906 139.303	163.512 163.909 164.306 164.703	188.912 189.309 189.706 190.103	214.312 214.709 215.106 215.503	239.712 240.109 240.506 240.903	265.112 265.509 265.906 266.303
1/2 33/64 17/32 35/64	0.500000 0.515625 0.531250 0.546875	12.700 13.097 13.494 13.891	38.100 38.497 38.894 39.291	63.500 63.897 64.294 64.691	88.900 89.297 89.694 90.091	114.300 114.697 115.094 115.491	139.700 140.097 140.494 140.891	165.100 165.497 165.894 166.291	190.500 190.897 191.294 191.691	215.900 216.297 216.694 217.091	241.300 241.697 242.094 242.491	266.700 267.097 267.494 267.891
9/16 37/64 19/32 39/64	0.562500 0.578125 0.593750 0.609375	14.288 14.684 15.081 15.478	39.688 40.084 40.481 40.878	65.088 65.484 65.881 66.278	90.488 90.884 91.281 91.678	115.888 116.284 116.681 117.078	141.288 141.684 142.081 142.478	166.688 167.084 167.481 167.878	192.088 192.484 192.881 193.278	217.488 217.884 218.281 218.678	242.888 243.284 243.681 244.078	268.288 268.684 269.081 269.478
5/8 41/64 21/32 43/64	0.625000 0.640625 0.656250 0.671875	15.875 16.272 16.669 17.066	41.275 41.672 42.069 42.466	66.675 67.072 67.469 67.866	92.075 92.472 92.869 93.266	117.475 117.872 118.269 118.666	142.875 143.272 143.669 144.066	168.275 168.672 169.069 169.466	193.675 194.072 194.469 194.866	219.075 219.472 219.869 220.266	244.475 244.872 245.269 245.666	269.875 270.272 270.669 271.066
11/16 45/64 23/32 47/64	0.687500 0.703125 0.718750 0.734375	17.462 17.859 18.256 18.653	42.862 43.259 43.656 44.053	68.262 68.659 69.056 69.453	93.662 94.059 94.456 94.853	119.062 119.459 119.856 120.253	144.462 144.859 145.256 145.653	169.862 170.259 170.656 171.053	195.262 195.659 196.056 196.453	220.662 221.059 221.456 221.853	246.062 246.459 246.856 247.253	271.462 271.859 272.256 272.653
3/4 49/64 25/32 51/64	0.750000 0.765625 0.781250 0.796875	19.050 19.447 19.844 20.241	44.450 44.847 45.244 45.641	69.850 70.247 70.644 71.041	95.250 95.647 96.044 96.441	120.650 121.047 121.444 121.841	146.050 146.447 146.844 147.241	171.450 171.847 172.244 172.641	196.850 197.247 197.644 198.041	222.250 222.647 223.044 223.441	247.650 248.047 248.444 248.841	273.050 273.447 273.844 274.241
13/16 53/64 27/32 55/64	0.812500 0.828125 0.843750 0.859375	20.638 21.034 21.431 21.828	46.038 46.434 46.831 47.228	71.438 71.834 72.231 72.628	96.838 97.234 97.631 98.028	122.238 122.634 123.031 123.428	147.638 148.034 148.431 148.828	173.038 173.434 173.831 174.228	198.438 198.834 199.231 199.628	223.838 224.234 224.631 225.028	249.238 249.634 250.031 250.428	274.638 275.034 275.431 275.828
7/8 57/64 29/32 59/64	0.875000 0.890625 0.906250 0.921875	22.225 22.622 23.019 23.416	47.625 48.022 48.419 48.816	73.025 73.422 73.819 74.216	98.425 98.822 99.219 99.616	123.825 124.222 124.619 125.016	149.225 149.622 150.019 150.416	174.625 175.022 175.419 175.816	200.025 200.422 200.819 201.216	225.425 225.822 226.219 226.616	250.825 251.222 251.619 252.016	276.225 276.622 277.019 277.416
15/16 61/64 31/32 63/64	0.937500 0.953125 0.968750 0.984375	23.812 24.209 24.606 25.003	49.212 49.609 50.006 50.403	74.612 75.009 75.406 75.803	100.012 100.409 100.806 101.203	125.412 125.809 126.206 126.603	150.812 151.209 151.606 152.003	176.212 176.609 177.006 177.403	201.612 202.009 202.406 202.803	227.012 227.409 227.806 228.203	252.412 252.809 253.206 253.603	277.812 278.209 278.606 279.003

1'' = 25.4mm

	1″=25.									.4mm
pulgada		11	12	13	14	15	16	17	18	19 20
Fracción Decimal			<u> </u>		m	m				
0 0.0000 1/16 0.0625 1/8 0.1250 3/16 0.1875	279.400 280.988 282.575 284.162	304.800 306.388 307.975 309.562	330.200 331.788 333.375 334.962	355.600 357.188 358.775 360.362	381.000 382.588 384.175 385.762	406.400 407.988 409.575 411.162	431.800 433.388 434.975 436.562	457.200 458.788 460.375 461.962	482.600 484.188 485.775 487.362	508.000 509.588 511.175 512.762
1/4 0.2500 5/16 0.3125 3/8 0.3750 7/16 0.4375	285.750 287.338 288.925 290.512	311.150 312.738 314.325 315.912	336.550 338.138 339.725 341.312	361.950 363.538 365.125 366.712	387.350 388.938 390.525 392.112	412.750 414.338 415.925 417.512	438.150 439.738 441.325 442.912	463.550 465.138 466.725 468.312	488.950 490.538 492.125 493.712	514.350 515.938 517.525 519.112
1/2 0.5000 9/16 0.5625 5/8 0.6250 11/16 0.6875	292.100 293.688 295.275 296.862	317.500 319.088 320.675 322.262	342.900 344.488 346.075 347.662	368.300 369.888 371.475 373.062	393.700 395.288 396.875 398.462	419.100 420.688 422.275 423.862	444.500 446.088 447.675 449.262	469.900 471.488 473.075 474.662	495.300 496.888 498.475 500.062	520.700 522.288 523.875 525.462
3/4 0.7500 13/16 0.8125 7/8 0.8750 15/16 0.9375	298.450 300.038 301.625 303.212	323.850 325.438 327.025 328.612	349.250 350.838 352.425 354.012	374.650 376.238 377.825 379.412	400.050 401.638 403.225 404.812	425.450 427.038 428.625 430.212	450.850 452.438 454.025 455.612	476.250 477.838 479.425 481.012	501.650 503.238 504.825 506.412	527.050 528.638 530.225 531.812
										.4mm
pulgada		21	22	23	24	25	26	27	28	29 30
Fracción Decimal		'	'	'	m	m			'	
0 0.0000 1/16 0.0625 1/8 0.1250 3/16 0.1875	533.400 534.988 536.575 538.162	558.800 560.388 561.975 563.562	584.200 585.788 587.375 588.962	609.600 611.188 612.775 614.362	635.000 636.588 638.175 639.762	660.400 661.988 663.575 665.162	685.800 687.388 688.975 690.562	711.200 712.788 714.375 715.962	736.600 738.188 739.775 741.362	762.000 763.588 765.175 766.762
1/4 0.2500 5/16 0.3125 3/8 0.3750 7/16 0.4375	539.750 541.338 542.925 544.512	565.150 566.738 568.325 569.912	590.550 592.138 593.725 595.312	615.950 617.538 619.125 620.712	641.350 642.938 644.525 646.112	666.750 668.338 669.925 671.512	692.150 693.738 695.325 696.912	717.550 719.138 720.725 722.312	742.950 744.538 746.125 747.712	768.350 769.938 771.525 773.112
1/2 0.5000 9/16 0.5625 5/8 0.6250 11/16 0.6875	546.100 547.688 549.275 550.862	571.500 573.088 574.675 576.262	596.900 598.488 600.075 601.662	622.300 623.888 625.475 627.062	647.700 649.288 650.875 652.462	673.100 674.688 676.275 677.862	698.500 700.088 701.675 703.262	723.900 725.488 727.075 728.662	749.300 750.888 752.475 754.062	774.700 776.288 777.875 779.462
3/4 0.7500 13/16 0.8125 7/8 0.8750 15/16 0.9375	552.450 554.038 555.625 557.212	577.850 579.438 581.025 582.612	603.250 604.838 606.425 608.012	628.650 630.238 631.825 633.412	654.050 655.638 657.225 658.812	679.450 681.038 682.625 684.212	704.850 706.438 708.025 709.612	730.250 731.838 733.425 735.012	755.650 757.238 758.825 760.412	781.050 782.638 784.225 785.812
									1″=25	.4mm
pulgada		31	32	33	34	35	36	37	38	39 40
Fracción Decimal					m	m				
0 0.0000 1/16 0.0625 1/8 0.1250 3/16 0.1875	787.400 788.988 790.575 792.162	812.800 814.388 815.975 817.562	838.200 839.788 841.375 842.962	863.600 865.188 866.775 868.362	889.000 890.588 892.175 893.762	914.400 915.988 917.575 919.162	939.800 941.388 942.975 944.562	965.200 966.788 968.375 969.962	990.600 992.188 993.775 995.362	1016.000 1017.588 1019.175 1020.762
1/4 0.2500 5/16 0.3125 3/8 0.3750 7/16 0.4375	793.750 795.338 796.925 798.512	819.150 820.738 822.325 823.912	844.550 846.138 847.725 849.312	869.950 871.538 873.125 874.712	895.350 896.938 898.525 900.112	920.750 922.338 923.925 925.512	946.150 947.738 949.325 950.912	971.550 973.138 974.725 976.312	996.950 998.538 1000.125 1001.712	1022.350 1023.938 1025.525 1027.112
1/2 0.5000 9/16 0.5625 5/8 0.6250 11/16 0.6875	800.100 801.688 803.275 804.862	825.500 827.088 828.675 830.262	850.900 852.488 854.075 855.662	876.300 877.888 879.475 881.062	901.700 903.288 904.875 906.462	927.100 928.688 930.275 931.862	952.500 954.088 955.675 957.262	977.900 979.488 981.075 982.662	1003.300 1004.888 1006.475 1008.062	1028.700 1030.288 1031.875 1033.462
3/4 0.7500 13/16 0.8125 7/8 0.8750 15/16 0.9375	806.450 808.038 809.625 811.212	831.850 833.438 835.025 836.612	857.250 858.838 860.425 862.012	882.650 884.238 885.825 887.412	908.050 909.638 911.225 912.812	933.450 935.038 936.625 938.212	958.850 960.438 962.025 963.621	984.250 985.838 987.425 989.012	1009.650 1011.238 1012.825 1014.412	1035.050 1036.638 1038.225 1039.812

Tabla 7 del Apéndice Tabla de Conversión de Dureza (Referencia)

	-					
Escala C de Dureza Rockwell (1 471N) {150kgf}	Dureza Vickers	Dureza Bola Estándar Carburizado	Brinell Bola de Tungsteno	Dureza Escala A Carga ^{588.4} N {60kgf} Indentador Brale	Rockwell Escala B Carga ^{980.7N} {100kgf} 1.588mm _{Bola} (1/16in)	Dureza Shore
68 67 66 65 64	940 900 865 832 800	_ _ _ _	— — 739 722	85.6 85.0 84.5 83.9 83.4	 	97 95 92 91 88
63 62 61 60 59	772 746 720 697 674		705 688 670 654 634	82.8 82.3 81.8 81.2 80.7		87 85 83 81 80
58 57 56 55 54	653 633 613 595 577		615 595 577 560 543	80.1 79.6 79.0 78.5 78.0		78 76 75 74 72
53 52 51 50 49	560 544 528 513 498	500 487 475 464	525 512 496 481 469	77.4 76.8 76.3 75.9 75.2		71 69 68 67 66
48 47 46 45 44	484 471 458 446 434	451 442 432 421 409	455 443 432 421 409	74.7 74.1 73.6 73.1 72.5		64 63 62 60 58
43 42 41 40 39	423 412 402 392 382	400 390 381 371 362	400 390 381 371 362	72.0 71.5 70.9 70.4 69.9		57 56 55 54 52
38 37 36 35 34	372 363 354 345 336	353 344 336 327 319	353 344 336 327 319	69.4 68.9 68.4 67.9 67.4	(109.0) (108.5) (108.0)	51 50 49 48 47
33 32 31 30 29	327 318 310 302 294	311 301 294 286 279	311 301 294 286 279	66.8 66.3 65.8 65.3 64.7	(107.5) (107.0) (106.0) (105.5) (104.5)	46 44 43 42 41
28 27 26 25 24	286 279 272 266 260	271 264 258 253 247	271 264 258 253 247	64.3 63.8 63.3 62.8 62.4	(104.0) (103.0) (102.5) (101.5) (101.0)	41 40 38 38 37
23 22 21 20	254 248 243 238	243 237 231 226	243 237 231 226	62.0 61.5 61.0 60.5	100.0 99.0 98.5 97.8	36 35 35 34
(18) (16) (14) (12)	230 222 213 204	219 212 203 194	219 212 203 194	_ _ _	96.7 95.5 93.9 92.3	33 32 31 29
(10) (8) (6) (4) (2) (0)	196 188 180 173 166 160	187 179 171 165 158 152	187 179 171 165 158 152	_ _ _ _	90.7 89.5 87.1 85.5 83.5 81.7	28 27 26 25 24 24

Tabla 8 del Apéndice Propiedades Físicas y Mecánicas de los Materiales

Materiales	Gravedad Específica	Coeficiente de Expansión Lineal (0°∼100°C)	Dureza (Brinell)	Módulo de Elasticidad Lineal (MPa) {kgf/mm²}	Resistencia a la Tracción (MPa) {kgf/mm²}	Punto de Fluencia (MPa) {kgf/mm²}	Elongación (%)
Acero para Rod. (endurecido)	7.83	12.5×10 ⁻⁶	650~740	208 000 {21 200}	1 570~1 960 {160~200}	_	_
Acero Inoxidable Martensítico SUS 440C	7.68	10.1×10 ⁻⁶	580	200 000 {20 400}	1 960 {200}	1 860 {190}	_
Acero Duice (C=0.12~0.20%)	7.86	11.6×10 ⁻⁶	100~130	206 000 {21 000}	373~471 {38~48}	216~294 {22~30}	24~36
Acero Duro (C=0.3~0.5%)	7.84	11.3×10 ⁻⁶	160~200	206 000 {21 000}	539~686 {55~70}	333~451 {34~46}	14~26
Acero Inoxidable Austenítico SUS 304	8.03	16.3×10 ⁻⁶	150	193 000 {19 700}	588 {60}	245 {25}	60
Hierro Gris FC200 Hierro Fundido	7.3	10.4×10 ⁻⁶	223	98 100	Más de 200 {20}	_	
Hierro de Grafito Esferoidal FCD400	7.0	11.7×10 ⁻⁶	Menos de 201	{10 000}	Más de 400 {41}	_	Más de 12
Aluminio	2.69	23.7×10 ⁻⁶	15~26	70 600 {7 200}	78 {8}	34 {3.5}	35
Zinc	7.14	31×10 ⁻⁶	30~60	92 200 {9 400}	147 {15}	_	30~40
Cobre	8.93	16.2×10 ⁻⁶	50	123 000 {12 500}	196 {20}	69 {7}	15~20
(Templado) Latón (Mecanizado)	8.5	19.1×10 ⁻⁶	45 85~130	103 000 {10 500}	294~343 (30~35) 363~539 (37~55)	_	65~75 15~50

Observaciones

La dureza del acero endurecido para rodamientos y del acero inoxidable martensítico se expresa normalmente utilizando la Escala C de Rockwell, pero para establecer comparaciones se convierte a dureza Brinell.

Tabla 9 del Apéndice Tolerancias

Diámetr	ación del ro (mm)	Desviación del Diámetro Interior Medio en un Solo Plano (Normal)	d6	e6	f6	g5	g6	h5	h6	h7	h8	h9	h10	js5	js6
mas de	nasta 6	Δ _{dmp}	- 30	- 20	- 10	- 4	- 4 - 12	0	0	0	0	0	0	± 2.5	± 4
6	10	- 8 - 8	- 38 - 40 - 49	- 28 - 25 - 34	- 18 - 13 - 22	- 9 - 5 - 11	- 12 - 5 - 14	- 5 0 - 6	- 8 - 9	- 12 0 - 15	- 18 0 - 22	- 30 - 36	- 48 0 - 58	± 3	± 4.5
10	18	0 - 8	- 50 - 61	- 32 - 43	- 16 - 27	- 6 - 14	- 6 - 17	0 - 8	0 -11	0 - 18	0 - 27	0 - 43	0 - 70	± 4	± 5.5
18	30	0 - 10	- 65 - 78	- 40 - 53	- 20 - 33	- 7 - 16	- 7 - 20	0 - 9	0 -13	0 - 21	_ 0 _ 33	0 - 52	0 - 84	± 4.5	± 6.5
30	50	0 - 12	- 80 - 96	- 50 - 66	- 25 - 41	- 9 - 20	- 9 - 25	0 -11	0 -16	0 - 25	- 39	0 - 62	0 -100	± 5.5	± 8
50	80	0 - 15	-100 -119	- 60 - 79	- 30 - 49	- 10 - 23	- 10 - 29	0 -13	0 - 19	- 30	- 46	0 - 74	0 -120	± 6.5	± 9.5
80	120	_ 0 _ 20	-120 -142	- 72 - 94	- 36 - 58	- 12 - 27	- 12 - 34	0 -15	0 -22	- 35	0 - 54	- 87	0 140	± 7.5	± 11
120	180	0 - 25	-145 -170	- 85 -110	- 43 - 68	- 14 - 32	- 14 - 39	0 -18	0 -25	- ⁰	- 63	0 100	0 -160	± 9	± 12.5
180	250	0 - 30	-170 -199	-100 -129	- 50 - 79	- 15 - 35	- 15 - 44	0 -20	0 -29	- 46	- ⁰	0 -115	0 -185	± 10	± 14.5
250	315	0 - 35	-190 -222	-110 -142	- 56 - 88	- 17 - 40	- 17 - 49	0 -23	0 -32	0 - 52	0 - 81	0 -130	0 -210	± 11.5	± 16
315	400	0 - 40	-210 -246	-125 -161	- 62 - 98	- 18 - 43	- 18 - 54	0 -25	0 -36	0 - 57	0 - 89	0 140	0 -230	± 12.5	± 18
400	500	0 - 45	-230 -270	135 175	- 68 -108	- 20 - 47	- 20 - 60	0 -27	0 -40	0 - 63	- 97	0 -155	0 -250	± 13.5	± 20
500	630	0 - 50	-260 -304	145 189	- 76 -120	_	- 22 - 66	_	0 -44	- ⁰	0 110	0 175	0 -280	_	± 22
630	800	0 - 75	-290 -340	-160 -210	- 80 -130	_	- 24 - 74	_	0 -50	- 80	0 -125	0 -200	0 -320	_	± 25
800	1 000	0 -100	-320 -376	-170 -226	- 86 -142	_	- 26 - 82	_	0 - 56	- ⁰	0 -140	0 -230	0 -360	_	± 28
1 000	1 250	0 125	-350 -416	195 261	- 98 -164	_	- 28 - 94	_	0 66	0 -105	0 -165	0 -260	0 -420	_	± 33
1 250	1 600	0 160	-390 -468	-220 -298	-110 -188	_	- 30 -108	_	0 -78	0 -125	0 195	0 -310	0 -500	_	± 39
1 600	2 000	0 -200	-430 -522	-240 -332	-120 -212	_	- 32 -124	_	0 -92	0 150	0 -230	0 -370	0 -600	_	± 46

para los Diámetros del Eje

Unidades : μm

												Clasifica	
j5	j6	j7	k5	k6	k7	m5	m6	n6	р6	r6	r7	Diámetr más de	hasta
- 3 - 2	- 6 - 2	- 8 - 4	+ 6 + 1	+ 9 + 1	+ 13 + 1	+ 9 + 4	+ 12 + 4	+ 16 + 8	+ 20 + 12	+ 23 + 15	+ 27 + 15	3	6
+ 4	+ 7 - 2	+ 10 - 5	+ 7 + 1	+ 10 + 1	+ 16 + 1	+ 12 + 6	+ 15 + 6	+ 19 + 10	+ 24 + 15	+ 28 + 19	+ 34 + 19	6	10
+ 5	+ 8 - 3	+ 12 - 6	+ 9 + 1	+ 12 + 1	+ 19 + 1	+ 15 + 7	+ 18 + 7	+ 23 + 12	+ 29 + 18	+ 34 + 23	+ 41 + 23	10	18
+ 5 - 4	+ 9 - 4	+ 13 - 8	+ 11 + 2	+ 15 + 2	+ 23 + 2	+ 17 + 8	+ 21 + 8	+ 28 + 15	+ 35 + 22	+ 41 + 28	+ 49 + 28	18	30
+ 6 - 5	+ 11 - 5	+ 15 — 10	+ 13 + 2	+ 18 + 2	+ 27 + 2	+ 20 + 9	+ 25 + 9	+ 33 + 17	+ 42 + 26	+ 50 + 34	+ 59 + 34	30	50
+ 6	+ 12	+ 18	+ 15	+ 21	+ 32	+ 24	+ 30	+ 39	+ 51	+ 60 + 41	+ 71 + 41	50	65
- 7	- 7	-12	+ 2	+ 2	+ 2	+ 11	+ 11	+ 20	+ 32	+ 62 + 43	+ 73 + 43	65	80
+ 6	+ 13	+ 20	+ 18	+ 25	+ 38	+ 28	+ 35	+ 45	+ 59	+ 73 + 51	+ 86 + 51	80	100
- 9	– 9	–15	+ 3	+ 3	+ 3	+ 13	+ 13	+ 23	+ 37	+ 76 + 54	+ 89 + 54	100	120
+ 7	+ 14	+ 22	+ 21	+ 28	. 42	+ 33	+ 40	+ 52	+ 68	+ 88 + 63 + 90	+ 103 + 63 + 105	120	140
+ 7 -11	- 11	- 18	+ 3	+ 3	+ 43 + 3	+ 15	+ 40 + 15	+ 52 + 27	+ 68 + 43	+ 90 + 65 + 93	+ 65 + 108	140	160
										+ 68	+ 68	160	180
+ 7	+ 16	+ 25	+ 24	+ 33	+ 50	+ 37	+ 46	+ 60	+ 79	+ 77	+ 77 + 126	180	200
-13	-13	-21	+ 4	+ 4	+ 4	+ 17	+ 17	+ 31	+ 50	+ 80 + 113	+ 80 + 130	200	225 250
. 7			. 07	. 20		. 40			. 00	+ 84	+ 84	250	280
+ 7 -16	± 16	± 26	+ 27 + 4	+ 36 + 4	+ 56 + 4	+ 43 + 20	+ 52 + 20	+ 66 + 34	+ 88 + 56	+ 94 + 130 + 98	+ 94 + 150 + 98	280	315
+ 7	± 18	+ 29	+ 29	+ 40	+ 61	+ 46	+ 57	+ 73	+ 98	+ 144 + 108	+ 165 + 108	315	355
-18	± 10	-28	+ 4	+ 4	+ 4	+ 21	+ 21	+ 37	+ 62	+ 150 + 114	+ 171 + 114	355	400
+ 7	± 20	+ 31	+ 32	+ 45	+ 68	+ 50	+ 63	+ 80	+ 108	+ 166 + 126 + 172	+ 189 + 126	400	450
-20		-32	+ 5	+ 5	+ 5	+ 23	+ 23	+ 40	+ 68	+ 132	+ 195 + 132	450	500
_	_	_	_	+ 44	+ 70 0	_	+ 70 + 26	+ 88 + 44	+ 122 + 78	+ 194 + 150 + 199	+ 220 + 150 + 225	500	560
							- 20		1 70	+ 155	+ 155 + 255	560	630
_	_	_	_	+ 50 0	+ 80	_	+ 80 + 30	+ 100 + 50	+ 138 + 88	+ 175	+ 175 + 265	630 710	710
										+ 185 + 266	+ 185 + 300	800	900
_	_	_	_	+ 56 0	+ 90	_	+ 90 + 34	+ 112 + 56	+ 156 + 100	+ 210 + 276	+ 210 + 310 + 220	900	1 000
				+ 66	+ 105		+ 106	+ 132	+ 186	+ 220 + 316 + 250	+ 220 + 355 + 250	1 000	1 120
_	_	_	_	0 +	0	_	+ 40	+ 66	+ 120	+ 326 + 260	+ 365 + 260	1 120	1 250
				+ 78	+ 125		+ 126	+ 156	+ 218	+ 378 + 300	+ 425 + 300	1 250	1 400
	_	_		0	0		+ 48	+ 78	+ 140	+ 408 + 330	+ 455 + 330	1 400	1 600
	_	_	_	+ 92	+ 150	_	+ 150	+ 184	+ 262	+ 462 + 370	+ 520 + 370	1 600	1 800
				0	0		+ 58	+ 92	+ 170	+ 492 + 400	+ 550 + 400	1 800	2 000

Tabla 10 del Apéndice

Clasifica Diámet más de	ación del ro (mm) hasta	Desviación del Diámetro Interior Medio en un Solo Plano (Normal) AD _{mp}	E6	F6	F7	G6	G7	Н6	Н7	Н8	J6	J7	JS6	JS7
10	18	Δ _{Dmp} 0 - 8	+ 43 + 32	+ 27 + 16	+ 34 + 16	+ 17 + 6	+ 24 + 6	+ 11	+ 18	+ 27	+ 6 - 5	+ 10 — 8	± 5.5	± 9
18	30	- 9	+ 53 + 40	+ 33 + 20	+ 41 + 20	+ 20 + 7	+ 28 + 7	+ 13	+ 21	+ 33	+ 8 - 5	+ 12 — 9	± 6.5	± 10.5
30	50	0 - 11	+ 66 + 50	+ 41 + 25	+ 50 + 25	+ 25 + 9	+ 34 + 9	+ 16	+ 25	+ 39		+ 14 11	± 8	± 12.5
50	80	0 - 13	+ 79 + 60	+ 49 + 30	+ 60 + 30	+ 29 + 10	+ 40 + 10	+ 19	+ 30	+ 46		+ 18 12	± 9.5	± 15
80	120	0 - 15	+ 94 + 72	+ 58 + 36	+ 71 + 36	+ 34 + 12	+ 47 + 12	+ 22	+ 35 0	+ 54		+ 22 — 13	± 11	± 17.5
120 150	150 180	0 - 18 0 - 25	+ 110 + 85	+ 68 + 43	+ 83 + 43	+ 39 + 14	+ 54 + 14	+ 25 0	+ 40	+ 63		+ 26 — 14	± 12.5	± 20
180	250	0 - 30	+ 129 + 100	+ 79 + 50	+ 96 + 50	+ 44 + 15	+ 61 + 15	+ 29 0	+ 46	+ 72		+ 30 — 16	± 14.5	± 23
250	315	0 - 35	+ 142 + 110	+ 88 + 56	+ 108 + 56	+ 49 + 17	+ 69 + 17	+ 32	+ 52	+ 81		+ 36 — 16	± 16	± 26
315	400	0 - 40	+ 161 + 125	+ 98 + 62	+ 119 + 62	+ 54 + 18	+ 75 + 18	+ 36	+ 57 0	+ 89		+ 39 — 18	± 18	± 28.5
400	500	0 - 45	+ 175 + 135	+ 108 + 68	+ 131 + 68	+ 60 + 20	+ 83 + 20	+ 40	+ 63	+ 97		+ 43 - 20	± 20	± 31.5
500	630	0 - 50	+ 189 + 145	+ 120 + 76	+ 146 + 76	+ 66 + 22	+ 92 + 22	+ 44	+ 70 0	+ 110	_	_	± 22	± 35
630	800	0 - 75	+ 210 + 160	+ 130 + 80	+ 160 + 80	+ 74 + 24	+ 104 + 24	+ 50 0	+ 80	+ 125 0	_	_	± 25	± 40
800	1 000	0 -100	+ 226 + 170	+ 142 + 86	+ 176 + 86	+ 82 + 26	+ 116 + 26	+ 56 0	+ 90	+ 140	_	_	± 28	± 45
1 000	1 250	0 125	+ 261 + 195	+ 164 + 98	+ 203 + 98	+ 94 + 28	+ 133 + 28	+ 66	+ 105 0	+ 165 0	_	_	± 33	± 52.5
1 250	1 600	0 160	+ 298 + 220	+ 188 + 110	+ 235 + 110	+ 108 + 30	+ 155 + 30	+ 78 0	+ 125 0	+ 195 0	_	_	± 39	± 62.5
1 600	2 000	0 -200	+ 332 + 240	+ 212 + 120	+ 270 + 120	+ 124 + 32	+ 182 + 32	+ 92 0	+ 150 0	+ 230 0	_	_	± 46	± 75
2 000	2 500	0 250	+ 370 + 260	+ 240 + 130	+ 305 + 130	+ 144 + 34	+ 209 + 34	+ 110 0	+ 175 0	+ 280 0	_	_	± 55	± 87.5

Tolerancias para los Diámetros Interiores del Alojamiento

Unidades : μm

K5	K6	K7	M5	M6	M7	N5	N6	N7	P6	P7	Clasifica Diámetr más de	
+ 2 - 6	+ 2 - 9	+ 6 - 12	- 4 -12	- 4 - 15	0 - 18	- 9 -17	- 9 - 20	- 5 - 23	- 15 - 26	- 11 - 29	10	18
+ 1 - 8	+ 2 - 11	+ 6 - 15	- 5 -14	- 4 - 17	0 - 21	-12 -21	- 11 - 24	- 7 - 28	- 18 - 31	- 14 - 35	18	30
+ 2 - 9	+ 3 - 13	+ 7 - 18	- 5 -16	- 4 - 20	0 - 25	-13 -24	- 12 - 28	- 8 - 33	- 21 - 37	- 17 - 42	30	50
+ 3 -10	+ 4 - 15	+ 9 - 21	- 6 -19	- 5 - 24	- 30	-15 -28	- 14 - 33	- 9 - 39	- 26 - 45	- 21 - 51	50	80
+ 2 -13	+ 4 - 18	+ 10 - 25	- 8 -23	- 6 - 28	0 - 35	-18 -33	- 16 - 38	- 10 - 45	- 30 - 52	- 24 - 59	80	120
+ 3 -15	+ 4 - 21	+ 12 - 28	- 9 -27	- 8 - 33	0 - 40	-21 -39	- 20 - 45	- 12 - 52	- 36 - 61	- 28 - 68	120	180
+ 2 -18	+ 5 - 24	+ 13 - 33	-11 -31	- 8 - 37	0 - 46	-25 -45	- 22 - 51	- 14 - 60	- 41 - 70	- 33 - 79	180	250
+ 3 -20	+ 5 - 27	+ 16 - 36	-13 -36	- 9 - 41	0 - 52	-27 -50	- 25 - 57	- 14 - 66	- 47 - 79	- 36 - 88	250	315
+ 3 -22	+ 7 - 29	+ 17 - 40	-14 -39	- 10 - 46	0 - 57	-30 -55	- 26 - 62	- 16 - 73	- 51 - 87	- 41 - 98	315	400
+ 2 -25	+ 8 - 32	+ 18 - 45	-16 -43	- 10 - 50	0 - 63	-33 -60	- 27 - 67	- 17 - 80	- 55 - 95	- 45 -108	400	500
_	0 - 44	- 70	_	- 26 - 70	- 26 - 96	_	- 44 - 88	- 44 -114	- 78 -122	- 78 -148	500	630
_	0 - 50	0 - 80	_	- 30 - 80	- 30 -110	_	- 50 -100	- 50 -130	- 88 -138	- 88 -168	630	800
_	0 - 56	- 90	_	- 34 - 90	- 34 -124	_	- 56 -112	- 56 -146	-100 -156	-100 -190	800	1 000
	0 - 66	0 105	_	- 40 -106	- 40 -145	_	- 66 -132	- 66 -171	-120 -186	-120 -225	1 000	1 250
_	0 - 78	0 125	_	- 48 -126	- 48 -173	_	- 78 -156	- 78 -203	-140 -218	-140 -265	1 250	1 600
_	- 92	0 150	_	- 58 -150	- 58 -208	_	- 92 -184	- 92 -242	-170 -262	-170 -320	1 600	2 000
_	0 110	0 175	_	- 68 -178	- 68 -243	_	-110 -220	-110 -285	195 305	195 370	2 000	2 500

Tabla 11 del Apéndice Valores de los

												Grados
Tamai (m	ño Básico m)	I/D4	ITTO	IZDO	TT: 4	IDE	ITTC	1077	ITTO	ITTO	I/D10	
(, 	IT1	IT2	IT3	IT4	IT5	IT6	IT7	IT8	IT9	IT10	IT11
más de	hasta					Tole	erancias (μ	ım)				
_	3	0.8	1.2	2	3	4	6	10	14	25	40	60
3	6	1	1.5	2.5	4	5	8	12	18	30	48	75
6	10	1	1.5	2.5	4	6	9	15	22	36	58	90
10	18	1.2	2	3	5	8	11	18	27	43	70	110
18	30	1.5	2.5	4	6	9	13	21	33	52	84	130
30	50	1.5	2.5	4	7	11	16	25	39	62	100	160
50	80	2	3	5	8	13	19	30	46	74	120	190
80	120	2.5	4	6	10	15	22	35	54	87	140	220
120	180	3.5	5	8	12	18	25	40	63	100	160	250
180	250	4.5	7	10	14	20	29	46	72	115	185	290
250	315	6	8	12	16	23	32	52	81	130	210	320
315	400	7	9	13	18	25	36	57	89	140	230	360
400	500	8	10	15	20	27	40	63	97	155	250	400
500	630	9	11	16	22	30	44	70	110	175	280	440
630	800	10	13	18	25	35	50	80	125	200	320	500
800	1 000	11	15	21	29	40	56	90	140	230	360	560
1 000	1 250	13	18	24	34	46	66	105	165	260	420	660
1 250	1 600	15	21	29	40	54	78	125	195	310	500	780
1 600	2 000	18	25	35	48	65	92	150	230	370	600	920
2 000	2 500	22	30	41	57	77	110	175	280	440	700	1 100
2 500	3 150	26	36	50	69	93	135	210	330	540	860	1 350

Observaciones 1. Los grados de tolerancia estándarIT14 a IT18 no deben usarse con tamaños básicos inferiores o iguales a 1

Los valores para grados de tolerancia estándar IT1 a IT5 para tamaños básicos superiores a 500 mm se incluyen para uso experimental.

Grados de Tolerancia Estándar IT

Estándar							Tama	iño Básico	
IT12	IT13	IT14	IT15	IT16	IT17	IT18	(n	nm)	
	Tolerancias (mm)								
0.10	0.14	0.26	0.40	0.60	1.00	1.40	_	3	
0.12	0.18	0.30	0.48	0.75	1.20	1.80	3	6	
0.15	0.22	0.36	0.58	0.90	1.50	2.20	6	10	
0.18	0.27	0.43	0.70	1.10	1.80	2.70	10	18	
0.21	0.33	0.52	0.84	1.30	2.10	3.30	18	30	
0.25	0.39	0.62	1.00	1.60	2.50	3.90	30	50	
0.30	0.46	0.74	1.20	1.90	3.00	4.60	50	80	
0.35	0.54	0.87	1.40	2.20	3.50	5.40	80	120	
0.40	0.63	1.00	1.60	2.50	4.00	6.30	120	180	
0.46	0.72	1.15	1.85	2.90	4.60	7.20	180	250	
0.52	0.81	1.30	2.10	3.20	5.20	8.10	250	315	
0.57	0.89	1.40	2.30	3.60	5.70	8.90	315	400	
0.63	0.97	1.55	2.50	4.00	6.30	9.70	400	500	
0.70	1.10	1.75	2.80	4.40	7.00	11.00	500	630	
0.80	1.25	2.00	3.20	5.00	8.00	12.50	630	800	
0.90	1.40	2.30	3.60	5.60	9.00	14.00	800	1 000	
1.05	1.65	2.60	4.20	6.60	10.50	16.50	1 000	1 250	
1.25	1.95	3.10	5.00	7.80	12.50	19.50	1 250	1 600	
1.50	2.30	3.70	6.00	9.20	15.00	23.00	1 600	2 000	
1.75	2.80	4.40	7.00	11.00	17.50	28.00	2 000	2 500	
2.10	3.30	5.40	8.60	13.50	21.00	33.00	2 500	3 150	

Tabla 12 del Apéndice Factor de Velocidad $f_{ m n}$

Rodamientos de Bolas Rodamientos de Rodillos $f_{\rm n}$ = (0.03 n) $^{-1/3}$ $f_{\rm n}$ = (0.03 n) $^{-3/10}$

					- Hoddinio	itos de Hodillos	Jn- (0.0	50 n j
Velocidad	Factor de V	elocidad $f_{ m n}$	Velocidad	Factor de V	elocidad $f_{ m n}$	Velocidad	Factor de V	elocidad $f_{ m n}$
n (rpm)	Rodamientos de Bolas	Rodamientos de Rodillos	n (rpm)	Rodamientos de Bolas	Rodamientos de Rodillos	n (rpm)	Rodamientos de Bolas	Rodamientos de Rodillos
10	1.49	1.44	180	0.570	0.603	3 000	0.223	0.259
11	1.45	1.39	190	0.560	0.593	3 200	0.218	0.254
12	1.41	1.36	200	0.550	0.584	3 400	0.214	0.250
13	1.37	1.33	220	0.533	0.568	3 600	0.210	0.245
14	1.34	1.30	240	0.518	0.553	3 800	0.206	0.242
15	1.30	1.27	260	0.504	0.540	4 000	0.203	0.238
16	1.28	1.25	280	0.492	0.528	4 200	0.199	0.234
17	1.25	1.22	300	0.481	0.517	4 400	0.196	0.231
18	1.23	1.20	320	0.471	0.507	4 600	0.194	0.228
19	1.21	1.18	340	0.461	0.498	4 800	0.191	0.225
20	1.19	1.17	360	0.452	0.490	5 000	0.188	0.222
21	1.17	1.15	380	0.444	0.482	5 200	0.186	0.220
22	1.15	1.13	400	0.437	0.475	5 400	0.183	0.217
23	1.13	1.12	420	0.430	0.468	5 600	0.181	0.215
24	1.12	1.10	440	0.423	0.461	5 800	0.179	0.213
25	1.10	1.09	460	0.417	0.455	6 000	0.177	0.211
26	1.09	1.08	480	0.411	0.449	6 200	0.175	0.209
27	1.07	1.07	500	0.405	0.444	6 400	0.173	0.207
28	1.06	1.05	550	0.393	0.431	6 600	0.172	0.205
29	1.05	1.04	600	0.382	0.420	6 800	0.170	0.203
30	1.04	1.03	650	0.372	0.410	7 000	0.168	0.201
31	1.02	1.02	700	0.362	0.401	7 200	0.167	0.199
32	1.01	1.01	750	0.354	0.393	7 400	0.165	0.198
33.3	1.00	1.00	800	0.347	0.385	7 600	0.164	0.196
34	0.993	0.994	850	0.340	0.378	7 800	0.162	0.195
36	0.975	0.977	900	0.333	0.372	8 000	0.161	0.193
38	0.957	0.961	950	0.327	0.366	8 500	0.158	0.190
40	0.941	0.947	1 000	0.322	0.360	9 000	0.155	0.186
42	0.926	0.933	1 050	0.317	0.355	9 500	0.152	0.183
44	0.912	0.920	1 100	0.312	0.350	10 000	0.149	0.181
46	0.898	0.908	1 150	0.307	0.346	11 000	0.145	0.176
48	0.886	0.896	1 200	0.303	0.341	12 000	0.141	0.171
50	0.874	0.885	1 250	0.299	0.337	13 000	0.137	0.167
55	0.846	0.861	1 300	0.295	0.333	14 000	0.134	0.163
60	0.822	0.838	1 400	0.288	0.326	15 000	0.130	0.160
65	0.800	0.818	1 500	0.281	0.319	16 000	0.128	0.157
70	0.781	0.800	1 600	0.275	0.313	17 000	0.125	0.154
75	0.763	0.784	1 700	0.270	0.307	18 000	0.123	0.151
80	0.747	0.769	1 800	0.265	0.302	19 000	0.121	0.149
85	0.732	0.755	1 900	0.260	0.297	20 000	0.119	0.147
90	0.718	0.742	2 000	0.255	0.293	22 000	0.115	0.143
95	0.705	0.730	2 100	0.251	0.289	24 000	0.112	0.139
100	0.693	0.719	2 200	0.247	0.285	26 000	0.109	0.136
110	0.672	0.699	2 300	0.244	0.281	28 000	0.106	0.133
120	0.652	0.681	2 400	0.240	0.277	30 000	0.104	0.130
130	0.635	0.665	2 500	0.237	0.274	32 000	0.101	0.127
140	0.620	0.650	2 600	0.234	0.271	34 000	0.099	0.125
150	0.606	0.637	2 700	0.231	0.268	36 000	0.097	0.123
160	0.593	0.625	2 800	0.228	0.265	38 000	0.096	0.121
170	0.581	0.613	2 900	0.226	0.262	40 000	0.094	0.119

Rodamientos de Bolas Rodamientos de Rodillos $L=(C/P)^3$ $L=(C/P)^{10/3}$ $L_{\rm h}$ =500 $f_{\rm h}^{3}$ $L_{\rm h}$ =500 $f_{\rm h}^{10/3}$

	Vida de los Rodan	nientos de Bolas	Vida de los Rodam	ientos de Rodillos		Vida de los Rodar	nientos de Bolas	Vida de los Rodan	nientos de Rodillos
C/P or $f_{\rm h}$	L	$L_{\rm h}$	L	$L_{ m h}$	C/P or $f_{\rm h}$	L	$L_{ m h}$	L	$L_{\rm h}$
27 2 0. Jii	(10 ⁶ rev)	(h)	(10 ⁶ rev)	(h)	-, - 0. y.i	(10 ⁶ rev)	(h)	(10 ⁶ rev)	(h)
0.70	0.34	172	0.30	152	3.45	41.1	20 500	62.0	31 000
0.75	0.42	211	0.38	192	3.50	42.9	21 400	65.1	32 500
0.80	0.51	256	0.48	238	3.55	44.7	22 400	68.2	34 100
0.85	0.61	307	0.58	291	3.60	46.7	23 300	71.5	35 800
0.90	0.73	365	0.70	352	3.65	48.6	24 300	74.9	37 400
0.95	0.86	429	0.84	421	3.70	50.7	25 300	78.3	39 200
1.00	1.00	500	1.00	500	3.75	52.7	26 400	81.9	41 000
1.05	1.16	579	1.18	588	3.80	54.9	27 400	85.6	42 800
1.10	1.33	665	1.37	687	3.85	57.1	28 500	89.4	44 700
1.15	1.52	760	1.59	797	3.90	59.3	29 700	93.4	46 700
1.20	1.73	864	1.84	918	3.95	61.6	30 800	97.4	48 700
1.25	1.95	977	2.10	1 050	4.00	64.0	32 000	102	50 800
1.30	2.20	1 100	2.40	1 200	4.05	66.4	33 200	106	52 900
1.35	2.46	1 230	2.72	1 360	4.10	68.9	34 500	110	55 200
1.40	2.74	1 370	3.07	1 530	4.15	71.5	35 700	115	57 400
1.45	3.05	1 520	3.45	1 730	4.20	74.1	37 000	120	59 800
1.50	3.38	1 690	3.86	1 930	4.25	76.8	38 400	124	62 200
1.55	3.72	1 860	4.31	2 150	4.30	79.5	39 800	129	64 600
1.60	4.10	2 050	4.79	2 400	4.35	82.3	41 200	134	67 200
1.65	4.49	2 250	5.31	2 650	4.40	85.2	42 600	140	69 800
1.70	4.91	2 460	5.86	2 930	4.45	88.1	44 100	145	72 500
1.75	5.36	2 680	6.46	3 230	4.50	91.1	45 600	150	75 200
1.80	5.83	2 920	7.09	3 550	4.55	94.2	47 100	156	78 000
1.85	6.33	3 170	7.77	3 890	4.60	97.3	48 700	162	80 900
1.90	6.86	3 430	8.50	4 250	4.65	101	50 300	168	83 900
1.95	7.41	3 710	9.26	4 630	4.70	104	51 900	174	87 000
2.00	8.00	4 000	10.1	5 040	4.75	107	53 600	180	90 100
2.05	8.62	4 310	10.9	5 470	4.80	111	55 300	187	93 300
2.10	9.26	4 630	11.9	5 930	4.85	114	57 000	193	96 600
2.15	9.94	4 970	12.8	6 410	4.90	118	58 800	200	99 900
2.20	10.6	5 320	13.8	6 920	4.95	121	60 600	207	103 000
2.25	11.4	5 700	14.9	7 460	5.00	125	62 500	214	107 000
2.30	12.2	6 080	16.1	8 030	5.10	133	66 300	228	114 000
2.35	13.0	6 490	17.3	8 630	5.20	141	70 300	244	122 000
2.40	13.8	6 910	18.5	9 250	5.30	149	74 400	260	130 000
2.45	14.7	7 350	19.8	9 910	5.40	157	78 700	276	138 000
2.50	15.6	7 810	21.2	10 600	5.50	166	83 200	294	147 000
2.55	16.6	8 290	22.7	11 300	5.60	176	87 800	312	156 000
2.60	17.6	8 790	24.2	12 100	5.70	185	92 600	331	165 000
2.65	18.6	9 300	25.8	12 900	5.80	195	97 600	351	175 000
2.70	19.7	9 840	27.4	13 700	5.90	205	103 000	371	186 000
2.75	20.8	10 400	29.1	14 600	6.00	216	108 000	392	196 000
2.80	22.0	11 000	30.9	15 500	6.50	275	137 000	513	256 000
2.85	23.1	11 600	32.8	16 400	7.00	343	172 000	656	328 000
2.90	24.4	12 200	34.8	17 400	7.50	422	211 000	826	413 000
2.95 3.00 3.05 3.10 3.15	25.7 27.0 28.4 29.8 31.3	12 800 13 500 14 200 14 900 15 600	36.8 38.9 41.1 43.4 45.8	18 400 19 500 20 600 21 700 22 900	8.00 8.50 9.00 9.50 10.0	512 614 729 857 1 000	256 000 307 000 365 000 429 000	1 020 1 250 1 520 1 820 2 150	512 000 627 000 758 000 908 000
3.20 3.25 3.30 3.35 3.40	32.8 34.3 35.9 37.6 39.3	16 400 17 200 18 000 18 800 19 700	48.3 50.8 53.5 56.3 59.1	24 100 25 400 26 800 28 100 29 600	11.0 12.0 13.0 14.0 15.0	1 330 1 730 2 200 2 740 3 380	_ _ _ _	2 960 3 960 5 170 6 610 8 320	_ _ _ _

Tabla 14 del Apéndice Índice de Diseño en Pulgadas de Rodamientos de Rodillos Cónicos

№ de Rodamiento CONO, COPA	Dimensión Nominal (mm) d:CONO (Diámetro Interior) D:COPA (Diámetro Exterior	Páginas	№ de Rodamiento CONO, COPA	Dimensión Nominal (mm) d:CONO (Diámetro Interior) D:COPA (Diámetro Exterior)	Páginas
332	D 80.000	B136,B140,B142	497	d 85.725	B158
336	d 41.275	B142	498	d 84.138	B158
342	d 41.275	B142	522	D 101.600	B144,B146
342 S	d 42.875	B142	528	$egin{array}{ccc} d & 47.625 \\ d & 50.800 \\ d & 50.800 \end{array}$	B144
344	d 40.000	B140	529		B146
344 A	d 40.000	B140	529 X		B146
346	d 31.750	B136	532 X	$\begin{array}{ccc} D & 107.950 \\ \textbf{\textit{d}} & 53.975 \\ D & 123.825 \end{array}$	B148
354 A	D 85.000	B144	539		B148
359 S	d 46.038	B144	552 A		B148,B150,B152
362 A	D 88.900	B144,B146	553 X	D 122.238	B150,B152
366	d 50.000	B146	555 S	d 57.150	B148
368	d 50.800	B146	557 S	d 53.975	B148
368 A	d 50.800	B146	558	d 60.325	B150
369 A	d 47.625	B144	559	d 63.500	B150
372	D 100.000	B146	560	d 66.675	B152
374	D 93.264	B144	560 S	d 68.262	B152
376	d 45.000	B144	563	D 127.000	B150,B152,B154
377	d 52.388	B146	563 X	D 127.000	B152
382	D 98.425	B148	565	$egin{array}{ccc} d & 63.500 \\ d & 69.850 \\ d & 73.025 \\ \end{array}$	B150
382 A	D 96.838	B148	566		B152
382 S	D 96.838	B148	567		B154
385	d 55.000	B148	567 A	d 71.438	B154
387	d 57.150	B148	567 S	d 71.438	B154
387 A	d 57.150	B148	568	d 73.817	B154
388 A	d 57.531	B148	569	d 64.963	B150
390 A	d 63.500	B150	570	d 68.262	B152
394 A	D 110.000	B150,B152	572	D 139.992	B154,B156
395	d 63.500	B150	572 X	$\begin{array}{ccc} D & 139.700 \\ d & 76.200 \\ d & 82.550 \end{array}$	B156
395 A	d 66.675	B152	575		B154
395 S	d 66.675	B152	580		B156
397	d 60.000	B150	581	$egin{array}{ccc} d & 80.962 \\ d & 82.550 \\ d & 76.200 \\ \end{array}$	B156
399 A	d 68.262	B152	582		B156
414	D 88.501	B140	590 A		B154
418	d 38.100	B140	592	D 152.400	B160
432	D 95.250	B142	592 A	D 152.400	B154,B158,B160
432 A	D 95.250	B144	593	d 88.900	B158
436	d 46.038	B144	594	d 95.250	B160
438	d 44.450	B142	596	d 85.725	B158
453 A	D 107.950	B144	597	d 93.662	B160
453 X	D 104.775	B148	598	d 92.075	B160
460	d 44.450	B144	598 A	d 92.075	B160
462	d 57.150	B148	614 X	D 115.000	B148
469	d 57.150	B148	622 X	d 55.000	B148
472	D 120.000	B152,B154	632	D 136.525	B150,B154
472 A	D 120.000	B152	633	D 130.175	B150,B152,B154
478 480 484	$egin{array}{ccc} d & 65.000 \\ d & 68.262 \\ d & 70.000 \\ \end{array}$	B152 B152 B154	637 639 643	$egin{array}{ll} d & 60.325 \\ d & 63.500 \\ d & 69.850 \\ \end{array}$	B150 B150 B152
492 A	D 133.350	B156,B158	644	d 71.438	B154
493	D 136.525	B154,B156,B158	645	d 71.438	B154
495	d 82.550	B156	652	D 152.400	B154,B156
495 A 495 AX 496	$egin{array}{ccc} d & 76.200 \\ d & 76.200 \\ d & 80.962 \\ \end{array}$	B154 B154 B156	653 653 X 655	$\begin{array}{cc} D & 146.050 \\ D & 150.000 \\ d & 69.850 \end{array}$	B152,B154,B156,B158 B154 B152

№ de Rodamiento CONO, COPA	d:C01	nsión Nominal (mm) NO (Diámetro Interior) PA (Diámetro Exterior)	Páginas	№ de Rodamiento CONO, COPA	d:001	sión Nominal (mm) IO (Diámetro Interior) PA (Diámetro Exterior)	Páginas
657	$egin{array}{c} d \\ d \\ d \end{array}$	73.025	B154	1328	D	52.388	B132
658		74.612	B154	1329	D	53.975	B132
659		76.200	B154	1380	d	22.225	B132
661	$egin{array}{c} d \\ d \\ d \end{array}$	79.375	B156	1620	D	66.675	B138
663		82.550	B156	1680	d	33.338	B138
664		84.138	B158	1729	D	56.896	B132,B134
665	d	85.725	B158	1755	$_{D}^{d}$	22.225	B132
665 A	d	85.725	B158	1779		23.812	B134
672	D	168.275	B158,B160,B162	1922		57.150	B134
677 681 683	$egin{array}{c} d \\ d \\ d \end{array}$	85.725 92.075 95.250	B158 B160 B160	1988 1997 X A2047	$egin{array}{c} d \\ d \\ d \end{array}$	28.575 26.988 12.000	B134 B134 B132
685	d	98.425	B160	A2126	D	31.991	B132
687	d	101.600	B162	2523	D	69.850	B136,B138
742	D	150.089	B152,B156,B158	2558	d	30.162	B136
743	D	150.000	B156	2559	$egin{array}{c} d \\ d \\ d \end{array}$	30.162	B136
745 A	d	69.850	B152	2580		31.750	B136
749	d	85.026	B158	2582		31.750	B136
749 A 749 S 750	$egin{array}{c} d \\ d \\ d \end{array}$	82.550 85.026 79.375	B156 B158 B156	2585 2631 2690	$egin{array}{c} d \ D \ d \end{array}$	33.338 66.421 29.367	B138 B136 B136
752	D	161.925	B156,B158	2720	$D \\ D \\ D$	76.200	B140
753	D	168.275	B156,B158	2729		76.200	B140
757	d	82.550	B156	2735 X		73.025	B140
758 759 760	$egin{array}{c} d \\ d \\ d \end{array}$	85.725 88.900 90.488	B158 B158 B158	2788 2789 2820	$_{D}^{d}$	38.100 39.688 73.025	B140 B140 B138
766 772 776	$egin{array}{c} d \\ D \\ d \end{array}$	88.900 180.975 95.250	B158 B160,B162 B160	2877 2924 2984	$egin{array}{c} d \ D \ d \end{array}$	34.925 85.000 46.038	B138 B144 B144
779 780 782	$egin{array}{c} d \\ d \\ d \end{array}$	98.425 101.600 104.775	B160 B162 B162	3120 3188 3197	$egin{array}{c} D \\ d \\ d \end{array}$	72.626 31.750 33.338	B136,B138 B136 B138
787	d	104.775	B162	3320	D	80.167	B140
792	D	206.375	B164	3386	d	39.688	B140
795	d	120.650	B164	3420	D	79.375	B138,B140
797 799 799 A	$egin{array}{c} d \\ d \\ d \end{array}$	130.000 128.588 130.175	B164 B164 B164	3478 3479 3490	$egin{matrix} d \\ d \\ d \end{bmatrix}$	34.925 36.512 38.100	B138 B140 B140
832	D	168.275	B156,B158	3525	D	87.312	B142
837	d	76.200	B156	3576	d	41.275	B142
842	d	82.550	B156	3578	d	44.450	B142
843	d	76.200	B156	3720	D	93.264	B142
850	d	88.900	B158	3730	D	93.264	B146
854	D	190.500	B158,B160,B162	3775	d	50.800	B146
855	$egin{array}{c} d \\ d \\ d \end{array}$	88.900	B158	3780	d	50.800	B146
857		92.075	B160	3782	d	44.450	B142
861		101.600	B162	3820	D	85.725	B142
864 866 932	$_{D}^{d}$	95.250 98.425 212.725	B160 B160 B162	3877 3920 3926	$_{D}^{d}$	41.275 112.712 112.712	B142 B150,B152 B148,B150
938	d	114.300	B162	3981	$egin{array}{c} d \\ d \\ d \end{array}$	58.738	B148
1220	D	57.150	B132	3982		63.500	B150
1280	d	22.225	B132	3984		66.675	B152

Nº de Rodamiento CONO, COPA	Dimensión Nominal (mm) d:CONO (Diámetro Interior) D:COPA (Diámetro Exterior	Páginas	Nº de Rodamiento CONO, COPA	Dimensión Nomina d:CONO (Diámetro D:COPA (Diámetro	Interior) Páginas
3994	d 66.675	B152	02820	D 73.0	575 B134
A4050	d 12.700	B132	02872	d 28.1	
A4059	d 15.000	B132	02878	d 34.5	
A4138	D 34.988	B132	03062	d 15.8	275 B132
4335	D 90.488	B142	03162	D 41.2	
4388	d 41.275	B142	05062	d 15.8	
4535	D 104.775	B148	05068	d 17.4	050 B132
4595	d 53.975	B148	05075	d 19.0	
A5069	d 17.455	B132	05079	d 19.9	
A5144	D 36.525	B132	05175	D 44.4	000 B132
5335	D 103.188	B144	05185	D 47.0	
5356	d 44.450	B144	07079	d 20.0	
5535	D 122.238	B148,B150	07087	d 22.3	225 B132
5566	d 55.562	B148	07097	d 25.0	000 B134
5582	d 60.325	B150	07098	d 24.9	981 B134
5584	d 63.500	B150	07100	d 25.4	400 B134
5735	D 135.732	B154,B156	07100SA	d 25.4	
5760	d 76.200	B154	07196	D 50.0	
5795	d 77.788	B156	07204	D 51.0	001 B134
A6062	d 15.875	B132	07205	D 52.0	
A6067	d 16.993	B132	08118	d 30.0	
A6075	d 19.050	B132	08125	d 31.3	750 B136
A6157	D 39.992	B132	08231	D 58.3	738 B136
6220	D 127.000	B146,B148	09062	d 15.8	B75 B132
6279	d 50.800	B146	09067	d 19.0	050 B132
6280	d 53.975	B148	09074	d 19.0	
6320	D 135.755	B150,B152	09078	d 19.0	
6376	d 60.325	B150	09081	d 20.0	625 B132
6379	d 65.088	B152	09194	D 49.3	225 B132
6420	D 149.225	B148,B152,B154	09195	D 49.3	225 B132
6454	d 69.850	B152	09196	D 49.1	225 B132
6455	d 57.150	B148	11162	d 41.1	275 B142
6460	d 73.025	B154	11300	D 76.1	200 B142
6461	d 76.200	B154	11520	D 42.8	375 B132
6535	D 161.925	B154,B156,B158	11590	d 15.8	
6536	D 161.925	B154	LM11710	D 39.8	
6559	d 82.550	B156	LM11749	d 17.4	
6575	d 76.200	B154	LM11910	D 45.3	
6576	d 76.200	B154	LM11949	d 19.0	
6580	d 88.900	B158	12168	d 42.8	992 B142
9121	D 152.400	B150,B152	12303	D 76.9	
9180	d 61.912	B150	12520	D 49.3	
9185	d 68.262	B152	12580	d 20.0	
9220	D 161.925	B154	M12610	D 50.0	
9285	d 76.200	B154	M12648	d 22.3	
9320	D 177.800	B156	M12649	d 21.4	H30 B132
9321	D 171.450	B156,B158	LM12710	D 45.2	237 B132
9378	d 76.200	B156	LM12711	D 45.3	975 B132
9380	d 76.200	B156	LM12749	d 22.0	450 B142
9385	d 84.138	B158	13175	d 44.4	
02420	D 68.262	B134,B136	13181	d 46.0	
02473	d 25.400	B134	13318	D 80.9	012 B140
02474	d 28.575	B134	13620	D 69.0	
02475	d 31.750	B136	13621	D 69.0	

Nº de Rodamiento CONO, COPA	d:CON	sión Nominal (mm) O (Diámetro Interior) A (Diámetro Exterior)	Páginas	Nº de Rodamiento CONO, COPA	d:C01	isión Nominal (mm) NO (Diámetro Interior) PA (Diámetro Exterior)	Páginas
13685	d	38.100	B140	19150	d	38.100	B140
13687	d	38.100	B140	19268	D	68.262	B138,B140
13830	D	63.500	B140	21075	d	19.050	B132
13889	$egin{array}{c} d \\ d \\ d \end{array}$	38.100	B140	21212	D	53.975	B132
14123 A		31.750	B136	L21511	D	34.988	B132
14125 A		31.750	B136	L21549	d	15.875	B132
14130 14131 14137 A	$egin{array}{c} d \\ d \\ d \end{array}$	33.338 33.338 34.925	B138 B138 B138	22168 22325 23100	$egin{array}{c} d \ D \ d \end{array}$	42.862 82.550 25.400	B142 B142 B134
14138 A	d	34.925	B138	23256	D	65.088	B134
14139	d	34.976	B138	23621	D	73.025	B138
14274	D	69.012	B136,B138	23691	d	35.000	B138
14276	D	69.012	B136,B138	24720	D	76.200	B142
14283	D	72.085	B138	24721	D	76.200	B142
15100	d	25.400	B134	24780	d	41.275	B142
15101 15106 15112	$egin{array}{c} d \\ d \\ d \end{array}$	25.400 26.988 28.575	B134 B134 B134	25520 25521 25523	$D \\ D \\ D$	82.931 83.058 82.931	B142,B144 B142 B142,B144
15113 15116 15117	$egin{array}{c} d \\ d \\ d \end{array}$	28.575 30.112 30.000	B134 B136 B136	25577 25578 25580	$egin{array}{c} d \\ d \\ d \end{array}$	42.875 42.862 44.450	B142 B142 B142
15118 15119 15120	$egin{array}{c} d \\ d \\ d \end{array}$	30.213 30.213 30.213	B136 B136 B136	25584 25590 25820	$_{D}^{d}$	44.983 45.618 73.025	B144 B144 B138
15123	$egin{array}{c} d \\ d \\ d \end{array}$	31.750	B136	25821	D	73.025	B138,B140
15125		31.750	B136	25877	d	34.925	B138
15126		31.750	B136	25878	d	34.925	B138
15245	D	62.000	B134,B136	25880	$egin{matrix} d \\ d \\ d \end{bmatrix}$	36.487	B140
15250	D	63.500	B136	26118		30.000	B136
15250 X	D	63.500	B134	26131		33.338	B138
15520	D	57.150	B134	26283	$D \\ D \\ D$	72.000	B136,B138
15523	D	60.325	B134	26820		80.167	B142
15578	d	25.400	B134	26822		79.375	B142
15580	d	26.988	B134	26823	D	76.200	B142
16150	d	38.100	B140	26882	d	41.275	B142
16284	D	72.238	B140	26884	d	42.875	B142
16929	D	74.988	B142	27620	D	125.412	B156
16986	d	43.000	B142	27687	d	82.550	B156
17098	d	24.981	B134	27689	d	83.345	B156
17118	d	30.000	B136	27690	d	83.345	B156
17244	D	62.000	B134,B136	27820	D	80.035	B140
17520	D	42.862	B132	27880	d	38.100	B140
17580 17831 17887	$egin{array}{c} d \\ D \\ d \end{array}$	15.875 79.985 45.230	B132 B144 B144	28138 28315 28521	$_{D}^{d}$	34.976 80.000 92.075	B138 B138 B146
18200	d	50.800	B146	28580	d	50.800	B146
18337	D	85.725	B146	28584	d	52.388	B146
18520	D	73.025	B140	28622	D	97.630	B148
18590 18620 18690	$egin{array}{c} d \\ D \\ d \end{array}$	41.275 79.375 46.038	B140 B144 B144	28680 28920 28921	$_{D}^{d}$	55.562 101.600 100.000	B148 B150 B150
18720	D	85.000	B146	28985	$egin{array}{c} d \ D \ d \end{array}$	60.325	B150
18790	d	50.800	B146	29520		107.950	B150
19138	d	34.976	B138	29586		63.500	B150

Nº de Rodamiento CONO, COPA	d:C01	nsión Nominal (mm) NO (Diámetro Interior) PA (Diámetro Exterior)	Páginas	№ de Rodamiento CONO, COPA	d:CO	sión Nominal (mm) NO (Diámetro Interior) PA (Diámetro Exterior)	Páginas
29620	D	112.712	B152,B154	42690	$egin{array}{c} d \\ d \\ d \end{array}$	77.788	B156
29630	D	120.650	B152	43118		30.162	B136
29675	d	69.850	B152	43131		33.338	B138
29685	d	73.025	B154	43300	D	76.200	B136
LM29710	D	65.088	B140	43312	D	79.375	B138
LM29711	D	65.088	B140	44143	d	36.512	B140
LM29748	d	38.100	B140	44150	$egin{matrix} d \\ d \\ d \end{bmatrix}$	38.100	B140
LM29749	d	38.100	B140	44157		40.000	B140
31520	D	76.200	B138	44162		41.275	B142
31594 33262 33275	$egin{array}{c} d \\ d \\ d \end{array}$	34.925 66.675 69.850	B138 B152 B152	44348 L44610 L44640	$D \\ D \\ d$	88.501 50.292 23.812	B140,B142 B134 B134
33281 33287 JHM33410	$_{D}^{d}$	71.438 73.025 55.000	B154 B154 B134	L44643 L44649 45220	$_{D}^{d}$	25.400 26.988 104.775	B134 B134 B148
JHM33449	d	24.000	B134	45221	$_{D}^{D}$	104.775	B148
33462	D	117.475	B152,B154	45289		57.150	B148
33821	D	95.250	B146	L45410		50.292	B136
33889 34300 34306	$egin{array}{c} d \\ d \\ d \end{array}$	50.800 76.200 77.788	B146 B154 B156	L45449 46143 46162	$egin{matrix} d \\ d \\ d \end{smallmatrix}$	29.000 36.512 41.275	B136 B140 B142
34478	D	121.442	B154,B156	46176	$_{D}^{d}$	44.450	B142
36620	D	193.675	B164	46368		93.662	B140,B142
36690	d	146.050	B164	46720		225.425	B164
36920	D	227.012	B166	46780	$\stackrel{d}{\stackrel{D}{D}}_{d}$	158.750	B164
36990	d	177.800	B166	47420		120.000	B152,B154
37425	d	107.950	B162	47487		69.850	B152
37625 M38510 M38511	$D \\ D \\ D$	158.750 66.675 65.987	B162 B138 B138	47490 47620 47680	$\stackrel{d}{\stackrel{D}{D}}_{d}$	71.438 133.350 76.200	B154 B154,B156 B154
M38547 M38549 39236	$egin{array}{c} d \\ d \\ d \end{array}$	35.000 34.925 60.000	B138 B138 B150	47685 47686 47687	$egin{matrix} d \\ d \\ d \end{smallmatrix}$	82.550 82.550 82.550	B156 B156 B156
39250	d	63.500	B150	47820	$egin{matrix} D \\ d \\ d \end{smallmatrix}$	146.050	B160
39412	D	104.775	B150	47890		92.075	B160
39520	D	112.712	B150,B152	47896		95.250	B160
39521	D	112.712	B152	48120	$_{D}^{D}$	161.925	B162
39585	d	63.500	B150	48190		107.950	B162
39590	d	66.675	B152	48220		182.562	B164
41100 41125 41126	$egin{array}{c} d \\ d \\ d \end{array}$	25.400 28.575 28.575	B134 B134 B134	48282 48286 48290	$egin{matrix} d \\ d \\ d \end{smallmatrix}$	120.650 123.825 127.000	B164 B164 B164
41286	D	72.626	B134	48320	$egin{matrix} D \\ d \\ d \end{smallmatrix}$	190.500	B164
42350	d	88.900	B158	48385		133.350	B164
42362	d	92.075	B160	48393		136.525	B164
42368 42375 42376	$egin{array}{c} d \\ d \\ d \end{array}$	93.662 95.250 95.250	B160 B160 B160	LM48510 LM48511 LM48548	$D \\ D \\ d$	65.088 65.088 34.925	B138 B138 B138
42381	d	96.838	B160	48620	$egin{matrix} D \\ d \\ d \end{smallmatrix}$	200.025	B164
42584	D	148.430	B160	48685		142.875	B164
42587	D	149.225	B158,B160	49175		44.450	B142
42620	D	127.000	B154,B156	49176	d	44.450	B142
42687	d	76.200	B154	49368	D	93.662	B142
42688	d	76.200	B154	49520	D	101.600	B146

№ de Rodamiento CONO, COPA	d:C01	nsión Nominal (mm) NO (Diámetro Interior) PA (Diámetro Exterior)	Páginas	№ de Rodamiento CONO, COPA	d:C01	nsión Nominal (mm) NO (Diámetro Interior) PA (Diámetro Exterior)	Páginas
49585	$egin{array}{c} d \\ d \\ d \end{array}$	50.800	B146	67920	D	282.575	B166
52387		98.425	B160	67983	d	203.200	B166
52393		100.012	B160	67985	d	206.375	B166
52400	$_{D}^{d}$	101.600	B162	L68110	D	59.131	B138
52618		157.162	B160,B162	L68111	D	59.975	B138
52637		161.925	B160,B162	L68149	d	35.000	B138
53150 53162 53176	$egin{array}{c} d \\ d \\ d \end{array}$	38.100 41.275 44.450	B140 B142 B144	68450 68462 68709	$_{D}^{d}$	114.300 117.475 180.000	B162 B162 B162
53177	d	44.450	B144	68712	D	180.975	B162
53178	d	44.450	B144	JL69310	D	63.000	B140
53375	D	95.250	B140,B144	JL69349	d	38.000	B140
53387	D	98.425	B142,B144	71412	$egin{array}{c} d \\ d \\ d \end{array}$	104.775	B162
55175	d	44.450	B144	71425		107.950	B162
55187	d	47.625	B144	71437		111.125	B162
55200	d	50.800	B146	71450	$_{D}^{d}$	114.300	B162
55200 C	d	50.800	B146	71453		115.087	B162
55206	d	52.388	B146	71750		190.500	B162
55437	D	111.125	B144,B146	72187	$egin{matrix} d \\ d \\ d \end{matrix}$	47.625	B144
55443	D	112.712	B144	72200		50.800	B146
56418	d	106.362	B162	72200 C		50.800	B146
56425 56650 59200	$egin{array}{c} d \\ D \\ d \end{array}$	107.950 165.100 50.800	B162 B162 B146	72212 72212 C 72218	$egin{array}{c} d \\ d \\ d \end{array}$	53.975 53.975 55.562	B148 B148 B148
59429	D	108.966	B146	72218C	d	55.562	B148
64433	d	109.992	B162	72225C	d	57.150	B148
64450	d	114.300	B162	72487	D	123.825	B144,B146,B148
64700	D	177.800	B162	LM72810	D	47.000	B134
65200	d	50.800	B146	LM72849	d	22.606	B134
65212	d	53.975	B148	74500	d	127.000	B164
65237 65320 65385	$egin{array}{c} d \ D \ d \end{array}$	60.325 114.300 44.450	B150 B144 B144	74525 74537 74550	$egin{matrix} d \\ d \\ d \end{matrix}$	133.350 136.525 139.700	B164 B164 B164
65500	D	127.000	B146,B148,B150	74850	D	215.900	B164
66187	d	47.625	B144	74856	D	217.488	B164
66462	D	117.475	B144	77375	d	95.250	B160
66520	D	122.238	B148,B150	77675	D	171.450	B160
66584	d	53.975	B148	78225	d	57.150	B148
66585	d	60.000	B150	78250	d	63.500	B150
66587	$egin{array}{c} d \\ D \\ d \end{array}$	57.150	B148	LM78310	D	62.000	B138
LM67010		59.131	B134,B136	LM78310 A	D	62.000	B138
LM67043		28.575	B134	LM78349	d	35.000	B138
LM67048 67320 67322	$_{D}^{d}$	31.750 203.200 196.850	B136 B164 B164	78537 78551 78571	$D \\ D \\ D$	136.525 140.030 144.983	B150 B148,B150 B148
67388 67389 67390	$egin{array}{c} d \\ d \\ d \end{array}$	127.000 130.175 133.350	B164 B164 B164	HM81610 HM81649 M84210	$egin{smallmatrix} D \\ d \\ D \end{smallmatrix}$	47.000 16.000 59.530	B132 B132 B134
67720	D	247.650	B164,B166	M84249	$egin{matrix} d \\ D \\ d \end{bmatrix}$	25.400	B134
67780	d	165.100	B164	M84510		57.150	B134
67787	d	174.625	B166	M84548		25.400	B134
67790	d	177.800	B166	M86610	D	64.292	B134,B136
67820	D	266.700	B166	M86643	d	25.400	B134
67885	d	190.500	B166	M86647	d	28.575	B134

№ de Rodamiento CONO, COPA	d:C01	nsión Nominal (mm) NO (Diámetro Interior) PA (Diámetro Exterior)	Páginas	№ de Rodamiento CONO, COPA	d:CON	sión Nominal (mm) IO (Diámetro Interior) PA (Diámetro Exterior)	Páginas
M86648A M86649 M88010	$_{D}^{d}$	30.955 30.162 68.262	B136 B136 B136,B138	HH221432 HH221434 HH221440	$egin{array}{c} d \\ d \\ d \end{array}$	87.312 88.900 95.250	B158 B158 B160
M88043 M88046 M88048	$egin{array}{c} d \\ d \\ d \end{array}$	30.162 31.750 33.338	B136 B136 B138	HH221442 HH221447 HH221449	$egin{matrix} d \\ d \\ d \end{smallmatrix}$	98.425 99.982 101.600	B160 B160 B162
HM88510	D	73.025	B136,B138	HH224310	$egin{matrix} D \\ d \\ d \end{smallmatrix}$	212.725	B162
HM88542	d	31.750	B136	HH224335		101.600	B162
HM88547	d	33.338	B138	HH224340		107.950	B162
HM88610	D	72.233	B134,B136,B138,B140	HH224346	$\stackrel{d}{\stackrel{D}{D}}_{d}$	114.300	B162
HM88630	d	25.400	B134	M224710		174.625	B164
HM88638	d	32.000	B136	M224748		120.000	B164
HM88648	d	35.717	B140	LL225710	$egin{smallmatrix} D \\ d \\ D \end{smallmatrix}$	165.895	B164
HM88649	d	34.925	B138	LL225749		127.000	B164
HM89410	D	76.200	B138,B140	HM231110		236.538	B164
HM89411	D	76.200	B138	HM231140	$\stackrel{d}{\stackrel{D}{D}}_{d}$	146.050	B164
HM89443	d	33.338	B138	M236810		260.350	B166
HM89444	d	33.338	B138	M236849		177.800	B166
HM89446 HM89446A HM89449	$egin{array}{c} d \\ d \\ d \end{array}$	34.925 34.925 36.512	B138 B138 B140	LM300811 LM300849 L305610	$_{D}^{D}$	68.000 41.000 80.962	B140 B140 B146
99100	D	254.000	B164	L305649	$\stackrel{d}{\stackrel{D}{D}}_{d}$	50.800	B146
99550	d	139.700	B164	JH307710		110.000	B148
99575	d	146.050	B164	JH307749		55.000	B148
99587	d	149.225	B164	JHM318410	$_{D}^{D}$	155.000	B158
99600	d	152.400	B164	JHM318448		90.000	B158
LM102910	D	73.431	B144	L327210		177.008	B164
LM102949	d	45.242	B144	L327249	$egin{array}{c} d \\ D \\ d \end{array}$	133.350	B164
JLM104910	D	82.000	B146	LM328410		187.325	B164
LM104911	D	82.550	B146	LM328448		139.700	B164
LM104911A	D	82.550	B146	H414210	$egin{matrix} D \\ d \\ d \end{smallmatrix}$	136.525	B152,B154
LM104912	D	82.931	B146	H414245		68.262	B152
LM104947A	d	50.000	B146	H414249		71.438	B154
JLM104948	d	50.000	B146	JH415610	$_{D}^{D}$	145.000	B154
LM104949	d	50.800	B146	JH415647		75.000	B154
M201011	D	73.025	B140	LM501310		73.431	B140
M201047	d	39.688	B140	LM501314	$_{D}^{D}$	73.431	B140
JM205110	D	90.000	B146	LM501349		41.275	B140
JM205149	d	50.000	B146	LM503310		75.000	B144
JM207010	D	95.000	B148	LM503349	$\stackrel{d}{\stackrel{D}{D}}_{d}$	46.000	B144
JM207049	d	55.000	B148	HH506310		114.300	B146
JH211710	D	120.000	B152	HH506348		49.212	B146
JH211749	d	65.000	B152	JLM506810	$_{D}^{D}$	90.000	B148
HM212010	D	122.238	B150,B152	JLM506849		55.000	B148
HM212011	D	122.238	B150,B152	JLM508710		95.000	B150
HM212044 HM212046 HM212047	$egin{array}{c} d \\ d \\ d \end{array}$	60.325 63.500 63.500	B150 B150 B150	JLM508748 JM511910 JM511946	$egin{matrix} d \\ D \\ d \end{bmatrix}$	60.000 110.000 65.000	B150 B152 B152
HM212049	d	66.675	B152	JM515610	$_{D}^{D}$	130.000	B156
JH217210	D	150.000	B158	JM515649		80.000	B156
JH217249	d	85.000	B158	HM516410		133.350	B156
HM218210	D	147.000	B158	HM516448	$egin{array}{c} d \\ D \\ d \end{array}$	82.550	B156
HM218248	d	90.000	B158	JHM516810		140.000	B158
HH221410	D	190.500	B158,B160,B162	JHM516849		85.000	B158

№ de Rodamiento CONO, COPA	d:C01	nsión Nominal (mm) NO (Diámetro Interior) PA (Diámetro Exterior)	Páginas	Nº de Rodamiento CONO, COPA	d:COI	isión Nominal (mm) NO (Diámetro Interior) PA (Diámetro Exterior)	Páginas
HM518410 HM518445 LM522510	D d D	152.400 88.900 159.987	B158 B158 B162	HM801310 HM801346 M802011	D d D	82.550 38.100 82.550	B140 B140 B142
LM522546 LM522548 LM522549	$egin{array}{c} d \\ d \\ d \end{array}$	107.950 109.987 109.987	B162 B162 B162	M802048 HM803110 HM803145	$egin{array}{c} d \ D \ d \end{array}$	41.275 88.900 41.275	B142 B142 B142
JHM522610 JHM522649 JHM534110	D d D	180.000 110.000 230.000	B162 B162 B166	HM803146 HM803149 M804010	$_{D}^{d}$	41.275 44.450 88.900	B142 B142 B144
JHM534149 LM603011 LM603012	d D D	170.000 77.788 77.788	B166 B144 B144	M804049 HM804810 HM804840	$egin{array}{c} d \ D \ d \end{array}$	47.625 95.250 41.275	B144 B142,B144,B146 B142
LM603049 L610510 L610549	$egin{matrix} d \\ D \\ d \end{bmatrix}$	45.242 94.458 63.500	B144 B150 B150	HM804843 HM804846 HM804848	$egin{array}{c} d \\ d \\ d \end{array}$	44.450 47.625 48.412	B144 B144 B146
JM612910 JM612949 LM613410	D d D	115.000 70.000 112.712	B154 B154 B152	HM804849 HM807010 HM807011	d D D	48.412 104.775 104.775	B146 B144,B146 B146
LM613449 HM617010 HM617049	$egin{array}{c} d \\ D \\ d \end{array}$	69.850 142.138 85.725	B152 B158 B158	JHM807012 HM807040 HM807044	D d d	105.000 44.450 49.212	B146 B144 B146
L623110 L623149 JLM710910	D d D	152.400 114.300 105.000	B162 B162 B152	JHM807045 HM807046 JLM813010	$_{D}^{d}$	50.000 50.800 110.000	B146 B146 B154
JLM710949 JLM714110 JLM714149	$egin{array}{c} d \\ D \\ d \end{array}$	65.000 115.000 75.000	B152 B154 B154	JLM813049 JLM820012 JLM820048	$egin{array}{c} d \ D \ d \end{array}$	70.000 150.000 100.000	B154 B160 B160
JM714210 JM714249 H715311	D d D	120.000 75.000 136.525	B154 B154 B150,B152,B154	JM822010 JM822049 JHM840410	D d D	165.000 110.000 300.000	B162 B162 B166
H715334 H715340 H715341	$egin{array}{c} d \\ d \\ d \end{array}$	61.912 65.088 66.675	B150 B152 B152	JHM840449 HM903210 HM903247	d D d	200.000 95.250 44.450	B166 B144 B144
H715343 H715345 JM716610	$_{D}^{d}$	68.262 71.438 130.000	B152 B154 B158	HM903249 HM911210 HM911242	d D d	44.450 130.175 53.975	B144 B148 B148
JM716648 JM716649 JM718110	$_{D}^{d}$	85.000 85.000 145.000	B158 B158 B158	H913810 H913842 H913849	D d d	146.050 61.912 69.850	B150,B152 B150 B152
JM718149 JM719113 JM719149	$egin{array}{c} d \\ D \\ d \end{array}$	90.000 150.000 95.000	B158 B160 B160				
JM720210 JHM720210 JM720249	D D d	155.000 160.000 100.000	B160 B160 B160				
JHM720249 JL724314 JL724348	$egin{array}{c} d \ D \ d \end{array}$	100.000 170.000 120.000	B160 B164 B164				
JL725316 JL725346 JM734410	D d D	175.000 125.000 240.000	B164 B164 B166				

JM734449 JM738210 JM738249 B166 B166 B166

170.000 260.000 190.000

NSK